Influence of Different Industrial Agglomeration Modes on Eco-Efficiency in China
Abstract
:1. Introduction
2. Literature Review
2.1. Industrial Agglomeration and Economic Growth
2.2. Industrial Agglomeration and Environmental Pollution
2.3. Industrial Agglomeration and Eco-Efficiency
3. Influence Path of Different Agglomeration Modes on Eco-Efficiency
3.1. Influence Path of Specialized Agglomeration on Eco-Efficiency
3.2. Influence Path of Related Diversified Agglomeration on Eco-Efficiency
3.3. Influence Path of Unrelated Diversified Agglomeration on Eco-Efficiency
4. Methodology, Variable Description, and Data
4.1. Methodology
4.1.1. The Super-Efficiency SBM-DEA Model with Undesirable Outputs
4.1.2. Threshold Regression Model Setting
4.2. Variable Description
4.2.1. Explained Variable: Industrial Eco-Efficiency (Iee)
4.2.2. Core Explanatory Variable: Industrial Agglomeration
- (1)
- Specialization (Spe)
- (2)
- Related diversification (Rd) and Unrelated diversification (Ud)
4.2.3. Control Variables
- (1)
- Environmental Regulation (Er)
- (2)
- Industrial structure (Is)
- (3)
- Technology innovation (Tech)
- (4)
- Foreign direct investment (Fdi)
- (5)
- Economic development level (Edl)
- (6)
- Government intervention (Gi)
- (7)
- Other
4.3. Data
5. Empirical Research and Discussion
5.1. Estimation Results of Industrial Eco-Efficiency
5.2. The Influence of Different Agglomeration Modes on Industrial Eco-Efficiency
5.3. Robustness Test
5.4. The Heterogeneity Effect of City Size
6. Conclusions and Policy Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Han, F.; Xie, R.; Fang, J. Urban agglomeration economies and industrial energy efficiency. Energy 2018, 162, 45–59. [Google Scholar] [CrossRef]
- Zhou, Z.; Xu, G.; Wang, C.; Wu, J. Modeling undesirable output with a DEA approach based on an exponential transformation: An application to measure the energy efficiency of Chinese industry. J. Clean. Prod. 2019, 236, 117717. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, Y.; Chang, Y.; Zhang, L. Industrial eco-efficiency in China: A provincial quantification using three-stage data envelopment analysis. J. Clean. Prod. 2017, 143, 238–249. [Google Scholar] [CrossRef]
- Wang, X.; Ding, H.; Liu, L. Eco-efficiency measurement of industrial sectors in China: A hybrid super-efficiency DEA analysis. J. Clean. Prod. 2019, 229, 53–64. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, Z.; Liu, S.; Chen, M.; Zhang, X.; Wang, Y. Analysis of industrial eco-efficiency and its influencing factors in China. Clean Technol. Environ. Policy 2020, 22, 2023–2038. [Google Scholar] [CrossRef]
- Chen, C.; Sun, Y.; Lan, Q.; Jiang, F. Impacts of industrial agglomeration on pollution and ecological efficiency-A spatial econometric analysis based on a big panel dataset of China’s 259 cities. J. Clean. Prod. 2020, 258, 120721. [Google Scholar] [CrossRef]
