Risk Factors for Increased Online Gambling during COVID-19 Lockdowns in New Zealand: A Longitudinal Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Procedure
2.4. Measures
2.5. Data Analysis
3. Results
3.1. Participant Demographic Characteristics
3.2. Gambling Risk Level over Time
3.3. Online Gambling Behavior during Lockdown
3.4. Risk Factors for Increased Online Gambling during Periods of COVID-19 Lockdown
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stats, N.Z. Estimated Population of NZ. Available online: https://www.stats.govt.nz/indicators/population-of-nz (accessed on 24 May 2021).
- New Zealand Government. History of the COVID-19 Alert System. Available online: https://covid19.govt.nz/alert-levels-and-updates/history-of-the-covid-19-alert-system/ (accessed on 24 May 2021).
- Jefferies, S.; French, N.; Gilkison, G.; Graham, G.; Hope, V.; Marshall, J.; McElnay, C.; McNeill, A.; Muellner, P.; Paine, S.; et al. COVID-19 in New Zealand and the impact of the national response: A descriptive epidemiological study. Lancet Public Health 2020, 5, e612–e623. [Google Scholar] [CrossRef]
- Kontis, V.; Bennet, J.E.; Rashid, T.; Parks, R.M.; Pearson-Stuttard, J.; Guillot, M.; Asaria, P.; Zhou, B.; Battaglini, M.; Corsetti, G.; et al. Magnitude, demographics and dynamics of the effect of the first wave of the Covid-19 pandemic on all-cause mortality in 21 industrialized countries. Nat. Med. 2020, 26, 1919–1928. [Google Scholar] [CrossRef]
- Abbott, M. Gambling and gambling harm in New Zealand: A 28-year case study. Int. J. Ment. Health Addict. 2017, 15, 1221–1241. [Google Scholar] [CrossRef]
- New Zealand Government. Gambling Act 2003. Available online: https://www.legislation.govt.nz/act/public/2003/0051/latest/DLM207497.html (accessed on 24 May 2021).
- Abbott, M.; Bellringer, M.; Garrett, N. New Zealand National Gambling Study: Wave 4 (2015). Auckland University of Technology Gambling and Addictions Research Centre, Auckland, New Zealand. 2018. Available online: https://phmhri.aut.ac.nz/__data/assets/pdf_file/0019/193123/Final-Report-National-Gambling-Study-Report-6-29-March-2018.pdf (accessed on 24 May 2021).
- Rendall, S.; Thimasarn-Anwar, T.; Martin, G. Online Gambling in New Zealand: Results from the 2018 Health and Lifestyles Survey; Health Promotion Agency/Te Hiringa Hauora: Wellington, New Zealand, 2019; Available online: https://www.hpa.org.nz/sites/default/files/Online_Gambling_Report_HLS_2018.pdf (accessed on 15 October 2021).
- Bellringer, M.; Garrett, N.; Kolandai-Matchett, K.; Abbott, M. Offshore Gambling by New Zealanders Study; Auckland University of Technology Gambling and Addictions Research Centre: Auckland, New Zealand, 2015; Available online: https://niphmhr.aut.ac.nz/__data/assets/pdf_file/0010/11125/Final-Report-Offshore-Gambling-Study_11-September-2015.pdf (accessed on 24 May 2021).
- Gainsbury, S.M.; Russell, A.; Hing, N.; Wood, R.; Lubman, D.; Blaszczynski, A. How the internet is changing gambling: Findings from an Australian prevalence survey. J. Gambl. Stud. 2013, 31, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Department of Internal Affairs. How Aotearoa Gambled during Covid-19. Annual Gambling Data 2019–2020. Available online: https://www.dia.govt.nz/diawebsite.nsf/Files/Gambling-Statistics/$file/factsheet-how-aotearoa-gambled-during-covid-19.pdf (accessed on 25 June 2021).
