Bioelectrical Impedance Vector Analysis of Young Elite Team Handball Players
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Design
2.3. Anthropometry and Bioelectrical Impedance Analysis
2.4. Statistical Analysis
3. Results
3.1. Sex, Age Category and Positional Roles Comparisons
3.2. Bioelectrical Impedance Vector Analysis and Comparisons
3.3. BIVA Correlations
4. Discussion
Practical Applications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Michalsik, L.B.; Madsen, K.; Aagaard, P. Physiological Capacity and Physical Testing in Male Elite Team Handball. J. Sports Med. Phys. Fit. 2015, 55, 415–429. [Google Scholar]
- Michalsik, L.B.; Madsen, K.; Aagaard, P. Technical Match Characteristics and Influence of Body Anthropometry on Playing Performance in Male Elite Team Handball. J. Strength Cond. Res. 2015, 29, 416–428. [Google Scholar] [CrossRef] [PubMed]
- Buchheit, M.; Laursen, P.B. High-Intensity Interval Training, Solutions to the Programming Puzzle: Part I: Cardiopulmonary Emphasis. Sports Med. 2013, 43, 313–338. [Google Scholar] [CrossRef] [PubMed]
- Di Credico, A.; Izzicupo, P.; Gaggi, G.; Di Baldassarre, A.; Ghinassi, B. Effect of Physical Exercise on the Release of Microparticles with Angiogenic Potential. Appl. Sci. 2020, 10, 4871. [Google Scholar] [CrossRef]
- Gibala, M.J.; McGee, S.L.; Garnham, A.P.; Howlett, K.F.; Snow, R.J.; Hargreaves, M. Brief Intense Interval Exercise Activates AMPK and P38 MAPK Signaling and Increases the Expression of PGC-1α in Human Skeletal Muscle. J. Appl. Physiol. 2009, 106, 929–934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michalsik, L.; Aagaard, P.; Madsen, K. Locomotion Characteristics and Match-Induced Impairments in Physical Performance in Male Elite Team Handball Players. Int. J. Sports Med. 2012, 34, 590–599. [Google Scholar] [CrossRef]
- Iannaccone, A.; Fusco, A.; Skarbalius, A.; Kniubaite, A.; Cortis, C.; Conte, D. Relationship Between External and Internal Load Measures in Youth Beach Handball. Int. J. Sports Physiol. Perform. 2021, 1, 1–7. [Google Scholar] [CrossRef]
- Iannaccone, A.; Conte, D.; Cortis, C.; Fusco, A. Usefulness of Linear Mixed-Effects Models to Assess the Relationship between Objective and Subjective Internal Load in Team Sports. Int. J. Environ. Res. Public Health 2021, 18, 392. [Google Scholar] [CrossRef] [PubMed]
- Iannaccone, A.; Fusco, A.; Conte, D.; Cortis, C. Notational Analysis of Beach Handball. Hum. Mov. 2021, 21, 69–79. [Google Scholar] [CrossRef]
- Di Mauro, M.; Izzicupo, P.; Santarelli, F.; Falone, S.; Pennelli, A.; Amicarelli, F.; Calafiore, A.M.; Di Baldassarre, A.; Gallina, S. ACE and AGTR1 Polymorphisms and Left Ventricular Hypertrophy in Endurance Athletes: Med. Sci. Sports Exerc. 2010, 42, 915–921. [Google Scholar] [CrossRef]
