Relationship between Physical Activity and the Metabolic, Inflammatory Axis in Pregnant Participants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Anthropometric Data
2.2. Selected Laboratory Parameters
2.3. Questionnaire
2.4. Statistical Analysis
3. Results
3.1. Leptin
3.2. IL-6
3.3. TNF-α
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Ferrari, N.; Joisten, C. Impact of physical activity on course and outcome of pregnancy from pre- to postnatal. Eur. J. Clin. Nutr. 2021, 75, 1698–1709. [Google Scholar] [CrossRef]
- Veisy, A.; Mohammad Alizadeh Charandabi, S.; Hematzadeh, S.; Mirghafourvand, M. Effect of prenatal aerobic exercises on maternal and neonatal outcomes: A systematic review and meta-analysis. Nurs. Open 2021, 8, 2301–2317. [Google Scholar] [CrossRef]
- Chen, Y.; Ma, G.; Hu, Y.; Yang, Q.; Deavila, J.M.; Zhu, M.J.; Du, M. Effects of maternal exercise during pregnancy on perinatal growth and childhood obesity outcomes: A meta-analysis and meta-regression. Sports Med. 2021, 51, 2329–2347. [Google Scholar] [CrossRef]
- Diaz-Burrueco, J.R.; Cano-Ibanez, N.; Martin-Pelaez, S.; Khan, K.S.; Amezcua-Prieto, C. Effects on the maternal-fetal health outcomes of various physical activity types in healthy pregnant women. A systematic review and meta-analysis. Eur. J. Obstet. Gynecol. Reprod. Biol. 2021, 262, 203–215. [Google Scholar] [CrossRef]
- Da Silva, S.G.; Ricardo, L.I.; Evenson, K.R.; Hallal, P.C. Leisure-time physical activity in pregnancy and maternal-child health: A systematic review and meta-analysis of randomized controlled trials and cohort studies. Sports Med. 2017, 47, 295–317. [Google Scholar] [CrossRef]
- Davenport, M.H.; Ruchat, S.M.; Poitras, V.J.; Jaramillo Garcia, A.; Gray, C.E.; Barrowman, N.; Skow, R.J.; Meah, V.L.; Riske, L.; Sobierajski, F.; et al. Prenatal exercise for the prevention of gestational diabetes mellitus and hypertensive disorders of pregnancy: A systematic review and meta-analysis. Br. J. Sports Med. 2018, 52, 1367–1375. [Google Scholar] [CrossRef]
- Davenport, M.H.; Marchand, A.A.; Mottola, M.F.; Poitras, V.J.; Gray, C.E.; Jaramillo Garcia, A.; Barrowman, N.; Sobierajski, F.; James, M.; Meah, V.L.; et al. Exercise for the prevention and treatment of low back, pelvic girdle and lumbopelvic pain during pregnancy: A systematic review and meta-analysis. Br. J. Sports Med. 2019, 53, 90–98. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, A.; van der Waerden, J.; Melchior, M.; Bolze, C.; El-Khoury, F.; Pryor, L. Physical activity during pregnancy and postpartum depression: Systematic review and meta-analysis. J. Affect. Disord. 2019, 246, 29–41. [Google Scholar] [CrossRef]
- Sheffield, K.M.; Woods-Giscombe, C.L. Efficacy, feasibility, and acceptability of perinatal yoga on women’s mental health and well-being: A systematic literature review. J. Holist. Nurs. 2016, 34, 64–79. [Google Scholar] [CrossRef]