- Hodgins, D.C.; Stevens, R.M.G. The impact of COVID-19 on gambling and gambling disorder: Emerging data. Curr. Opin. Psychiatry 2021, 34, 332–343. [Google Scholar] [CrossRef] [PubMed]
- Wright, K.B. Researching internet-based populations: Advantages and disadvantages of online survey research, online questionnaire authoring software packages, and web survey services. J. Comput. Mediat. Commun. 2017, 10. [Google Scholar] [CrossRef]
- Abbott, M.; Bellringer, M.; Garrett, N.; Kolandai-Matchett, K. Design and methods of the New Zealand National Gambling Study, a prospective cohort study of gambling and health: 2012–2019. Int. J. Ment. Health Addict. 2017, 15, 1242–1269. [Google Scholar] [CrossRef]
- Ferris, J.; Wynne, H. The Canadian Problem Gambling Index: Final Report; Canadian Centre on Substance Abuse: Ottawa, ON, Canada, 2001. [Google Scholar]
- Abbott, M.W.; Volberg, R.A. The measurement of adult problem and pathological gambling. Int. Gambl. Stud. 2006, 6, 175–200. [Google Scholar] [CrossRef]
- Lesieur, H.R.; Blume, S.B. The South Oaks Gambling Screen (SOGS): A new instrument for the identification of pathological gamblers. Am. J. Psychiatry 1987, 144, 1184–1188. [Google Scholar] [PubMed]
- Browne, M.; Goodwin, B.C.; Rockloff, M.J. Validation of the Short Gambling Harm Screen (SGHS): A tool for assessment of harms from gambling. J. Gambl. Stud. 2018, 34, 499–512. [Google Scholar] [CrossRef]
- Langham, E.; Thorne, H.; Browne, M.; Donaldson, P.; Rose, J.; Rockloff, M. Understanding gambling related harm: A proposed definition, conceptual framework, and taxonomy of harms. BMC Public Health 2016, 16, 80. [Google Scholar] [CrossRef] [Green Version]
- Devlin, M.E.; Walton, D. The prevalence of problem gambling in New Zealand as measured by the PGSI: Adjusting prevalence estimates using meta-analysis. Int. Gambl. Stud. 2012, 12, 177–197. [Google Scholar] [CrossRef]
- Kessler, R.C.; Andrews, G.; Colpe, L.L.; Hiripi, E.; Mroczek, D.K.; Normand, S.L.T.; Walters, E.E.; Zaslavsky, A.M. Short screening scales to monitor population prevalences and trends in non-specific psychological distress. Psychol. Med. 2002, 32, 959–976. [Google Scholar] [CrossRef]
- Schmidt, S.; Muhlan, H.; Power, M. The EUROHIS-QOL 8-item index: Psychometric results of a cross-cultural field study. Eur. J. Public Health 2005, 16, 420–428. [Google Scholar] [CrossRef]
- Saunders, J.B.; Aasland, O.G.; Babor, T.F.; De La Fuente, J.R.; Grant, M. Development of the Alcohol Use Disorders Identification Test (AUDIT): WHO collaborative project on early detection of persons with harmful alcohol consumption–II. Addiction 1993, 88, 791–804. [Google Scholar] [CrossRef] [PubMed]
- Reinert, D.F.; Allen, J.P. The Alcohol Use Disorders Identification Test (AUDIT): A review of recent research. Alcohol Clin. Exp. Res. 2002, 26, 272–279. [Google Scholar] [CrossRef] [PubMed]
- Salmond, C.; Crampton, P.; King, P.; Waldegrave, C. NZiDep: A New Zealand index of socioeconomic deprivation for individuals. Soc. Sci. Med. 2006, 62, 1474–1485. [Google Scholar] [CrossRef] [PubMed]
- Stats, N.Z. Experimental Estimates of Income from Linked Administrative Data. Available online: https://www.stats.govt.nz/experimental/experimental-estimates-of-income-from-linked-administrative-data#shiny (accessed on 23 July 2021).
- Brodeur, M.; Audette-Chapdelaine, S.; Savard, A.-C.; Kairouz, S. Gambling and the COVID-19 pandemic: A scoping review. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2021, 111, 110389. [Google Scholar] [CrossRef] [PubMed]
- Gainsbury, S.M.; Swanton, T.B.; Burgess, M.T.; Blaszczynski, A. Impacts of the COVID-19 shutdown on gambling patterns in Australia: Consideration of problem gambling and psychological distress. J. Addict. Med. 2020, 15, 468–476. [Google Scholar] [CrossRef] [PubMed]
- Håkansson, A. Impact of COVID-19 on online gambling—a general population survey during the pandemic. Front. Psychol. 2020, 11, 568543. [Google Scholar] [CrossRef] [PubMed]
- Gainsbury, S.M.; Russell, A.; Blaszczynski, A.; Hing, N. Greater involvement and diversity of internet gambling as a risk factor for problem gambling. Eur. J. Public Health 2015, 25, 723–728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wood, R.T.; Williams, R.J. A comparative profile of the internet gambler: Demographic characteristics, game-play patterns, and problem gambling status. New Media Soc. 2011, 13, 1123–1141. [Google Scholar] [CrossRef]
- Abbott, M.; Bellringer, M.; Garrett, N.; Mundy-McPherson, S. New Zealand 2012 National Gambling Study: Overview and Gambling Participation. Report Number 1. 2014. Available online: https://phmhri.aut.ac.nz/__data/assets/pdf_file/0017/7541/Report-final-National-Gambling-Study-Report-No.-1.pdf (accessed on 15 October 2021).
- Price, A. Online gambling in the midst of COVID-19: A nexus of mental health concerns, substance use and financial stress. Int. J. Ment. Health Addict. 2020, 13, 1–18. [Google Scholar] [CrossRef]
- Nielsen and Health Promotion Agency. Impact of COVID-19. 2020. Available online: https://www.hpa.org.nz/research-library/research-publications/the-impact-of-lockdown-on-health-risk-behaviours (accessed on 15 October 2021).
- Kim, H.S.; Wohl, M.J.A.; Salmon, M.M.; Gupta, R.; Derevensky, J. Do social casino gamers migrate to online gambling? An assessment of migration rate and potential predictors. J. Gambl. Stud. 2015, 31, 1819–1831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gainsbury, S.M.; Hing, N.; Delfabbro, P.; Dewar, G.; King, D.L. An exploratory study of interrelationships between social casino gaming, gambling, and problem gambling. Int. J. Ment. Health Addict. 2015, 13, 136–153. [Google Scholar] [CrossRef]
- Pickering, D.; Blaszczynski, A. Paid online convenience samples in gambling studies: Questionable data quality. Int. Gambl. Stud. 2021, 21, 516–536. [Google Scholar] [CrossRef]
- Russell, A.M.T.; Browne, M.; Hing, N.; Rockloff, M.; Newall, P. Are any samples representative or unbiased? Reply to Pickering and Blaszczynski. Int. Gambl. Stud. 2021, 1–12. [Google Scholar] [CrossRef]
- Canadian Centre on Substance Use and Addiction. Developing Lower-Risk Gambling Guidelines. Report in Short. 2021. Available online: https://gamblingguidelines.ca/app/uploads/2021/01/LRGG-Developing-Lower-Risk-Gambling-Guidelines-Report-in-Short-2021-en.pdf (accessed on 20 October 2021).
