The Interactions of Media Use, Obesity, and Suboptimal Health Status: A Nationwide Time-Trend Study in China
Abstract
:1. Introduction
1.1. Media Use and Obesity
1.2. Media Use and Suboptimal Health Status
1.3. The Current Study
- What are time trends in the associations of media use with obesity (RQ1) and SHS (RQ2) in the period 2013 to 2017?
- What are the differences in time trends between new media use and traditional media use, separately, in their associations with obesity (RQ3) and SHS (RQ4)?
2. Materials and Methods
2.1. Data Collection
2.2. Measures
2.2.1. Media Use
2.2.2. Obesity
2.2.3. SHS
2.2.4. Covariates
2.3. Statistical Analysis
3. Results
3.1. Characteristics of Demographics, Media Use, Rate of Obesity, and SHS
3.2. Associations between Media Use and Obesity, and Time Changes
3.3. Associations between Media Use and SHS and Time Changes
4. Discussion
5. Limitations and Future Studies
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sevcikova, A. Two sides of the same coin: Communication technology, media use, and our kids’ health. Int. J. Public Health 2015, 60, 129–130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jairoun, A.; Shahwan, M. Assessment of university students’ suboptimal health and social media Use: Implications for health regulatory authorities. J. Community Health 2021, 46, 653–659. [Google Scholar] [CrossRef] [PubMed]
- Straker, L.M.; Smith, A.; Hands, B.; Olds, T.; Abbott, R. Screen-based media use clusters are related to other activity behaviours and health indicators in adolescents. BMC Public Health 2013, 13, 1174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cleary, M.; West, S.; Visentin, D. The mental health impacts of smartphone and social media use. Issues Ment. Health Nurs. 2020, 41, 755–757. [Google Scholar] [CrossRef] [PubMed]
- Seema, S.; Rohilla, K.K.; Kalyani, V.C.; Babbar, P. Prevalence and contributing factors for adolescent obesity in present era: Cross-sectional Study. J. Fam. Med. Prim. Care 2021, 10, 1890–1894. [Google Scholar] [CrossRef]
- Ampofo, A.G.; Boateng, E.B. Beyond 2020: Modelling obesity and diabetes prevalence. Diabetes Res. Clin. Pract. 2020, 167. [Google Scholar] [CrossRef]
- Gao, Q.; Mei, F.; Shang, Y.; Hu, K.; Chen, F.; Zhao, L.; Ma, B. Global prevalence of sarcopenic obesity in older adults: A systematic review and meta-analysis. Clin. Nutr. 2021, 40, 4633–4641. [Google Scholar] [CrossRef] [PubMed]
- Suh, J.; Jeon, Y.W.; Lee, J.H.; Song, K.; Choi, H.S.; Kwon, A.; Chae, H.W.; Kim, H.C.; Kim, H.-S.; Suh, I. Annual incidence and prevalence of obesity in childhood and young adulthood based on a 30-year longitudinal population-based cohort study in Korea: The Kangwha study. Ann. Epidemiol. 2021, 62, 1–6. [Google Scholar] [CrossRef]
- Li, Y.-J.; Xie, X.-N.; Lei, X.; Li, Y.-M.; Lei, X. Global prevalence of obesity, overweight and underweight in children, adolescents and adults with autism spectrum disorder, attention-deficit hyperactivity disorder: A systematic review and meta-analysis. Obes. Rev. 2020, 21, e13123. [Google Scholar] [CrossRef]
- Bozkurt, H.; Ozer, S.; Sahin, S.; Sonmezgoz, E. Internet use patterns and Internet addiction in children and adolescents with obesity. Pediatric Obes. 2018, 13, 301–306. [Google Scholar] [CrossRef]
- Marshall, S.J.; Biddle, S.J.H.; Gorely, T.; Cameron, N.; Murdey, I. Relationships between media use, body fatness and physical activity in children and youth: A meta-analysis. Int. J. Obes. 2004, 28, 1238–1246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsitsika, A.K.; Andrie, E.K.; Psaltopoulou, T.; Tzavara, C.K.; Sergentanis, T.N.; Ntanasis-Stathopoulos, I.; Bacopoulou, F.; Richardson, C.; Chrousos, G.P.; Tsolia, M. Association between problematic Internet use, socio-demographic variables and obesity among European adolescents. Eur. J. Public Health 2016, 26, 617–622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spengler, S.; Mess, F.; Woll, A. Do media use and physical activity compete in adolescents? Results of the MoMo study. PLoS ONE 2015, 10, e0142544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yore, M.M.; Fulton, J.E.; Nelson, D.E.; Kohl, H.W., III. Cigarette smoking status and the association between media use and overweight and obesity. Am. J. Epidemiol. 2007, 166, 795–802. [Google Scholar] [CrossRef] [PubMed]
- Melkevik, O.; Haug, E.; Rasmussen, M.; Fismen, A.S.; Wold, B.; Borraccino, A.; Sigmund, E.; Balazsi, R.; Bucksch, J.; Inchley, J.; et al. Are associations between electronic media use and BMI different across levels of physical activity? BMC Public Health 2015, 15, 497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aghasi, M.; Matinfar, A.; Golzarand, M.; