Association with Temperature Variability and Physical Activity, Sedentary Behavior, and Sleep in a Free-Living Population
Abstract
:1. Introduction
2. Methods
2.1. Study Design
2.2. Instrument
SenseWear Armband (SWA) Mini
2.3. Data Collection
2.4. Measures
2.4.1. Anthropometry
2.4.2. Habitual Physical Activity and Sedentary Behavior
2.4.3. Temperature
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chan, C.B.; Ryan, D.A.; Tudor-Locke, C. Relationship between objective measures of physical activity and weather: A longitudinal study. Int. J. Behav. Nutr. Phys. Act. 2006, 3, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gordon-Larsen, P.; McMurray, R.G.; Popkin, B.M. Determinants of Adolescent Physical Activity and Inactivity Patterns. Pediatrics 2000, 105, e83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Merrill, R.M.; Shields, E.C.; White, G.L.; Druce, D. Climate Conditions and Physical Activity in the United States. Am. J. Health Behav. 2005, 29, 371–381. [Google Scholar] [CrossRef]
- Tucker, P.; Gilliland, J. The effect of season and weather on physical activity: A systematic review. Public Health 2007, 121, 909–922. [Google Scholar] [CrossRef]
- Berkey, C.S.; Rockett, H.R.; Gillman, M.W.; Colditz, G.A. One-year changes in activity and in inactivity among 10-to 15-year-old boys and girls: Relationship to change in body mass index. Pediatrics 2003, 111, 836–843. [Google Scholar] [CrossRef]
- Silva, P.; Santos, R.; Welk, G.; Mota, J. Seasonal Differences in Physical Activity and Sedentary Patterns: The Relevance of the PA Context. J. sports Sci. Med. 2011, 10, 66–72. [Google Scholar]
- Shephard, R.J.; Aoyagi, Y. Seasonal variations in physical activity and implications for human health. Graefe’s Arch. Clin. Exp. Ophthalmol. 2009, 107, 251–271. [Google Scholar] [CrossRef] [PubMed]
- Chan, C.B.; Ryan, D.A. Assessing the Effects of Weather Conditions on Physical Activity Participation Using Objective Measures. Int. J. Environ. Res. Public Health 2009, 6, 2639–2654. [Google Scholar] [CrossRef] [Green Version]
- Atkinson, G.; Drust, B. Seasonal Rhythms and Exercise. Clin. Sports Med. 2005, 24, e25–e34. [Google Scholar] [CrossRef] [PubMed]
- Merchant, A.T.; Dehghan, M.; Akhtar-Danesh, N. Seasonal Variation in Leisure-time Physical Activity Among Canadians. Can. J. Public Health 2007, 98, 203–208. [Google Scholar] [CrossRef] [PubMed]
- Sartini, C.; Morris, R.W.; Whincup, P.H.; Wannamethee, S.G.; Ash, S.; Lennon, L.; Jefferis, B.J. Association of Maximum Temperature With Sedentary Time in Older British Men. J. Phys. Act. Health 2017, 14, 265–269. [Google Scholar] [CrossRef] [Green Version]
- Cepeda, M.; Koolhaas, C.M.; van Rooij, F.J.; Tiemeier, H.; Guxens, M.; Franco, O.; Schoufour, J.D. Seasonality of physical activity, sedentary behavior, and sleep in a middle-aged and elderly population: The Rotterdam study. Maturitas 2018, 110, 41–50. [Google Scholar] [CrossRef]