Characteristic | Category | n (%) |
---|---|---|
Gender | Male | 131 (43.5) |
Female | 170 (56.5) | |
Age (years) 1 | 18–24 | 21 (7.0) |
25–34 | 61 (20.3) | |
35–44 | 63 (20.9) | |
45–54 | 69 (22.9) | |
55–64 | 48 (16.0) | |
65+ | 39 (13.0) | |
Ethnicity | Māori | 74 (24.6) |
Pacific | 43 (14.3) | |
Asian | 33 (11.0) | |
NZ European/Other 2 | 151 (50.2) | |
Country of birth | NZ | 210 (69.8) |
Overseas | 91 (30.2) |
2012 | 2015 | 2020/21 | |||
---|---|---|---|---|---|
Characteristic | Category | n (%) | n (%) | n (%) | p-Value |
Employment status | Employed—Full time | 136 (45.2) | 144 (47.8) | 139 (46.2) | 0.07 |
Employed—Part time | 62 (20.6) | 64 (21.3) | 41 (13.6) | ||
Unemployed—Looking 1 | 11 (3.7) | 11 (3.7) | 18 (6.0) | ||
Unemployed—Benefit | 28 (9.3) | 23 (7.6) | 20 (6.6) | ||
Student/Home 2/Retired | 62 (20.6) | 58 (19.3) | 83 (27.6) | ||
Other | 2 (0.7) | 1 (0.3) | 0 (-) | ||
Highest educational level | No formal qualification | 131 (43.5) | 117 (38.9) | 116 (38.5) | ˂0.0001 5 |
University degree | 58 (19.3) | 68 (22.6) | 79 (26.2) | ||
Vocational or trade | 112 (37.2) | 115 (38.2) | 101 (33.6) | ||
Other | 0 (-) | 1 (0.3) | 5 (1.7) | ||
Household composition | Live alone | 51 (16.9) | 52 (17.3) | 66 (21.9) | 0.44 |
Live with partner only | 67 (22.3) | 60 (19.9) | 53 (17.6) | ||
Live with partner + children | 83 (27.6) | 98 (32.6) | 88 (29.2) | ||
Other | 100 (33.2) | 91 (30.2) | 94 (31.2) | ||
Annual personal income (NZ$) | Up to $20,000 | 94 (31.2) | 84 (27.9) | 66 (21.9) | ˂0.0001 |
$20,001 to $40,000 | 93 (30.9) | 87 (28.9) | 78 (25.9) | ||
$40,001 to $60,000 | 56 (18.6) | 69 (22.9) | 52 (17.3) | ||
$60,001 to $80,000 | 27 (9.0) | 37 (12.3) | 40 (13.3) | ||
$80,001 to $100,000 | 14 (4.7) | 12 (4.0) | 22 (7.3) | ||
$100,001+ | 7 (2.3) | 7 (2.3) | 8 (5.7) | ||
Not reported | 10 (3.3) | 5 (1.7) | 26 (8.6) | ||
Deprivation (score) | 0 | 127 (42.2) | 154 (51.2) | 167 (55.5) | 0.07 |
1 | 72 (23.9) | 58 (19.3) | 68 (22.6) | ||
2 | 41 (13.6) | 31 (10.3) | 28 (9.3) | ||
3 | 19 (6.3) | 20 (6.6) | 15 (5.0) | ||
4 | 20 (6.6) | 19 (6.3) | 9 (3.0) | ||
5–8 | 78 (25.9) | 78 (25.9) | 101 (33.6) | ||
Quality of life (score; quartiles 3) | Very poor | 92 (30.6) | 95 (31.7) | 83 (27.9) | 0.09 |
Poor | 115 (38.2) | 105 (35.0) | 95 (31.9) | ||
Good | 66 (21.9) | 63 (21.0) | 69 (23.2) | ||
Very good | 28 (9.3) | 37 (12.3) | 51 (17.1) | ||
Major life events (number) 4 | 0 | 62 (20.6) | 64 (21.3) | 21 (7.0) | ˂0.0001 |
1 | 65 (21.6) | 78 (25.9) | 37 (12.3) | ||
2 | 62 (20.6) | 59 (19.6) | 40 (13.3) | ||
3 | 39 (13.0) | 48 (15.9) | 54 (17.9) | ||
4 | 35 (11.6) | 22 (7.3) | 36 (12.0) | ||
5+ | 38 (12.6) | 30 (10.0) | 113 (37.5) | ||
Mental health (psychological distress) | Low | 169 (56.1) | 184 (61.1) | 163 (54.2) | 0.53 |
Moderate | 72 (23.9) | 72 (23.9) | 85 (28.2) | ||
High | 43 (14.3) | 33 (11.0) | 37 (12.3) | ||