- Bull, F.C.; Al-Ansari, S.S.; Biddle, S.; Borodulin, K.; Buman, M.P.; Cardon, G.; Carty, C.; Chaput, J.P.; Chastin, S.; Chou, R.; et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br. J. Sports Med. 2020, 54, 1451–1462. [Google Scholar] [CrossRef]
- Benatti, F.B.; Pedersen, B.K. Exercise as an anti-inflammatory therapy for rheumatic diseases-myokine regulation. Nat. Rev. Rheumatol. 2015, 11, 86–97. [Google Scholar] [CrossRef]
- Zhang, Y.; Proenca, R.; Maffei, M.; Barone, M.; Leopold, L.; Friedman, J.M. Positional cloning of the mouse obese gene and its human homologue. Nature 1994, 372, 425–432. [Google Scholar] [CrossRef]
- Ramos-Lobo, A.M.; Donato, J., Jr. The role of leptin in health and disease. Temperature 2017, 4, 258–291. [Google Scholar] [CrossRef] [Green Version]
- Wolsk, E.; Mygind, H.; Grondahl, T.S.; Pedersen, B.K.; van Hall, G. Human skeletal muscle releases leptin in vivo. Cytokine 2012, 60, 667–673. [Google Scholar] [CrossRef]
- Wang, J.; Liu, R.; Hawkins, M.; Barzilai, N.; Rossetti, L. A nutrient-sensing pathway regulates leptin gene expression in muscle and fat. Nature 1998, 393, 684–688. [Google Scholar] [CrossRef]
- Wolsk, E.; Mygind, H.; Grondahl, T.S.; Pedersen, B.K.; van Hall, G. The role of leptin in human lipid and glucose metabolism: The effects of acute recombinant human leptin infusion in young healthy males. Am. J. Clin. Nutr. 2011, 94, 1533–1544. [Google Scholar] [CrossRef] [Green Version]
- Bao, W.; Baecker, A.; Song, Y.; Kiely, M.; Liu, S.; Zhang, C. Adipokine levels during the first or early second trimester of pregnancy and subsequent risk of gestational diabetes mellitus: A systematic review. Metab. Clin. Exp. 2015, 64, 756–764. [Google Scholar] [CrossRef] [Green Version]
- Ning, Y.; Williams, M.A.; Butler, C.L.; Muy-Rivera, M.; Frederick, I.O.; Sorensen, T.K. Maternal recreational physical activity is associated with plasma leptin concentrations in early pregnancy. Hum. Reprod. 2005, 20, 382–389. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Li, Y.; Duan, Y.; Hu, C.A.; Tang, Y.; Yin, Y. Myokines and adipokines: Involvement in the crosstalk between skeletal muscle and adipose tissue. Cytokine Growth Factor Rev. 2017, 33, 73–82. [Google Scholar] [CrossRef]
- Pedersen, B.K.; Febbraio, M.A. Muscles, exercise and obesity: Skeletal muscle as a secretory organ. Nat. Rev. Endocrinol. 2012, 8, 457–465. [Google Scholar] [CrossRef]
- Pedersen, B.K.; Febbraio, M.A. Muscle as an endocrine organ: Focus on muscle-derived interleukin-6. Physiol. Rev. 2008, 88, 1379–1406. [Google Scholar] [CrossRef] [Green Version]
- Mikkelsen, U.R.; Couppe, C.; Karlsen, A.; Grosset, J.F.; Schjerling, P.; Mackey, A.L.; Klausen, H.H.; Magnusson, S.P.; Kjaer, M. Life-long endurance exercise in humans: Circulating levels of inflammatory markers and leg muscle size. Mech. Ageing Dev. 2013, 134, 531–540. [Google Scholar] [CrossRef] [Green Version]