- Clemes, S.A.; Hamilton, S.L.; Griffiths, P.L. Summer to Winter Variability in the Step Counts of Normal Weight and Overweight Adults Living in the UK. J. Phys. Act. Health 2011, 8, 36–44. [Google Scholar] [CrossRef] [Green Version]
- Nakashima, D.; Kimura, D.; Watanabe, H.; Goto, F.; Kato, M.; Fujii, K.; Kasuya, E.; Tomiyama, N.; Hasegawa, R. Influence of seasonal variations on physical activity in older people living in mountainous agricultural areas. J. Rural. Med. 2019, 14, 165–175. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Li, B.; Zhang, X.; Niu, C.; Li, J.; Li, L.; Speakman, J.R. No seasonal variation in physical activity of Han Chinese living in Beijing. Int. J. Behav. Nutr. Phys. Act. 2017, 14, 48. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, M.; Taniguchi, T.; Furihata, R.; Yoshita, K.; Arai, Y.; Yoshiike, N.; Uchiyama, M. Seasonal changes in sleep duration and sleep problems: A prospective study in Japanese community residents. PLoS ONE 2019, 14, e0215345. [Google Scholar] [CrossRef] [PubMed]
- Itani, O.; Kaneita, Y.; Munezawa, T.; Mishima, K.; Jike, M.; Nakagome, S.; Tokiya, M.; Ohida, T. Nationwide epidemio-logical study of insomnia in Japan. Sleep Med. 2016, 25, 130–138. [Google Scholar] [CrossRef]
- Buchowski, M.S.; Choi, L.; Majchrzak, K.M.; Acra, S.; Matthews, C.E.; Chen, K.Y.; Mathews, C.E. Seasonal changes in amount and patterns of physical activity in women. J. Phys. Act. Health 2009, 6, 252–261. [Google Scholar] [CrossRef] [Green Version]
- O’Connell, S.E.; Griffiths, P.L.; Clemes, S.A. Seasonal variation in physical activity, sedentary behaviour and sleep in a sample of UK adults. Ann. Hum. Biol. 2013, 41, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Welk, G.J.; Beyler, N.K.; Kim, Y.; Matthews, C.E. Calibration of Self-Report Measures of Physical Activity and Sedentary Behavior. Med. Sci. Sports Exerc. 2017, 49, 1473–1481. [Google Scholar] [CrossRef]
- Kim, Y.; Welk, G.J. The accuracy of the 24-h activity recall method for assessing sedentary behaviour: The physical activity measurement survey (PAMS) project. J. Sports Sci. 2016, 35, 255–261. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.; Welk, G.J. Characterizing the context of sedentary lifestyles in a representative sample of adults: A cross-sectional study from the physical activity measurement study project. BMC Public Health 2015, 15, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Machač, S.; Prochazka, M.; Radvanský, J.; Slaby, K. Validation of Physical Activity Monitors in Individuals with Diabetes: Energy Expenditure Estimation by the Multisensor SenseWear Armband Pro3 and the Step Counter Omron HJ-720 Against Indirect Calorimetry During Walking. Diabetes Technol. Ther. 2013, 15, 413–418. [Google Scholar] [CrossRef] [Green Version]
- Fruin, M.L.; Rankin, J.W. Validity of a Multi-Sensor Armband in Estimating Rest and Exercise Energy Expenditure. Med. Sci. Sports Exerc. 2004, 36, 1063–1069. [Google Scholar] [CrossRef] [PubMed]