Severe | 17 (5.6) | 12 (4.0) | 16 (5.3) | ||
General health | Excellent | 31 (10.3) | 31 (10.3) | 31 (10.3) | 0.26 |
Very Good | 90 (29.9) | 86 (28.6) | 83 (27.6) | ||
Good | 113 (37.5) | 113 (37.5) | 104 (34.6) | ||
Fair | 58 (19.3) | 53 (17.6) | 56 (18.6) | ||
Poor | 9 (3.0) | 18 (6.0) | 27 (9.0) | ||
Disability | Yes | 66 (21.9) | 55 (18.3) | 88 (29.2) | 0.005 |
No | 235 (78.1) | 246 (81.7) | 213 (70.8) | ||
Hazardous alcohol use | Yes | 115 (38.2) | 96 (31.9) | 124 (41.2) | 0.05 |
No | 186 (61.8) | 205 (68.1) | 177 (58.8) | ||
Cannabis use | Yes | 64 (21.3) | 43 (14.3) | 29 (9.6) | 0.002 |
No | 237 (78.7) | 258 (85.7) | 272 (90.4) |
2012 | 2015 | 2020/21 | |
---|---|---|---|
Risk Level | n (%) | n (%) | n (%) |
Non-gambler | 13 (4.3) | 7 (2.3) | 0 (-) |
Non-problem gambler | 179 (59.5) | 163 (54.2) | 224 (74.4) |
Low risk gambler | 65 (21.6) | 93 (30.9) | 46 (15.3) |
Moderate risk gambler | 28 (9.3) | 29 (9.6) | 25 (8.3) |
Problem gambler | 16 (5.3) | 9 (3.0) | 6 (2.0) |
Gambling Activity (Land-Based and Online) | Past Year Participation (N = 301) | Online Participation | Online Gambling during Lockdown | ||
---|---|---|---|---|---|
Increased | Same | Decreased | |||
n (%) | n (%) | n (%) | n (%) | n (%) | |
NZ Lotto | 255 (85) | 127 (50) | 28 (22) | 76 (60) | 23 (18) |
NZ Scratch card | 134 (45) | 26 (19) | 7 (27) | 12 (46) | 7 (27) |
NZ Keno | 44 (15) | 31 (70) | 4 (13) | 18 (58) | 9 (29) |
NZ Track | 63 (21) | 22 (35) | 3 (14) | 9 (41) | 10 (45) |
NZ Sports | 24 (8) | 12 (50) | 1 (8) | 5 (42) | 6 (50) |
Non-NZ online 1 | 15 (5) | 15 (100) | 5 (33) 2 | 8 (53) 2 | 3 (20) 2 |
All activities | 271 (90) | 153 (56) | 37 (24)2 | 101 (66) 2 | 41 (27) 2 |
Covariate | Year | Category | n | Increased Online Gambling | Unadjusted (Bivariate) | Adjusted (Multi-Variate) | ||||
---|---|---|---|---|---|---|---|---|---|---|
Odds Ratio | 95% CI | p-Value | Odds Ratio | 95% CI | p-Value | |||||
Gender | 2012 | Male | 131 | 10.7% | 0.77 | (0.38, 1.55) | ||||
Female | 170 | 13.5% | 1.00 | - | 0.46 | |||||
Age (years) 1 | 2012 | 18–24 | 21 | 23.8% | 1.00 | - | ||||
25–34 | 61 | 21.3% | 0.87 | (0.27, 2.81) | ||||||
35–44 | 63 | 14.3% | 0.53 | (0.16, 1.82) | ||||||
45–54 | 69 | 11.6% | 0.42 | (0.12, 1.46) | ||||||
55–64 | 87 | 2.3% | 0.08 | (0.01, 0.42) | 0.02 | |||||
Ethnicity | 2012 | Māori | 74 | 12.2% | 0.91 | (0.39, 2.1) | ||||
Pacific | 43 | 4.7% | 0.32 | (0.07, 1.43) | ||||||
Asian | 33 | 18.2% | 1.46 | (0.53, 3.96) | ||||||
NZ European/Other 2 | 151 | 13.2% | 1.00 | - | 0.36 | |||||
Employment status | 2015 | Employed | 208 | 13.9% | 1.00 | - | ||||
Unemployed | 34 | 17.6% | 1.32 | (0.5, 3.47) | ||||||
Other 3 | 59 | 3.4% | 0.22 | (0.05, 0.94) | 0.09 | |||||
2020/21 | Employed | 180 | 15.6% | 1.00 | - | |||||
Unemployed | 38 | 15.8% | 1.02 | (0.39, 2.66) | ||||||