- Van Poppel, M.N.; Peinhaupt, M.; Eekhoff, M.E.; Heinemann, A.; Oostdam, N.; Wouters, M.G.; van Mechelen, W.; Desoye, G. Physical activity in overweight and obese pregnant women is associated with higher levels of proinflammatory cytokines and with reduced insulin response through interleukin-6. Diabetes Care 2014, 37, 1132–1139. [Google Scholar] [CrossRef] [Green Version]
- Acosta-Manzano, P.; Acosta, F.M.; Femia, P.; Coll-Risco, I.; Segura-Jimenez, V.; Diaz-Castro, J.; Ochoa-Herrera, J.J.; Van Poppel, M.N.M.; Aparicio, V.A. Association of sedentary time and physical activity levels with immunometabolic markers in early pregnancy: The GESTAFIT project. Scand. J. Med. Sci. Sports 2020, 30, 148–158. [Google Scholar] [CrossRef]
- Golbidi, S.; Laher, I. Potential mechanisms of exercise in gestational diabetes. J. Nutr. Metab. 2013, 2013, 285948. [Google Scholar] [CrossRef] [Green Version]
- Cawthorn, W.P.; Sethi, J.K. TNF-alpha and adipocyte biology. FEBS Lett. 2008, 582, 117–131. [Google Scholar] [CrossRef] [Green Version]
- Clapp, J.F., 3rd; Kiess, W. Effects of pregnancy and exercise on concentrations of the metabolic markers tumor necrosis factor alpha and leptin. Am. J. Obstet. Gynecol. 2000, 182, 300–306. [Google Scholar]
- Acosta-Manzano, P.; Coll-Risco, I.; Van Poppel, M.N.M.; Segura-Jimenez, V.; Femia, P.; Romero-Gallardo, L.; Borges-Cosic, M.; Diaz-Castro, J.; Moreno-Fernandez, J.; Ochoa-Herrera, J.J.; et al. Influence of a concurrent exercise training intervention during pregnancy on maternal and arterial and venous cord serum cytokines: The GESTAFIT project. J. Clin. Med. 2019, 8, 1862. [Google Scholar] [CrossRef] [Green Version]
- Deibert, C.; Ferrari, N.; Flöck, A.; Merz, W.; Gembruch, U.; Lehmacher, W.; Ehrhardt, C.; Graf, C. Adipokine-myokine-hepatokine compartment-system in mothers and children: An explorative study. Contemp. Clin. Trials Commun. 2016, 3, 1–5. [Google Scholar]
- Flock, A.; Weber, S.K.; Ferrari, N.; Fietz, C.; Graf, C.; Fimmers, R.; Gembruch, U.; Merz, W.M. Determinants of brain-derived neurotrophic factor (BDNF) in umbilical cord and maternal serum. Psychoneuroendocrinology 2016, 63, 191–197. [Google Scholar] [CrossRef]
- Rolland-Cachera, M.F.; Brambilla, P.; Manzoni, P.; Akrout, M.; Sironi, S.; Del Maschio, A.; Chiumello, G. Body composition assessed on the basis of arm circumference and triceps skinfold thickness: A new index validated in children by magnetic resonance imaging. Am. J. Clin. Nutr. 1997, 65, 1709–1713. [Google Scholar] [CrossRef]
- Chasan-Taber, L.; Schmidt, M.D.; Roberts, D.E.; Hosmer, D.; Markenson, G.; Freedson, P.S. Development and Validation of a Pregnancy Physical Activity Questionnaire. Med. Sci. Sports Exerc. 2004, 36, 1750–1760. [Google Scholar] [CrossRef]
- Ainsworth, B.E.; Haskell, W.L.; Herrmann, S.D.; Meckes, N.; Bassett, D.R., Jr.; Tudor-Locke, C.; Greer, J.L.; Vezina, J.; Whitt-Glover, M.C.; Leon, A.S. 2011 Compendium of Physical Activities: A second update of codes and MET values. Med. Sci. sports Exerc. 2011, 43, 1575–1581. [Google Scholar] [CrossRef] [Green Version]