- Li, X.; Xu, Y.; Yao, X. Effects of industrial agglomeration on haze pollution: A Chinese city-level study. Energy Policy 2021, 148, 111928. [Google Scholar] [CrossRef]
- Liu, J.; Cheng, Z.; Zhang, H. Does industrial agglomeration promote the increase of energy efficiency in China? J. Clean. Prod. 2017, 164, 30–37. [Google Scholar] [CrossRef]
- Brülhart, M.; Mathys, N.A. Sectoral agglomeration economies in a panel of European regions. Reg. Sci. Urban Econ. 2008, 38, 348–362. [Google Scholar] [CrossRef] [Green Version]
- Ciccone, A. Agglomeration effects in Europe. Eur. Econ. Rev. 2002, 46, 213–227. [Google Scholar] [CrossRef] [Green Version]
- Hu, C.; Xu, Z.; Yashiro, N. Agglomeration and productivity in China: Firm level evidence. China Econ. Rev. 2015, 33, 50–66. [Google Scholar] [CrossRef]
- Badr, K.; Rizk, R.; Zaki, C. Firm productivity and agglomeration economies: Evidence from Egyptian data. Appl. Econ. 2019, 51, 5528–5544. [Google Scholar] [CrossRef]
- Cerina, F.; Mureddu, F. Is agglomeration really good for growth? Global efficiency, interregional equity and uneven growth. J. Urban Econ. 2014, 84, 9–22. [Google Scholar] [CrossRef] [Green Version]
- Carlino, G.A. Increasing returns to scale in metropolitan manufacturing. J. Reg. Sci. 1979, 19, 363–372. [Google Scholar] [CrossRef]
- Lin, H.-L.; Li, H.-Y.; Yang, C.-H. Agglomeration and productivity: Firm-level evidence from China’s textile industry. China Econ. Rev. 2011, 22, 313–329. [Google Scholar] [CrossRef]
- Rizov, M.; Oskam, A.; Walsh, P. Is there a limit to agglomeration? Evidence from productivity of Dutch firms. Reg. Sci. Urban Econ. 2012, 42, 595–606. [Google Scholar] [CrossRef] [Green Version]
- Marshall, A. Principles of Economics; Macmillan and Co., Ltd.: London, UK, 1920. [Google Scholar]
- Jacobs, J. The Economy of Cities; Vintage Books: New York, NY, USA, 1969. [Google Scholar]
- Glaeser, E.L.; Kallal, H.D.; Scheinkman, J.A.; Shleifer, A. Growth in Cities. J. Political Econ. 1992, 100, 1126–1152. [Google Scholar] [CrossRef]
- Batisse, C. Dynamic externalities and local growth: A panel data analysis applied to Chinese provinces. China Econ. Rev. 2002, 13, 231–251. [Google Scholar] [CrossRef]
- Henderson, V. Externalities and Industrial Development. J. Urban Econ. 1997, 42, 449–470. [Google Scholar] [CrossRef] [Green Version]
- Klein, A.; Crafts, N. Agglomeration externalities and productivity growth: US cities, 1880–1930. Econ. Hist. Rev. 2020, 73, 209–232. [Google Scholar] [CrossRef]
- Zhu, H.; Dai, Z.; Jiang, Z. Industrial agglomeration externalities, city size, and regional economic development: Empirical research based on dynamic panel data of 283 cities and GMM method. Chin. Geogr. Sci. 2017, 27, 456–470. [Google Scholar] [CrossRef] [Green Version]
- Forni, M.; Paba, S. Spillovers and the growth of local industries. J. Ind. Econ. 2002, 50, 151–171. [Google Scholar] [CrossRef]