Other | 83 | 3.6% | 0.20 | (0.06, 0.69) | 0.04 | |||||
Highest educational level | 2015 | No formal qualification | 118 | 5.1% | 1.00 | - | ||||
Vocational or trade | 115 | 12.2% | 2.59 | (0.96, 6.99) | ||||||
University degree | 68 | 25.0% | 6.22 | (2.32, 16.71) | 0.001 | |||||
2020/21 | No formal qualification | 121 | 5.8% | 1.00 | - | |||||
Vocational or trade | 101 | 11.9% | 2.20 | (0.83, 5.81) | 1.00 | - | ||||
University degree | 79 | 22.8% | 4.81 | (1.9, 12.14) | 0.003 | 2.49 | (0.87, 7.09) | 0.003 | ||
Gambling risk level (PGSI) | 2015 | No risk 4 | 170 | 11.8% | 1.00 | - | ||||
At risk 5 | 131 | 13.0% | 1.12 | (0.56, 2.23) | 0.75 | |||||
2020/21 | No risk 4 | 224 | 8.0% | 1.00 | - | 1.00 | - | |||
At risk 5 | 77 | 24.7% | 3.75 | (1.85, 7.61) | 0.0003 | 4.09 | (1.90, 8.82) | 0.0003 | ||
Gambling harm (SGHS) | 2020/21 | 0 | 247 | 9.7% | 1.00 | - | ||||
1 | 28 | 17.9% | 2.02 | (0.70, 5.80) | ||||||
2+ | 26 | 30.8% | 4.13 | (1.62, 10.50) | 0.009 | |||||
Free-to-play gambling-type activities | 2015 | No | 242 | 9.5% | 1.00 | - | 1.00 | - | ||
Yes | 59 | 23.7% | 2.96 | (1.42, 6.20) | 0.004 | 3.38 | (1.47, 7.76) | 0.004 | ||
2020/21 | No | 203 | 8.9% | 1.00 | - | |||||
Yes | 98 | 19.4% | 2.47 | (1.23, 4.96) | 0.01 | |||||
Gambled from FTP 6 | 2020/21 | No | 288 | 10.8% | 1.00 | - | ||||
Yes | 12 | 50.0% | 8.29 | (2.52, 27.29) | 0.0005 | |||||
Sought help for gambling | 2015 | No | 295 | 12.5% | - | - | ||||
Yes | 6 | 0.0% | - | - | ||||||
2020/21 | No | 294 | 11.9% | 1.00 | - | |||||
Yes | 7 | 28.6% | 2.96 | (0.55, 15.84) | 0.20 | |||||
Hazardous alcohol use | 2015 | No | 205 | 9.3% | 1.00 | - | 1.00 | - | ||
Yes | 96 | 18.8% | 2.26 | (1.13, 4.54) | 0.02 | 2.80 | (1.25, 6.24) | 0.01 | ||
2020/21 | No | 177 | 9.6% | 1.00 | - | |||||
Yes | 124 | 16.1% | 1.81 | (0.91, 3.62) | 0.09 | |||||
Cannabis use | 2015 | No | 260 | 10.8% | 1.00 | - | ||||
Yes | 41 | 22.0% | 2.33 | (1.01, 5.38) | 0.05 | |||||
2020/21 | No | 273 | 12.5% | 1.00 | - | |||||
Yes | 28 | 10.7% | 0.84 | (0.24, 2.95) | 0.79 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bellringer, M.E.; Garrett, N. Risk Factors for Increased Online Gambling during COVID-19 Lockdowns in New Zealand: A Longitudinal Study. Int. J. Environ. Res. Public Health 2021, 18, 12946. https://doi.org/10.3390/ijerph182412946
Bellringer ME, Garrett N. Risk Factors for Increased Online Gambling during COVID-19 Lockdowns in New Zealand: A Longitudinal Study. International Journal of Environmental Research and Public Health. 2021; 18(24):12946. https://doi.org/10.3390/ijerph182412946
Chicago/Turabian StyleBellringer, Maria E., and Nick Garrett. 2021. "Risk Factors for Increased Online Gambling during COVID-19 Lockdowns in New Zealand: A Longitudinal Study" International Journal of Environmental Research and Public Health 18, no. 24: 12946. https://doi.org/10.3390/ijerph182412946