- Izzicupo, P.; Ghinassi, B.; D’Amico, M.A.; Di Blasio, A.; Gesi, M.; Napolitano, G.; Gallina, S.; Di Baldassarre, A. Effects of ACE I/D Polymorphism and Aerobic Training on the Immune–Endocrine Network and Cardiovascular Parameters of Postmenopausal Women. J. Clin. Endocrinol. Metab. 2013, 98, 4187–4194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Izzicupo, P.; Di Valerio, V.; D’Amico, M.A.; Di Mauro, M.; Pennelli, A.; Falone, S.; Alberti, G.; Amicarelli, F.; Miscia, S.; Gallina, S.; et al. Nad(P)H Oxidase and Pro-Inflammatory Response during Maximal Exercise: Role of C242T Polymorphism of the P22PHOX Subunit. Int. J. Immunopathol. Pharmacol. 2010, 23, 203–211. [Google Scholar] [CrossRef]
- Venezia, A.C.; Roth, S.M. Recent Research in the Genetics of Exercise Training Adaptation. In Medicine and Sport Science; Posthumus, M., Collins, M., Eds.; Karger Publishers: Basel, Switzerland, 2016; Volume 61, pp. 29–40. ISBN 978-3-318-03010-5. [Google Scholar]
- Ruscello, B.; Castagna, C.; Carbonaro, R.; Gabrielli, P.R.; D’Ottavio, S. Fitness Profiles of Elite Male Italian Teams Handball Players. J. Sports Med. Phys. Fit. 2021, 61, 656–665. [Google Scholar] [CrossRef]
- Wagner, H.; Fuchs, P.X.; von Duvillard, S.P. Specific Physiological and Biomechanical Performance in Elite, Sub-Elite and in Non-Elite Male Team Handball Players. J. Sports Med. Phys. Fit. 2017, 58, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Manchado, C.; Tortosa-Martínez, J.; Vila, H.; Ferragut, C.; Platen, P. Performance Factors in Women’s Team Handball: Physical and Physiological Aspects—A Review. J. Strength Cond. Res. 2013, 27, 1708–1719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gorostiaga, E.M.; Granados, C.; Ibáñez, J.; Izquierdo, M. Differences in Physical Fitness and Throwing Velocity Among Elite and Amateur Male Handball Players. Int. J. Sports Med. 2005, 26, 225–232. [Google Scholar] [CrossRef]
- Ingebrigtsen, J.; Jeffreys, I.; Rodahl, S. Physical Characteristics and Abilities of Junior Elite Male and Female Handball Players. J. Strength Cond. Res. 2013, 27, 302–309. [Google Scholar] [CrossRef]
- Mohamed, H.; Vaeyens, R.; Matthys, S.; Multael, M.; Lefevre, J.; Lenoir, M.; Philippaerts, R. Anthropometric and Performance Measures for the Development of a Talent Detection and Identification Model in Youth Handball. J. Sports Sci. 2009, 27, 257–266. [Google Scholar] [CrossRef]
- Kyle, U. Bioelectrical Impedance Analysis?Part I: Review of Principles and Methods. Clin. Nutr. 2004, 23, 1226–1243. [Google Scholar] [CrossRef]
- Castizo-Olier, J.; Irurtia, A.; Jemni, M.; Carrasco-Marginet, M.; Fernández-García, R.; Rodríguez, F.A. Bioelectrical Impedance Vector Analysis (BIVA) in Sport and Exercise: Systematic Review and Future Perspectives. PLoS ONE 2018, 13, e0197957. [Google Scholar] [CrossRef]