- Blien, U.; Suedekum, J.; Wolf, K. Local employment growth in West Germany: A dynamic panel approach. Labour Econ. 2006, 13, 445–458. [Google Scholar] [CrossRef] [Green Version]
- Simonen, J.; Svento, R.; Juutinen, A. Specialization and diversity as drivers of economic growth: Evidence from High-Tech industries. Pap. Reg. Sci. 2015, 94, 229–247. [Google Scholar] [CrossRef]
- de Lucio, J.J.; Herce, J.A.; Goicolea, A. The effects of externalities on productivity growth in Spanish industry. Reg. Sci. Urban Econ. 2002, 32, 241–258. [Google Scholar] [CrossRef]
- Hu, A.; Sun, J. Agglomeration economies and the match between manufacturing industries and cities in China. Reg. Sci. Policy Pract. 2014, 6, 315–327. [Google Scholar] [CrossRef]
- Frenken, K.; Van Oort, F.; Verburg, T. Related Variety, Unrelated Variety and Regional Economic Growth. Reg. Stud. 2007, 41, 685–697. [Google Scholar] [CrossRef] [Green Version]
- Falcıoğlu, P. Location and Determinants of Productivity: The Case of the Manufacturing Industry in Turkey. Emerg. Mark. Financ. Trade 2011, 47 (Suppl. 5), 86–96. [Google Scholar] [CrossRef]
- Boschma, R.; Minondo, A.; Navarro, M. Related variety and regional growth in Spain. Pap. Reg. Sci. 2012, 91, 241–256. [Google Scholar] [CrossRef]
- Cainelli, G.; Ganau, R.; Iacobucci, D. Do Geographic Concentration and Vertically Related Variety Foster Firm Productivity? Micro-Evid. Italy. Growth Chang. 2016, 47, 197–217. [Google Scholar] [CrossRef]
- Virkanen, J. Effect of urbanization on metal deposition in the bay of Töölönlahti, Southern Finland. Mar. Pollut. Bull. 1998, 36, 729–738. [Google Scholar] [CrossRef]
- Dong, F.; Wang, Y.; Zheng, L.; Li, J.; Xie, S. Can industrial agglomeration promote pollution agglomeration? Evid. China. J. Clean. Prod. 2020, 246, 118960. [Google Scholar] [CrossRef]
- Cao, X.; Zhao, H.; Ma, T. Research on spillover effect of industrial agglomeration and haze pollution in China. IOP Conf. Ser. Earth Environ. Sci. 2020, 508, 012012. [Google Scholar] [CrossRef]
- Sun, P.; Yuan, Y. Industrial Agglomeration and Environmental Degradation: Empirical Evidence in Chinese Cities. Pac. Econ. Rev. 2015, 20, 544–568. [Google Scholar] [CrossRef]
- Cheng, Z. The spatial correlation and interaction between manufacturing agglomeration and environmental pollution. Ecol. Indic. 2016, 61, 1024–1032. [Google Scholar] [CrossRef]
- Liu, S.; Zhu, Y.; Du, K. The impact of industrial agglomeration on industrial pollutant emission: Evidence from China under New Normal. Clean Technol. Environ. Policy 2017, 19, 2327–2334. [Google Scholar] [CrossRef]
- Liu, J.; Zhao, Y.; Cheng, Z.; Zhang, H. The Effect of Manufacturing Agglomeration on Haze Pollution in China. Int. J. Environ. Res. Public Health 2018, 15, 2490. [Google Scholar] [CrossRef] [Green Version]
- Lu, W.; Tam, V.W.Y.; Du, L.; Chen, H. Impact of industrial agglomeration on haze pollution: New evidence from Bohai Sea Economic Region in China. J. Clean. Prod. 2021, 280, 124414. [Google Scholar] [CrossRef]