- Lau, S.Y.; Guild, S.J.; Barrett, C.J.; Chen, Q.; McCowan, L.; Jordan, V.; Chamley, L.W. Tumor necrosis factor-alpha, interleukin-6, and interleukin-10 levels are altered in preeclampsia: A systematic review and meta-analysis. Am. J. Reprod. Immunol. 2013, 70, 412–427. [Google Scholar] [CrossRef]
- Hassiakos, D.; Eleftheriades, M.; Papastefanou, I.; Lambrinoudaki, I.; Kappou, D.; Lavranos, D.; Akalestos, A.; Aravantinos, L.; Pervanidou, P.; Chrousos, G. Increased maternal serum interleukin-6 concentrations at 11 to 14 Weeks of gestation in low risk pregnancies complicated with gestational diabetes mellitus: Development of a prediction model. Horm. Metab. Res. 2016, 48, 35–41. [Google Scholar] [CrossRef]
- Nayak, M.; Peinhaupt, M.; Heinemann, A.; Eekhoff, M.E.; van Mechelen, W.; Desoye, G.; van Poppel, M.N. Sedentary behavior in obese pregnant women is associated with inflammatory markers and lipid profile but not with glucose metabolism. Cytokine 2016, 88, 91–98. [Google Scholar] [CrossRef] [Green Version]
- Malamitsi-Puchner, A.; Protonotariou, E.; Boutsikou, T.; Makrakis, E.; Sarandakou, A.; Creatsas, G. The influence of the mode of delivery on circulating cytokine concentrations in the perinatal period. Early Hum. Dev. 2005, 81, 387–392. [Google Scholar] [CrossRef]
- Haghshenas Mojaveri, M.; Mohammadzadeh, I.; Al-Sadat Bouzari, Z.; Akbarian Rad, Z.; Haddad, G.; Alizadeh-Navaei, R. The comparison of serum interleukin-6 of mothers in vaginal and elective cesarean delivery. Caspian J. Intern. Med. 2014, 5, 223–226. [Google Scholar]
- Kiriakopoulos, N.; Grigoriadis, S.; Maziotis, E.; Philippou, A.; Rapani, A.; Giannelou, P.; Tsioulou, P.; Sfakianoudis, K.; Kontogeorgi, A.; Bakas, P.; et al. Investigating stress response during vaginal delivery and elective cesarean section through assessment of levels of cortisol, Interleukin 6 (IL-6), Growth Hormone (GH) and Insulin-Like Growth Factor 1 (IGF-1). J. Clin. Med. 2019, 8, 1112. [Google Scholar] [CrossRef] [Green Version]
- Shephard, R.J. Limits to the measurement of habitual physical activity by questionnaires. Br. J. Sports Med. 2003, 37, 197–206; discussion 206. [Google Scholar] [CrossRef] [Green Version]
Parameter | N | Mean ± SD/n (%) | Minimum | Maximum |
---|---|---|---|---|
Maternal Age (years) | 91 | 33.9 ± 4.6 | 18.0 | 43.6 |
Weight before pregnancy (kg) | 91 | 68.5 ± 15.9 | 48.0 | 146.0 |
Height (cm) | 91 | 168.4 ± 7.1 | 149.0 | 186.0 |
BMI before pregnancy (kg/m2) | 91 | 24.2 ± 5.3 | 17.1 | 49.4 |
Maternal BMI classes | ||||
underweight (<18.5 kg/m2) | 3 (3.3) | |||
normal weight (18.5–24.9 kg/m2) | 62 (68.1) | |||
overweight (25–29.9 kg/m2) | 14 (15.4) | |||
obese (>30 kg/m2) | 12 (13.2) | |||
Weight gain during pregnancy (kg) | 91 | 15.4 ± 5.5 | 4.0 | 30.3 |
Upper arm circumference (cm) | 87 | 27.2 ± 3.7 | 18.0 | 41.0 |
Thigh circumference (cm) | 82 | 50.4 ± 7.4 | 35.0 | 73.0 |
Total upper arm area (cm2) | 87 | 59.9 ± 17.1 | 25.8 | 133.8 |
Upper arm fat area (cm2) | 86 | 29.6 ± 13.4 | 7.4 | 106.1 |