- Kyle, U.G.; Earthman, C.P.; Pichard, C.; Coss-Bu, J.A. Body Composition during Growth in Children: Limitations and Perspectives of Bioelectrical Impedance Analysis. Eur. J. Clin. Nutr. 2015, 69, 1298–1305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piccoli, A.; Rossi, B.; Pillon, L.; Bucciante, G. A New Method for Monitoring Body Fluid Variation by Bioimpedance Analysis: The RXc Graph. Kidney Int. 1994, 46, 534–539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mascherini, G.; Gatterer, H.; Lukaski, H.; Burtscher, M.; Galanti, G. Changes in Hydration, Body-Cell Mass and Endurance Performance of Professional Soccer Players through a Competitive Season. J. Sports Med. Phys. Fit. 2015, 55, 749–755. [Google Scholar]
- Carrasco-Marginet, M.; Castizo-Olier, J.; Rodríguez-Zamora, L.; Iglesias, X.; Rodríguez, F.A.; Chaverri, D.; Brotons, D.; Irurtia, A. Bioelectrical Impedance Vector Analysis (BIVA) for Measuring the Hydration Status in Young Elite Synchronized Swimmers. PLoS ONE 2017, 12, e0178819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campa, F.; Matias, C.N.; Nunes, C.L.; Monteiro, C.P.; Francisco, R.; Jesus, F.; Marini, E.; Sardinha, L.B.; Martins, P.; Minderico, C.; et al. Specific Bioelectrical Impedance Vector Analysis Identifies Body Fat Reduction after a Lifestyle Intervention in Former Elite Athletes. Biology 2021, 10, 524. [Google Scholar] [CrossRef]
- Di Vincenzo, O.; Marra, M.; Scalfi, L. Bioelectrical Impedance Phase Angle in Sport: A Systematic Review. J. Int. Soc. Sports Nutr. 2019, 16, 49. [Google Scholar] [CrossRef] [Green Version]
- Koury, J.C.; Trugo, N.M.F.; Torres, A.G. Phase Angle and Bioelectrical Impedance Vectors in Adolescent and Adult Male Athletes. Int. J. Sports Physiol. Perform. 2014, 9, 798–804. [Google Scholar] [CrossRef]
- Micheli, M.L.; Pagani, L.; Marella, M.; Gulisano, M.; Piccoli, A.; Angelini, F.; Burtscher, M.; Gatterer, H. Bioimpedance and Impedance Vector Patterns as Predictors of League Level in Male Soccer Players. Int. J. Sports Physiol. Perform. 2014, 9, 532–539. [Google Scholar] [CrossRef]
- Campa, F.; Toselli, S. Bioimpedance Vector Analysis of Elite, Subelite, and Low-Level Male Volleyball Players. Int. J. Sports Physiol. Perform. 2018, 13, 1250–1253. [Google Scholar] [CrossRef]
- Campa, F.; Silva, A.M.; Iannuzzi, V.; Mascherini, G.; Benedetti, L.; Toselli, S. The Role of Somatic Maturation on Bioimpedance Patterns and Body Composition in Male Elite Youth Soccer Players. Int. J. Environ. Res. Public Health 2019, 16, 4711. [Google Scholar] [CrossRef] [Green Version]
- Winter, E.M.; Maughan, R.J. Requirements for Ethics Approvals. J. Sports Sci. 2009, 27, 985. [Google Scholar] [CrossRef] [PubMed]
- Cheuvront, S.N.; Kenefick, R.W. Dehydration: Physiology, Assessment, and Performance Effects. In Comprehensive Physiology; American Cancer Society: Atlanta, GA, USA, 2014; pp. 257–285. ISBN 978-0-470-65071-4. [Google Scholar]