- Zeng, D.-Z.; Zhao, L. Pollution havens and industrial agglomeration. J. Environ. Econ. Manag. 2009, 58, 141–153. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Jia, H.; Xu, T.; Xu, C. Manufacturing industrial structure and pollutant emission: An empirical study of China. J. Clean. Prod. 2018, 197, 462–471. [Google Scholar] [CrossRef]
- Fang, J.; Tang, X.; Xie, R.; Han, F. The effect of manufacturing agglomerations on smog pollution. Struct. Chang. Econ. Dyn. 2020, 54, 92–101. [Google Scholar] [CrossRef]
- He, C.; Huang, Z.; Ye, X. Spatial heterogeneity of economic development and industrial pollution in urban China. Stoch. Environ. Res. Risk Assess. 2014, 28, 767–781. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, J. Does industrial agglomeration facilitate environmental performance: New evidence from urban China? J. Environ. Manag. 2019, 248, 109244. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Xu, H. Foreign Direct Investment, Agglomeration Externalities and Environmental Pollution. Stat. Res. 2016, 33, 47–54. [Google Scholar]
- Xie, R.; Yuan, Y. Research on the Pollution Abatement Effect of Industrial Agglomeration’s Evolution. Econ. Rev. 2016, 2, 18–28. [Google Scholar]
- Han, J.; Mao, Y.; Zhu, Z. Industrial Agglomeration and Environmental Pollution. Comp. Econ. Soc. Syst. 2019, 3, 71–80. [Google Scholar]
- Wang, Y.; Miao, C.; Hu, Z.; Zhang, Y. Specialization, diversity and their impacts on China’s provincial industrial pollution emissions. J. Nat. Resour. 2019, 34, 586–599. [Google Scholar] [CrossRef]
- Hu, Z.; Miao, C.; Yuan, F. Impact of industrial spatial and organizational agglomeration patterns on industrial SO2 emissions of prefecture-level cities in China. Acta Geogr. Sin. 2019, 74, 2045–2061. [Google Scholar]
- Otsuka, A.; Goto, M.; Sueyoshi, T. Industrial agglomeration effects in Japan: Productive efficiency, market access, and public fiscal transfer. Pap. Reg. Sci. 2010, 89, 819–840. [Google Scholar] [CrossRef]
- Zheng, Q.; Lin, B. Impact of industrial agglomeration on energy efficiency in China’s paper industry. J. Clean. Prod. 2018, 184, 1072–1080. [Google Scholar] [CrossRef]
- Zhao, H.; Lin, B. Will agglomeration improve the energy efficiency in China’s textile industry: Evidence and policy implications. Appl. Energy 2019, 237, 326–337. [Google Scholar] [CrossRef]
- Guo, Y.; Tong, L.; Mei, L. The effect of industrial agglomeration on green development efficiency in Northeast China since the revitalization. J. Clean. Prod. 2020, 258, 120584. [Google Scholar] [CrossRef]
- Krugman, P. Increasing Returns and Economic Geography. J. Political Econ. 1991, 99, 483–499. [Google Scholar] [CrossRef]
- Glaeser, E.L.; Kahn, M.E. The greenness of cities: Carbon dioxide emissions and urban development. J. Urban Econ. 2010, 67, 404–418. [Google Scholar] [CrossRef] [Green Version]