Total activity 3rd trimester (METs) | 84 | 267.6 ± 122.1 | 33.0 | 559.0 |
Sedentary activity 3rd trimester (METs) | 84 | 90.9 ± 45.0 | 5.5 | 194.1 |
Light-intensity activity 3rd trimester (METs) | 84 | 102.0 ± 58.5 | 0 | 259.9 |
Moderate-intensity activity 3rd trimester (METs) | 84 | 74.3 ± 80.8 | 0 | 332.6 |
Sports exercise (min/week) | 80 | 119.6 ± 117.0 | 0 | 465.0 |
Parameter | N | Mean ± SD/n (%) | Minimum | Maximum |
---|---|---|---|---|
Mode of delivery | ||||
Normal vaginal delivery | 44 (48.4) | |||
Instrumental vaginal delivery | 4 (4.4) | |||
Elective caesarean section | 34 (37.4) | |||
Emergency caesarean section | 9 (9.9) | |||
Neonatal data | ||||
Male sex | 35 (38.5) | |||
Female sex | 56 (61.5) | |||
Birthweight (g) | 91 | 3406.2 ± 473.2 | 2150.0 | 4450.0 |
Length (cm) | 91 | 51.1 ± 2.5 | 45.0 | 56.0 |
Head circumference (cm) | 91 | 35.2 ± 1.3 | 31.0 | 38.0 |
5 min Apgar score ≥ 8 | 91 (100) | |||
5 min Apgar score ≥ 9 | 91 (100) |
Blood Sample Results | N | Mean ± SD | Minimum | Maximum |
---|---|---|---|---|
Maternal leptin (ng/mL) at delivery | 85 | 22.8 ± 17.1 | 1.0 | 83.3 |
Maternal IL-6 (pg/mL) at delivery | 20 | 35.7 ± 31.1 | 9.7 | 147.2 |
Maternal TNF-α (pg/mL) at delivery | 47 | 15.3 ± 4.2 | 4.8 | 25.0 |
Umbilical cord leptin (ng/mL) | 85 | 9.4 ± 7.7 | 1.1 | 41.1 |
Umbilical cord IL-6 (pg/mL) | 28 | 80.4 ± 180.2 | 5.9 | 926.6 |
Umbilical cord TNF-α (pg/mL) | 68 | 25.8 ± 7.8 | 10.4 | 39.4 |
Model | Beta | p-Value | R2 | |
---|---|---|---|---|
1 | Maternal age (year) | −0.213 | 0.046 | 0.540 |
Completed weeks of pregnancy (weeks) | −0.100 | 0.367 | ||
Weight before pregnancy (kg) | −0.640 | 0.018 | ||
BMI before pregnancy (kg/m2) | 1.064 | <0.001 | ||
Weight gain during pregnancy (kg) | 0.255 | 0.056 | ||
Upper arm circumference (cm) | 0.433 | 0.630 | ||
Thigh circumference (cm) | 0.079 | 0.662 | ||
Total upper arm area (cm2) | −0.522 | 0.586 | ||
Upper arm fat area (cm2) | 0.243 | 0.244 | ||
Sedentary activity 3rd trimester (METs) | −0.026 | 0.800 | ||
Light-intensity activity 3rd trimester (METs) | −0.052 | 0.665 | ||
Moderate-intensity activity 3rd trimester (METs) | −0.043 | 0.740 | ||
Sports exercise (min/week) | –0.144 | 0.191 | ||
11 | Maternal age (year) | −0.194 | 0.041 | 0.514 |
Weight before pregnancy (kg) | −0.627 | 0.006 | ||
BMI before pregnancy (kg/m2) | 1.248 | <0.001 | ||
Weight gain during pregnancy (kg) | 0.268 | 0.010 | ||
Sports exercise (min/week) | −0.159 | 0.090 |
Model | Beta | p-Value | R2 | |
---|---|---|---|---|
1 | Maternal age (year) | 0.046 | 0.848 | 0.897 |
Completed weeks of pregnancy (weeks) | −0.243 | 0.344 | ||
Weight before pregnancy (kg) | 0.923 | 0.108 | ||
BMI before pregnancy (kg/m2) | −0.394 | 0.440 | ||
Weight gain during pregnancy (kg) | 0.108 | 0.656 | ||
Upper arm circumference (cm) | 0.270 | 0.914 | ||
Thigh circumference (cm) | 1.057 | 0.032 | ||
Total upper arm area (cm2) | −2.260 | 0.460 | ||
Upper arm fat area (cm2) | 0.695 | 0.367 | ||