- Belval, L.N.; Hosokawa, Y.; Casa, D.J.; Adams, W.M.; Armstrong, L.E.; Baker, L.B.; Burke, L.; Cheuvront, S.; Chiampas, G.; González-Alonso, J.; et al. Practical Hydration Solutions for Sports. Nutrients 2019, 11, 1550. [Google Scholar] [CrossRef] [Green Version]
- Izzicupo, P.; Di Blasio, A.; Di Credico, A.; Gaggi, G.; Vamvakis, A.; Napolitano, G.; Ricci, F.; Gallina, S.; Ghinassi, B.; Di Baldassarre, A. The Length and Number of Sedentary Bouts Predict Fibrinogen Levels in Postmenopausal Women. Int. J. Environ. Res. Public Health 2020, 17, 3051. [Google Scholar] [CrossRef] [PubMed]
- Esparza Ros, F.; Vaquero-Cristóbal, R.; Marfell-Jones, M. International Standars for Anthropometric Assessment, 2019; The International Society for the Advancement of Kinanthropometry (ISAK): Glasgow, UK, 2019; ISBN 978-84-92986-15-6. [Google Scholar]
- De Palo, T.; Messina, G.; Edefonti, A.; Perfumo, F.; Pisanello, L.; Peruzzi, L.; Di Iorio, B.; Mignozzi, M.; Vienna, A.; Conti, G.; et al. Normal Values of the Bioelectrical Impedance Vector in Childhood and Puberty. Nutrition 2000, 16, 417–424. [Google Scholar] [CrossRef]
- Piccoli, A.; Pastori, G. BIVA Software; Department of Medical and Surgical Sciences, University of Padova: Padova, Italy, 2002. [Google Scholar]
- Nikolaidis, P.T.; Ingebrigtsen, J. Physical and Physiological Characteristics of Elite Male Handball Players from Teams with a Different Ranking. J. Hum. Kinet. 2013, 38, 115–124. [Google Scholar] [CrossRef] [Green Version]
- Malina, R.M.; Bouchard, C.; Bar-Or, O. Growth, Maturation, and Physical Activity, 2nd ed.; Human Kinetics: Champaign, IL, USA, 2004; ISBN 978-0-88011-882-8. [Google Scholar]
- Di Credico, A.; Gaggi, G.; Ghinassi, B.; Mascherini, G.; Petri, C.; Di Giminiani, R.; Di Baldassarre, A.; Izzicupo, P. The Influence of Maturity Status on Anthropometric Profile and Body Composition of Youth Goalkeepers. Int. J. Environ. Res. Public Health 2020, 17, 8247. [Google Scholar] [CrossRef]
- Izzicupo, P.; Di Blasio, A.; Di Credico, A.; Ghinassi, B.; Capranica, L.; Napolitano, G.; Di Baldassarre, A.; Modestini, E.; Di Pietro, M. Objectively Measured Physical Activity Increases Only in Males During a Summer Camp for Obese Children. Front. Sports Act. Living 2021, 3, 624449. [Google Scholar] [CrossRef]
- Koury, J.C.; de Oliveira-Junior, A.V.; Portugal, M.R.C.; de Oliveira, K.D.J.F.; Donangelo, C.M. Bioimpedance Parameters in Adolescent Athletes in Relation to Bone Maturity and Biochemical Zinc Indices. J. Trace Elem. Med. Biol. 2018, 46, 26–31. [Google Scholar] [CrossRef]
- Martins, P.C.; Teixeira, A.S.; Guglielmo, L.G.A.; Francisco, J.S.; Silva, D.A.S.; Nakamura, F.Y.; de Lima, L.R.A. Phase Angle Is Related to 10 m and 30 m Sprint Time and Repeated-Sprint Ability in Young Male Soccer Players. Int. J. Environ. Res. Public Health 2021, 18, 4405. [Google Scholar] [CrossRef]