- Beaudry, C.; Schiffauerova, A. Who’s right, Marshall or Jacobs? The localization versus urbanization debate. Res. Policy 2009, 38, 318–337. [Google Scholar] [CrossRef] [Green Version]
- Aarstad, J.; Kvitastein, O.A.; Jakobsen, S.-E. Related and unrelated variety as regional drivers of enterprise productivity and innovation: A multilevel study. Res. Policy 2016, 45, 844–856. [Google Scholar] [CrossRef] [Green Version]
- Ehrenfeld, J. Putting a Spotlight on Metaphors and Analogies in Industrial Ecology. J. Ind. Ecol. 2003, 7, 1–4. [Google Scholar] [CrossRef]
- Castaldi, C.; Frenken, K.; Los, B. Related Variety, Unrelated Variety and Technological Breakthroughs: An analysis of US State-Level Patenting. Reg. Stud. 2015, 49, 767–781. [Google Scholar] [CrossRef]
- Tone, K. A slacks-based measure of efficiency in data envelopment analysis. Eur. J. Oper. Res. 2001, 130, 498–509. [Google Scholar] [CrossRef] [Green Version]
- Tone, K. A slacks-based measure of super-efficiency in data envelopment analysis. Eur. J. Oper. Res. 2002, 143, 32–41. [Google Scholar] [CrossRef] [Green Version]
- Tone, K.; Sahoo, B. Degree of scale economies and congestion: A unified DEA approach. Eur. J. Oper. Res. 2004, 158, 755–772. [Google Scholar] [CrossRef] [Green Version]
- Hansen, B.E. Threshold effects in non-dynamic panels: Estimation, testing, and inference. J. Econom. 1999, 93, 345–368. [Google Scholar] [CrossRef] [Green Version]
- Lin, C. Re-exploring the Usage of China’s Industrial Enterprise Database. Econ. Rev. 2018, 6, 140–153. [Google Scholar]
- Guanghui, T.; Changhong, M.; Zhiqiang, H.; Jianming, M. Environmental regulation, local protection and the spatial distribution of pollution-intensive industries in China. Acta Geogr. Sin. 2018, 73, 1954–1969. [Google Scholar]
- Wagner, U.J.; Timmins, C.D. Agglomeration Effects in Foreign Direct Investment and the Pollution Haven Hypothesis. Environ. Resour. Econ. 2009, 43, 231–256. [Google Scholar] [CrossRef]
- Xinshuo, H.; Zongyi, Z.; Jingxiang, Z. Study on the growth effect and action path of China’s economic structure. J. World Econ. 2013, 36, 88–111. [Google Scholar]
- Elhorst, J.P. Matlab Software for Spatial Panels. Int. Reg. Sci. Rev. 2014, 37, 389–405. [Google Scholar] [CrossRef] [Green Version]
Variables | Min | Max | Mean | Std. Dev. |
---|---|---|---|---|
Iee | 0.18 | 1.52 | 0.671 | 0.185 |
Spe | 0.447 | 1.818 | 1.034 | 0.267 |
Rd | 0.013 | 1.397 | 0.678 | 0.288 |
Ud | 0.25 | 3.268 | 2.362 | 0.518 |
Er | 0.006 | 5.327 | 0.976 | 0.767 |
Is | 0.073 | 1 | 0.668 | 0.212 |
Tec | 1 | 34,382 | 691.151 | 2114.288 |
Fdi | 0 | 0.376 | 0.022 | 0.026 |
Edl | 1860.017 | 128,931.9 | 18,691.84 | 15,792.52 |
Gi | 0.031 | 0.885 | 0.139 | 0.074 |
Years | Small Cities | Medium-Sized Cities | Large Cities | Mega-Cities | Super-Large Cities | Nationwide |
---|---|---|---|---|---|---|
2004 | 0.543 | 0.549 | 0.648 | 0.776 | 0.952 | 0.589 |
2005 | 0.587 | 0.606 | 0.701 | 0.833 | 0.970 | 0.643 |
2006 | 0.598 | 0.616 | 0.719 | 0.873 | 0.967 | 0.659 |