- Berntsen, S.; Hageberg, R.; Aandstad, A.; Mowinckel, P.; Anderssen, S.A.; Carlsen, K.-H.; Andersen, L.B. Validity of physical activity monitors in adults participating in free-living activities. Br. J. Sports Med. 2008, 44, 657–664. [Google Scholar] [CrossRef] [PubMed]
- Johannsen, D.L.; Calabro, M.A.; Stewart, J.; Franke, W.; Rood, J.C.; Welk, G.J. Accuracy of Armband Monitors for Measuring Daily Energy Expenditure in Healthy Adults. Med. Sci. Sports Exerc. 2010, 42, 2134–2140. [Google Scholar] [CrossRef]
- Köppen, W.; Volken, E.; Brönnimann, S. The thermal zones of the earth according to the duration of hot, moderate and cold periods and to the impact of heat on the organic world [Die Wärmezonen der Erde, nach der Dauer der heissen, gemässigten und kalten Zeit und nach der Wirkung der Wärme auf die organische Welt betrachtet. Meteorol Z 1884, 1, 215–226]. Meteorol. Z. 2011, 20, 351–360. [Google Scholar]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Sobolewski, A.; Młynarczyk, M.; Konarska, M.; Bugajska, J. The influence of air humidity on human heat stress in a hot environment. Int. J. Occup. Saf. Ergon. 2021, 27, 226–236. [Google Scholar] [CrossRef]
- Özgünen, K.T.; Kurdak, S.S.; Maughan, R.J.; Zeren, C.; Korkmaz, S.E.L.C.E.N.; Ersöz, G.; Shirreffs, S.M.; Binnet, M.S.; Dvorak, J. Effect of hot environmental conditions on physical activity patterns and temperature response of football players. Scand. J. Med. Sci. Sports 2010, 20, 140–147. [Google Scholar] [CrossRef]
- Badland, H.M.; Christian, H.; Giles-Corti, B.; Knuiman, M. Seasonality in physical activity: Should this be a concern in all settings? Health Place 2011, 17, 1084–1089. [Google Scholar] [CrossRef] [PubMed]
- Suorsa, K.; Pulakka, A.; Leskinen, T.; Heinonen, I.; Heinonen, O.J.; Pentti, J.; Vahtera, J.; Stenholm, S. Objectively Measured Sedentary Time Before and After Transition to Retirement: The Finnish Retirement and Aging Study. J. Gerontol. Ser. A Boil. Sci. Med. Sci. 2019, 75, 1737–1743. [Google Scholar] [CrossRef] [PubMed]
- Jefferis, B.J.; Parsons, T.J.; Sartini, C.; Ash, S.; Lennon, L.T.; Papacosta, O.; Morris, R.W.; Wannamethee, S.G.; Lee, I.-M.; Whincup, P.H. Objectively measured physical activity, sedentary behaviour and all-cause mortality in older men: Does volume of activity matter more than pattern of accumulation? Br. J. Sports Med. 2019, 53, 1013–1020. [Google Scholar] [CrossRef] [PubMed]
- Koolhaas, C.M.; van Rooij, F.J.A.; Schoufour, J.D.; Cepeda, M.; Tiemeier, H.; Brage, S.; Franco, O.H. Objective measures of activity in the elderly: Distribution and associations with demographic and health factors. J. Am. Med Dir. Assoc. 2017, 18, 838–847. [Google Scholar] [CrossRef]
- Van Ballegooijen, A.J.; van der Ploeg, H.P.; Visser, M. Daily sedentary time and physical activity as assessed by acceler-ometry and their correlates in older adults. European review of aging and physical activity. Off. J. Eur. Group Res. Elder. Phys. Act. 2019, 16, 3. [Google Scholar]