- Urban, F.; Kandrá, R.; Táborský, F. Position-Related Categorization of Somatotypes in Top Level Handball Players. 2014. Available online: https://www.researchgate.net/publication/222108359_Position-Related_Categorization_Of_Somatotypes_In_Top_Level_Handball_Players/citations (accessed on 10 September 2021).
- Bongiovanni, T.; Mascherini, G.; Genovesi, F.; Pasta, G.; Iaia, F.M.; Trecroci, A.; Ventimiglia, M.; Alberti, G.; Campa, F. Bioimpedance Vector References Need to Be Period-Specific for Assessing Body Composition and Cellular Health in Elite Soccer Players: A Brief Report. JFMK 2020, 5, 73. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, C.; Young, A.J.; Sawka, M.N. Bioelectrical Impedance to Estimate Changes in Hydration Status. Int. J. Sports Med. 2002, 23, 361–366. [Google Scholar] [CrossRef] [PubMed]
- Campa, F.; Silva, A.M.; Talluri, J.; Matias, C.N.; Badicu, G.; Toselli, S. Somatotype and Bioimpedance Vector Analysis: A New Target Zone for Male Athletes. Sustainability 2020, 12, 4365. [Google Scholar] [CrossRef]
Variable | Males U17 n = 19 | Males U19 n = 18 | Females U19 n = 18 | Whole Sample n = 55 | F | 2 | p-Value |
---|---|---|---|---|---|---|---|
Age (years) | 16.5 ± 0.6 | 18.6 ± 0.6 * | 18.2 ± 0.7 * | 17.3 ± 1.1 | 57.3 | <0.001 | |
Year of practice | 7.4 ± 2.0 | 8.5 ± 1.4 | 7.9 ± 13 | 7.9 ± 1.7 | 2.17 | >0.05 | |
Height (cm) | 183.9 ± 7.7 ¶ | 187.8 ± 6.5 | 171.2 ± 6.4 | 181.0 ± 9.8 | 28.4 | <0.001 | |
Weight (Kg) | 78.4 ± 9.5 ¶ | 85.7 ± 11.4 | 67.4 ± 7.2 | 77.2 ± 12.0 | 16.8 | <0.001 | |
BMI (Kg/m2) | 23.1 ± 2.0 | 24.2 ± 2.8 | 23.0 ± 2.0 | 23.5 ± 2.3 | 1.7 | 0.187 | |
TBW (l) | 47.1 ± 4.0 † | 51.7 ± 4.9 † | 35.9 ± 2.7 † | 44.9 ± 7.7 | 73.8 | <0.001 | |
FFM (kg) | 64.2 ± 5.5 † | 70.8 ± 6.4 † | 49.6 ± 3.2 † | 61.6 ±10.2 | 77.9 | <0.001 | |
FM (kg) | 14.4 ± 5.1 | 14.9 ±6.0 | 17.8 ± 5.4 | 15.6 ± 5.6 | 2.2 | 0.125 | |
FM (%) | 17.6 ± 4.8 | 16.8 ± 5.1 | 25.9 ± 5.6 | 20.1 ± 6.6 | 16.8 | <0.001 | |
FFMI (Kg/m2) | 19.0 ± 1.5 ¶ | 20.1 ± 1.5 ¶ | 16.9 ± 0.8 | 18.7 ± 1.8 | 25.7 | <0.001 | |
FMI (Kg/m2) | 4.1 ± 1.3 ¶ | 4.2 ± 1.6 ¶ | 6.0 ± 1.7 | 4.8 ± 1.8 | 8.7 | 0.001 | |
BCM (Kg) | 38.8 ± 3.8 † | 43.8 ± 3.4 † | 29.1 ± 2.1 † | 37.3 ± 6.9 | 40.4 | <0.001 | |
R/H (Ω/m) | 269.1 ± 25.5 † | 246.2 ± 18.8 † | 331.9 ± 28.8 † | 282.2 ± 43.6 | 35.7 | <0.001 | |
Xc/H (Ω/m) | 35.4 ± 6.6 ¶ | 34.3 ± 7.4 ¶ | 41.5 ± 9.0 | 37.1 ± 8.1 | 11.7 | <0.001 | |
PA (°) | 7.5 ± 0.5 | 7.9 ± 0.7 ¶ | 7.1 ± 0.7 | 7.5 ± 0.7 | 7.0 | 0.002 | |
ECW: TBW | 41.6 ± 3.8 ‡ | 38.3 ± 2.2 | 41.2 ± 2.8 ‡ | 40.4 ± 3.3 | 9.7 | 0.008 |
Variable | Goalkeepers n = 6 | Backs n = 9 | Wingers n = 9 | Pivots n = 7 | Centers n = 6 | Whole Sample n = 37 | 2 | p-Value |
---|---|---|---|---|---|---|---|---|
Age (years) | 17.6 ± 1.4 | 17.5 ± 1.2 | 17.4 ± 1.3 | 17.3 ± 1.1 | 17.8 ± 1.3 | 17.5 ± 1.2 | 1.0 | 0.963 |