2007 | 0.607 | 0.616 | 0.731 | 0.862 | 0.965 | 0.667 |
2008 | 0.604 | 0.624 | 0.743 | 0.843 | 0.971 | 0.674 |
2009 | 0.634 | 0.639 | 0.751 | 0.877 | 0.966 | 0.692 |
2010 | 0.635 | 0.649 | 0.758 | 0.846 | 0.964 | 0.696 |
2011 | 0.636 | 0.676 | 0.767 | 0.846 | 1.002 | 0.714 |
2012 | 0.635 | 0.664 | 0.751 | 0.878 | 0.985 | 0.704 |
The overall average | 0.609 | 0.627 | 0.730 | 0.848 | 0.971 | 0.671 |
Threshold Variable | Thresholds | F-Statistic | p-Value | Critical Value | Threshold Value | 95% Confidence Interval | ||
---|---|---|---|---|---|---|---|---|
10% | 5% | 1% | ||||||
Spe | Single | 81.020 *** | 0.000 | 21.107 | 24.915 | 33.132 | 1.493 | (1.482 1.495) |
Double | 35.050 *** | 0.000 | 21.343 | 23.196 | 28.709 | 1.632 | (1.619 1.641) | |
Triple | 15.500 | 0.230 | 21.712 | 32.484 | 50.270 | 0.819 | (0.814 0.822) | |
Rd | Single | 35.880 *** | 0.000 | 22.702 | 26.439 | 31.511 | 0.179 | (0.166 0.186) |
Double | 32.480 ** | 0.020 | 21.703 | 27.425 | 33.909 | 0.376 | (0.367 0.378) | |
Triple | 15.870 | 0.670 | 36.014 | 40.670 | 48.171 | 0.856 | (0.844 0.858) | |
Ud | Single | 22.583 ** | 0.047 | 19.590 | 22.260 | 29.064 | 2.512 | (2.347 2.517) |
Double | 9.570 | 0.463 | 15.566 | 17.932 | 21.968 | 1.236 | (1.209 1.266) | |
Triple | 9.860 | 0.343 | 14.763 | 17.235 | 22.416 | 2.257 | (2.098 2.262) |
Variables | Coefficient | Variables | Coefficient | Variables | Coefficient |
---|---|---|---|---|---|
Spe[Spe ≤ 1.493] | −0.086 *** | Rd[Rd ≤ 0.179] | −0.026 ** | Ud[Ud ≤ 2.512] | −0.082 *** |
(0.024) | (−0.013) | (0.028) | |||
Spe[1.493 < Spe ≤ 1.632] | −0.028 ** | Rd[0.179 < Rd ≤ 0.376] | 0.029 ** | Ud[Ud > 2.512] | −0.055 ** |
(0.011) | (0.012) | (0.026) | |||
Spe[Spe > 1.632] | 0.029 ** | Rd[Rd > 0.376] | 0.098 *** | ||
(0.012) | (0.024) | ||||
Rd | 0.039 ** | Spe | −0.116 *** | Spe | −0.153 *** |
(0.016) | (0.034) | (0.034) | |||
Ud | 0.014 | Ud | −0.032 | Rd | −0.046 *** |
(0.027) | (0.026) | (0.016) | |||
Er | −0.017 *** | Er | −0.017 *** | Er | −0.018 *** |
(0.006) | (0.006) | (0.006) | |||
Is | −0.069 *** | Is | −0.065 *** | Is | −0.072 *** |
(0.023) | (0.023) | (0.023) | |||
LnTech | 0.050 *** | LnTech | 0.051 *** | LnTech | 0.046 *** |
(0.006) | (0.006) | (0.006) | |||
Fdi | −0.008 *** | Fdi | −0.007 ** | Fdi | −0.008 *** |
(0.003) | (0.003) | (0.003) | |||
LnEdl | 0.260 *** | LnEdl | 0.246 *** | LnEdl | 0.254 *** |
(0.012) | (0.012) | (0.012) | |||
Gi | 0.020 | Gi | 0.012 | Gi | 0.020 |
(0.014) | (0.014) | (0.014) | |||
C | −2.746 *** | C | −2.529 *** | C | −2.640 *** |
(0.123) | (0.123) | (0.124) | |||
R2 | 0.5786 | R2 | 0.6237 | R2 | 0.5677 |
Obs | 2547 | Obs | 2547 | Obs | 2547 |
Testing Method | Static SPDM | Dynamic SPDM | ||||
---|---|---|---|---|---|---|
S_Spe | S_Rd | S_Ud | D_Spe | D_Rd | D_Ud | |
LM-lag test | 44.693 *** | 46.343 *** | 43.096 *** | 51.9995 *** | 150.3003 *** | 7.7305 *** |