- Jones, S.A.; Leeman, J.; Evenson, K.R. Physical Activity Facilitators and Barriers Among Retired Women in North Carolina: A Qualitative Study. North Carol. Med J. 2020, 81, 284–292. [Google Scholar] [CrossRef]
- Ter Hoeve, N.; Ekblom, M.; Galanti, M.R. Unfavourable sedentary and physical activity behaviour before and after retirement: A population-based cohort study. Br. Med J. Open 2020, 10, e037659. [Google Scholar] [CrossRef]
- Barnett, I.; Guell, C.; Ogilvie, D. The experience of physical activity and the transition to retirement: A systematic review and integrative synthesis of qualitative and quantitative evidence. Int. J. Behav. Nutr. Phys. Act. 2012, 9, 97. [Google Scholar] [CrossRef] [Green Version]
- Tucker, P.; Irwin, J.D.; Bouck, L.M.S.; He, M.; Pollett, G. Preventing paediatric obesity; recommendations from a community-based qualitative investigation. Obes. Rev. 2006, 7, 251–260. [Google Scholar] [CrossRef] [Green Version]
- Carley, D.W.; Farabi, S.S. Diabetes Spectrum: A publication of the American Diabetes Association. Physiol. Sleep 2016, 29, 5–9. [Google Scholar]
- Spiegel, K.; Tasali, E.; Leproult, R.; van Cauter, E. Effects of poor and short sleep on glucose metabolism and obesity risk. Nat. Rev. Endocrinol. 2009, 5, 253–261. [Google Scholar] [CrossRef] [PubMed]
- Hirshkowitz, M.; Whiton, K.; Albert, S.M.; Alessi, C.; Bruni, O.; DonCarlos, L.; Hazen, N.; Herman, J.; Katz, E.S.; Kheirandish-Gozal, L.; et al. National sleep foundation’s sleep time duration recommendations: Methodology and results summary. Sleep Health 2015, 1, 40–43. [Google Scholar] [CrossRef] [PubMed]
Variables | N | Cold | Cool | Mild | Warm | Hot |
---|---|---|---|---|---|---|
−13 to 32 °F | 32 to 50 °F | 50 to 64 °F | 64 to 73 °F | 73 to 95 °F | ||
(n = 342) | (n = 287) | (n = 208) | (n = 208) | (n = 190) | ||
Gender | ||||||
Male | 536 | 158 | 118 | 91 | 89 | 80 |
Female | 699 | 184 | 169 | 117 | 119 | 110 |
Ethnicity/race | ||||||
White | 1107 | 292 | 264 | 189 | 189 | 173 |
Other | 128 | 50 | 23 | 19 | 19 | 17 |
Age (year) | ||||||
21–40 | 314 | 33.7 ± 5.4 | 31.2 ± 5.8 | 33.0 ± 5.9 | 34.0 ± 4.9 | 33.9 ± 5.2 |
41–60 | 614 | 51.3 ± 5.6 | 51.2 ± 5.6 | 51.7 ± 5.8 | 51.0 ± 5.9 | 50.1 ± 5.9 |
61–70 | 307 | 64.9 ± 3.0 | 65.3 ± 3.0 | 66.4 ± 2.4 | 65.2 ± 3.0 | 64.7 ± 3.1 |
BMI (kg·m−2) | ||||||
Normal | 283 | 22.8 ± 1.7 | 22.4 ± 1.7 | 22.3 ± 1.9 | 22.2 ± 1.9 | 22.3 ± 1.7 |
Overweight | 403 | 27.7 ± 1.4 | 27.6 ± 1.4 | 27.5 ± 1.3 | 27.8 ± 1.4 | 27.4 ± 1.4 |
Obese | 549 | 36.6 ± 6.5 | 36.9 ±7.0 | 37.2 ± 6.3 | 36.7 ± 5.5 | 36.9 ± 7.1 |
Current Smoking | ||||||
Yes | 231 | 68 | 61 | 37 | 30 | 35 |
No | 1004 | 274 | 226 | 171 | 178 | 155 |
Education level | ||||||
Less than high school | 49 | 14 | 13 | 4 | 9 | 9 |
High school diploma | 284 | 82 | 67 | 49 | 44 | 42 |
Some college | 413 | 108 | 94 | 70 | 82 | 59 |
College graduate | 336 | 102 | 79 | 52 | 46 | 57 |
Graduate degree | 153 | 36 | 34 | 33 | 27 | 23 |
Married | ||||||