Sedentary activity 3rd trimester (METs) | 0.201 | 0.305 | ||
Light-intensity activity 3rd trimester (METs) | −0.235 | 0.459 | ||
Moderate-intensity activity 3rd trimester (METs) | −0.489 | 0.049 | ||
Sports exercise (min/week) | 0.004 | 0.984 | ||
9 | Weight before pregnancy (kg) | 0.860 | <0.001 | 0.840 |
Thigh circumference (cm) | 0.776 | <0.001 | ||
Total upper arm area (cm2) | −1.419 | <0.001 | ||
Sedentary activity 3rd trimester (METs) | 0.225 | 0.082 | ||
Moderate-intensity activity 3rd trimester (METs) | –0.452 | 0.002 |
Model | Beta | p-Value | R2 | |
---|---|---|---|---|
1 | Maternal age (year) | −0.240 | 0.153 | 0.527 |
Completed weeks of pregnancy (weeks) | 0.224 | 0.205 | ||
Weight before pregnancy (kg) | 0.172 | 0.724 | ||
BMI before pregnancy (kg/m2) | 0.502 | 0.333 | ||
Weight gain during pregnancy (kg) | 0.115 | 0.527 | ||
Upper arm circumference (cm) | 0.896 | 0.525 | ||
Thigh circumference (cm) | −0.359 | 0.249 | ||
Total upper arm area (cm2) | −1.381 | 0.383 | ||
Upper arm fat area (cm2) | 0.283 | 0.486 | ||
Sedentary activity 3rd trimester (METs) | 0.233 | 0.159 | ||
Light-intensity activity 3rd trimester (METs) | −0.336 | 0.101 | ||
Moderate-intensity activity 3rd trimester (METs) | 0.545 | 0.012 | ||
Sports exercise (min/week) | −0.047 | 0.782 | ||
10 | Completed weeks of pregnancy (weeks) | 0.297 | 0.045 | 0.400 |
Sedentary activity 3rd trimester (METs) | 0.293 | 0.042 | ||
Light-intensity activity 3rd trimester (METs) | −0.363 | 0.023 | ||
Moderate-intensity activity 3rd trimester (METs) | 0.697 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bockler, A.; Ferrari, N.; Deibert, C.; Flöck, A.; Merz, W.M.; Gembruch, U.; Ehrhardt, C.; Dötsch, J.; Joisten, C. Relationship between Physical Activity and the Metabolic, Inflammatory Axis in Pregnant Participants. Int. J. Environ. Res. Public Health 2021, 18, 13160. https://doi.org/10.3390/ijerph182413160
Bockler A, Ferrari N, Deibert C, Flöck A, Merz WM, Gembruch U, Ehrhardt C, Dötsch J, Joisten C. Relationship between Physical Activity and the Metabolic, Inflammatory Axis in Pregnant Participants. International Journal of Environmental Research and Public Health. 2021; 18(24):13160. https://doi.org/10.3390/ijerph182413160
Chicago/Turabian StyleBockler, Adeline, Nina Ferrari, Clara Deibert, Anne Flöck, Waltraut M. Merz, Ulrich Gembruch, Christina Ehrhardt, Jörg Dötsch, and Christine Joisten. 2021. "Relationship between Physical Activity and the Metabolic, Inflammatory Axis in Pregnant Participants" International Journal of Environmental Research and Public Health 18, no. 24: 13160. https://doi.org/10.3390/ijerph182413160
APA StyleBockler, A., Ferrari, N., Deibert, C., Flöck, A., Merz, W. M., Gembruch, U., Ehrhardt, C., Dötsch, J., & Joisten, C. (2021). Relationship between Physical Activity and the Metabolic, Inflammatory Axis in Pregnant Participants. International Journal of Environmental Research and Public Health, 18(24), 13160. https://doi.org/10.3390/ijerph182413160