R-LM-lag test | 35.947 *** | 37.047 *** | 34.722 *** | 848.2076 *** | 1299.1393 *** | 27.0299 *** |
LM-err test | 80.738 *** | 90.429 *** | 76.978 *** | 57,200 *** | 19,500 *** | 938.188 *** |
R-LM-err test | 71.992 *** | 81.133 *** | 68.604 *** | 58,000 *** | 20,700 *** | 957.4873 *** |
Hausman test | 137.57 *** | 101.04 *** | 135.16 *** | 26414.37 *** | 35,169.33 *** | 46,483.73 *** |
LR-lag test | 180.76 *** | 39.39 *** | 148.97 *** | 19.08 ** | 18.75 ** | 18.61 ** |
LR-err test | 178.45 *** | 40.7 *** | 146.48 *** | 3496.82 *** | 3444.38 *** | 3505.87 *** |
Wald-lag test | 148.53 *** | 18.2 ** | 84.64 *** | 11,673.88 *** | 8383.46 *** | 4936.28 *** |
Wald-err test | 170.63 *** | 18.16 ** | 116.18 *** | 11,433.66 *** | 8300.02 *** | 4979.49 *** |
Variables | Static SPDM | Dynamic SPDM | ||||
---|---|---|---|---|---|---|
S_Spe | S_Rd | S_Ud | D_Spe | D_Rd | D_Ud | |
Spe | −0.150 *** | −0.0704 | 0.0105 | −2.557 *** | 1.462 *** | 1.153 *** |
(0.057) | (0.050) | (0.054) | (0.031) | (0.025) | (0.027) | |
Spe2 | 0.503 *** | 3.893 *** | ||||
(0.102) | (0.054) | |||||
Rd | 0.250 *** | −0.244 *** | 0.214 *** | −0.0347 *** | −0.351 *** | −0.141 *** |
(0.020) | (0.051) | (0.020) | (0.012) | (0.023) | (0.012) | |
Rd2 | 0.113 *** | 0.419 *** | ||||
(0.020) | (0.012) | |||||
Ud | −0.0932 * | −0.0963 ** | −0.360 *** | 2.325 *** | 1.324 *** | 0.698 *** |
(0.051) | (0.040) | (0.069) | (0.028) | (0.023) | (0.036) | |
Ud2 | −0.120 ** | −0.335 *** | ||||
(0.059) | (0.031) | |||||
Er | −0.112 *** | −0.0121 | −0.120 *** | 0.127 *** | 0.115 *** | 0.056 *** |
(0.010) | (0.009) | (0.010) | (0.005) | (0.005) | (0.005) | |
Is | −0.0224 | −0.212 *** | −0.00612 | 0.167 *** | 0.268 *** | 0.193 *** |
(0.022) | (0.037) | (0.022) | (0.011) | (0.011) | (0.011) | |
lnTech | −0.0279 *** | −0.00845 | −0.0162 ** | 0.0352 *** | 0.106 *** | 0.0804 *** |
(0.008) | (0.009) | (0.008) | (0.004) | (0.004) | (0.004) | |
Fdi | 0.018 *** | −0.009 ** | 0.014 *** | 0.0210 *** | 0.00858 *** | 0.00665 *** |
(0.005) | (0.004) | (0.005) | (0.003) | (0.003) | (0.003) | |
lnEdl | 0.087 *** | 0.348 *** | 0.102 *** | 0.0658 *** | 0.0385 *** | 0.113 *** |
(0.017) | (0.028) | (0.018) | (0.009) | (0.009) | (0.009) | |
Gi | −0.106 *** | 0.065 *** | −0.051 ** | 0.145 *** | 0.502 *** | 0.403 *** |
(0.025) | (0.024) | (0.024) | (0.013) | (0.012) | (0.012) | |
Iee(-1) | 1.717 *** | 1.869 *** | 1.471 *** | |||
(0.015) | (0.015) | (0.015) | ||||
ρ | −0.368 * | −0.575 ** | −0.386 * | 9.945 *** | 20.05 *** | 8.391 *** |
(0.207) | (0.289) | (0.203) | (0.397) | (0.398) | (0.398) | |
R2 | 0.4199 | 0.3837 | 0.4333 | 0.3802 | 0.3974 | 0.4102 |
Obs | 2547 | 2547 | 2547 | 2264 | 2264 | 2264 |
Threshold Variable | Thresholds | F-Statistic | p-Value | Critical Value | Threshold Value | 95% Confidence Interval | ||
---|---|---|---|---|---|---|---|---|
10% | 5% | 1% | ||||||
Spe | Single | 61.349 *** | 0.000 | 32.252 | 38.342 | 44.610 | 79.910 | (79.230 80.190) |