Married or living as married | 812 | 223 | 186 | 141 | 133 | 129 |
Divorced or separated | 166 | 47 | 35 | 32 | 28 | 24 |
Widowed | 51 | 14 | 14 | 5 | 12 | 6 |
Single, never married | 206 | 58 | 52 | 30 | 35 | 31 |
Income | ||||||
less than USD 25,000 | 217 | 62 | 53 | 40 | 38 | 24 |
from USD 25,000 up to USD 50,000 | 346 | 99 | 81 | 51 | 60 | 55 |
from USD 50,000 up to USD 75,000 | 258 | 68 | 65 | 36 | 41 | 48 |
from USD 75,000 up to USD 100,000 | 195 | 50 | 44 | 31 | 37 | 33 |
more than USD 100,000 | 219 | 63 | 44 | 50 | 32 | 30 |
Variables | Cold (A) | Cool (B) | Mild (C) | Warm (D) | Hot (E) | F-Value | Post-hoc |
---|---|---|---|---|---|---|---|
−13 to 32 °F | 32 to 50 °F | 50 to 64 °F | 64 to 73 °F | 73 to 95 °F | |||
(n = 342) | (n = 287) | (n = 208) | (n = 208) | (n = 190) | |||
Light PA | 560.2 ± 277.9 | 563.6 ± 289.3 | 456.3 ± 242.4 | 516.8 ± 242.0 | 520.0 ± 224.6 | 6.7 *** | C < A, B |
Moderate PA | 105.2 ± 105.6 | 106.5 ± 102.2 | 112.3 ± 107.4 | 113.6 ± 112.0 | 100.8 ± 110.7 | 0.5 | N/A |
Vigorous PA | 8.7 ± 20.5 | 11.9 ± 29.8 | 12.0 ± 22.2 | 13.2 ± 26.6 | 12.8 ± 36.28 | 1.3 | N/A |
MVPA | 113.9 ± 116.0 | 118.4 ± 113.8 | 124.3 ± 113.5 | 126.8 ± 120.9 | 113.6 ± 126.2 | 0.6 | N/A |
Sedentary Behavior | 404.3 ± 216.3 | 383.3 ± 232.6 | 481.2 ± 158.2 | 446.3 ± 153.9 | 460.3 ± 115.1 | 11.3 *** | B < D A, B < C, E |
Sleep Time | 367.9 ± 120.4 | 376.6 ± 122.8 | 382.0 ± 99.7 | 355.7 ± 144.9 | 347.8 ± 120.5 | 2.9 * | E < C |
Steps | 8035.9 ± 5180.3 | 8455.5 ± 4948.2 | 8897.3 ± 5301.4 | 10,094.8 ± 6433.8 | 9622.4 ± 6436.2 | 5.7 *** | A < E A, B < D |
Energy Expenditure | 2925.7 ± 912.3 | 2886.5 ± 864.0 | 2929.3 ± 826.6 | 3051.3 ± 926.9 | 2944.7 ± 909.8 | 1.1 | N/A |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, J.-H.; Kim, Y.; Welk, G.J.; Silva, P.; Lee, J.-M. Association with Temperature Variability and Physical Activity, Sedentary Behavior, and Sleep in a Free-Living Population. Int. J. Environ. Res. Public Health 2021, 18, 13077. https://doi.org/10.3390/ijerph182413077
Park J-H, Kim Y, Welk GJ, Silva P, Lee J-M. Association with Temperature Variability and Physical Activity, Sedentary Behavior, and Sleep in a Free-Living Population. International Journal of Environmental Research and Public Health. 2021; 18(24):13077. https://doi.org/10.3390/ijerph182413077
Chicago/Turabian StylePark, Jeong-Hui, Youngwon Kim, Gregory J. Welk, Pedro Silva, and Jung-Min Lee. 2021. "Association with Temperature Variability and Physical Activity, Sedentary Behavior, and Sleep in a Free-Living Population" International Journal of Environmental Research and Public Health 18, no. 24: 13077. https://doi.org/10.3390/ijerph182413077
APA StylePark, J. -H., Kim, Y., Welk, G. J., Silva, P., & Lee, J. -M. (2021). Association with Temperature Variability and Physical Activity, Sedentary Behavior, and Sleep in a Free-Living Population. International Journal of Environmental Research and Public Health, 18(24), 13077. https://doi.org/10.3390/ijerph182413077