Height (cm) | 188.8 ± 3.0 | 189.1 ± 6.3 | 179.8 ± 7.6 *¶† | 190.6 ± 3.7 ‡ | 181.2 ± 7.0 | 185.8 ± 7.3 | 13.4 | 0.01 |
Weight (Kg) | 89.6 ± 12.6 | 83.9 ± 7.1 | 70.4 ± 7.4 *¶† | 89.1 ± 7.5 ‡ | 80.4 ± 8.9 | 82.0 ± 11.0 | 15.8 | 0.003 |
BMI (Kg/m2) | 25.2 ± 3.8 | 23.5 ± 1.4 | 21.7 ± 1.1 ¶†‡ | 24.6 ± 2.6 | 24.5 ± 2.2 | 23.7 ± 2.5 | 9.7 | 0.046 |
TBW (l) | 52.3 ± 7.4 | 50.2 ± 2.9 | 44.7 ± 3.7 *¶†‡ | 51.4 ± 3.8 | 49.7 ± 4.0 | 49.3 ± 5.0 | 11.0 | 0.027 |
FFM (kg) | 71.2 ± 9.7 | 68.6 ± 4.3 | 61.4 ± 4.8 *¶† | 70.1 ± 5.2 | 67.7 ± 6.2 | 67.4 ± 6.7 | 10.8 | 0.029 |
FM (kg) | 18.4 ± 5.5 | 15.3 ± 4.1 | 8.9 ± 4.1 *¶† | 19.0 ± 3.6 ‡ | 12.7 ± 3.5 | 14.5 ± 5.5 | 14.7 | 0.005 |
FM (%) | 20.4 ± 4.5 | 18.9 ± 3.8 | 12.4 ± 4.4 *¶† | 21.2 ± 2.8 ‡ | 15.6 ± 3.2 | 17.3 ± 4.9 | 15.5 | 0.004 |
FFMI (Kg/m2) | 20.0 ± 2.7 | 19.2 ± 0.8 | 19.0 ± 0.8 ‡ | 19.3 ± 1.9 | 20.6 ± 1.6 | 19.5 ± 1.6 | 5.9 | 0.208 |
FMI (Kg/m2) | 5.2 ± 1.7 | 4.3 ± 1.1 | 2.7 ± 1.1 *¶† | 5.2 ± 1.0 ‡ | 3.8 ± 1.0 | 4.1 ± 1.5 | 14.5 | 0.006 |
BCM (Kg) | 42.0 ± 6.2 | 42.3 ± 3.5 | 37.9 ± 3.3 ¶† | 42.4 ± 4.5 | 42.7 ± 3.3 | 41.3 ± 4.4 | 7.7 | 0.102 |
R/H (Ω/m) | 252.5 ± 43.2 | 257.0 ± 14.2 | 271.1 ± 21.3 ‡ | 257.4 ± 24.4 | 245.9 ± 18.9 | 258.0 ± 25.0 | 5.4 | 0.246 |
Xc/H (Ω/m) | 31.5 ± 4.8 | 35.3 ± 2.7 | 37.4 ± 4.2 * | 33.6 ± 2.3 | 35.6 ± 4.3 | 34.9 ± 4.0 | 7.2 | =0.127 |
PA (°) | 7.1 ± 0.4 | 7.8 ± 0.6 * | 7.8 ± 0.7 * | 7.5 ± 0.6 ‡ | 8.2 ± 0.4 * | 7.7 ± 0.6 | 11.6 | =0.018 |
ECW: TBW | 42.0 ± 3.1 | 39.5 ± 3.6 | 39.5 ± 3.8 | 40.6 ± 3.0 | 39.0 ± 3.9 | 40.0 ± 3.5 | 5.9 | =0.204 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Credico, A.; Gaggi, G.; Vamvakis, A.; Serafini, S.; Ghinassi, B.; Di Baldassarre, A.; Izzicupo, P. Bioelectrical Impedance Vector Analysis of Young Elite Team Handball Players. Int. J. Environ. Res. Public Health 2021, 18, 12972. https://doi.org/10.3390/ijerph182412972
Di Credico A, Gaggi G, Vamvakis A, Serafini S, Ghinassi B, Di Baldassarre A, Izzicupo P. Bioelectrical Impedance Vector Analysis of Young Elite Team Handball Players. International Journal of Environmental Research and Public Health. 2021; 18(24):12972. https://doi.org/10.3390/ijerph182412972
Chicago/Turabian StyleDi Credico, Andrea, Giulia Gaggi, Anastasios Vamvakis, Sofia Serafini, Barbara Ghinassi, Angela Di Baldassarre, and Pascal Izzicupo. 2021. "Bioelectrical Impedance Vector Analysis of Young Elite Team Handball Players" International Journal of Environmental Research and Public Health 18, no. 24: 12972. https://doi.org/10.3390/ijerph182412972
APA StyleDi Credico, A., Gaggi, G., Vamvakis, A., Serafini, S., Ghinassi, B., Di Baldassarre, A., & Izzicupo, P. (2021). Bioelectrical Impedance Vector Analysis of Young Elite Team Handball Players. International Journal of Environmental Research and Public Health, 18(24), 12972. https://doi.org/10.3390/ijerph182412972