Double | 17.000 | 0.450 | 27.326 | 33.364 | 47.217 | 34.540 | (34.205 34.860) | |
Triple | 12.840 | 0.683 | 27.709 | 32.153 | 36.598 | 126.380 | (125.005 128.020) | |
Rd | Single | 69.237 *** | 0.000 | 31.985 | 37.509 | 50.508 | 382.240 | (375.435 392.874) |
Double | 9.110 | 0.887 | 26.354 | 29.998 | 40.945 | 21.410 | (20.525 22.230) | |
Triple | 7.520 | 0.877 | 22.513 | 24.985 | 33.873 | 31.910 | (31.290 32.440) | |
Ud | Single | 32.384 ** | 0.048 | 24.990 | 31.403 | 56.429 | 149.100 | (144.320 149.710) |
Double | 58.834 *** | 0.002 | 30.008 | 37.336 | 47.113 | 497.150 | (470.345 509.020) | |
Triple | 9.220 | 0.810 | 25.663 | 28.600 | 33.532 | 79.370 | (77.915 79.660) |
Variables | Coefficient | Variables | Coefficient | Variables | Coefficient |
---|---|---|---|---|---|
Spe[Us ≤ 79.910] | −0.014 | Rd[Us ≤ 382.240] | 0.078 *** | Ud[Us ≤ 149.100] | −0.023 ** |
(0.024) | (0.027) | (0.010) | |||
Spe[Us > 79.910] | −0.061 ** | Rd[Us > 382.240] | 0.134 *** | Ud[149.100 < Us ≤ 497.150] | −0.011 * |
(0.024) | (0.034) | (0.006) | |||
Ud[Us > 497.150] | 0.015 * | ||||
(0.008) | |||||
Rd | 0.045 *** | Spe | −0.143 *** | Spe | −0.163 *** |
(0.016) | (0.034) | (0.034) | |||
Ud | −0.042 | Ud | −0.041 | Rd | −0.049 *** |
(0.027) | (0.026) | (0.016) | |||
Er | −0.018 *** | Er | −0.017 *** | Er | −0.019 *** |
(0.006) | (0.006) | (0.006) | |||
Is | −0.074 *** | Is | −0.069 *** | Is | −0.074 *** |
(0.023) | (0.023) | (0.023) | |||
LnTech | 0.048 *** | LnTech | 0.049 *** | LnTech | 0.049 *** |
(0.006) | (0.006) | (0.006) | |||
Fdi | −0.008 *** | Fdi | −0.009 *** | Fdi | −0.008 ** |
(0.003) | (0.003) | (0.003) | |||
LnEdl | 0.255 *** | LnEdl | 0.257 *** | LnEdl | 0.260 *** |
(0.012) | (0.012) | (0.013) | |||
Gi | 0.020 | Gi | 0.018 | Gi | 0.019 |
(0.014) | (0.014) | (0.014) | |||
C | −2.671 *** | C | −2.678 *** | C | −2.678 *** |
(0.124) | (0.123) | (0.124) | |||
R2 | 0.5472 | R2 | 0.5259 | R2 | 0.5359 |
Obs | 2547 | 2547 | 2547 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Zhu, X.; Li, J.; Gu, C. Influence of Different Industrial Agglomeration Modes on Eco-Efficiency in China. Int. J. Environ. Res. Public Health 2021, 18, 13139. https://doi.org/10.3390/ijerph182413139
Li X, Zhu X, Li J, Gu C. Influence of Different Industrial Agglomeration Modes on Eco-Efficiency in China. International Journal of Environmental Research and Public Health. 2021; 18(24):13139. https://doi.org/10.3390/ijerph182413139
Chicago/Turabian StyleLi, Xiaohu, Xigang Zhu, Jianshu Li, and Chao Gu. 2021. "Influence of Different Industrial Agglomeration Modes on Eco-Efficiency in China" International Journal of Environmental Research and Public Health 18, no. 24: 13139. https://doi.org/10.3390/ijerph182413139
APA StyleLi, X., Zhu, X., Li, J., & Gu, C. (2021). Influence of Different Industrial Agglomeration Modes on Eco-Efficiency in China. International Journal of Environmental Research and Public Health, 18(24), 13139. https://doi.org/10.3390/ijerph182413139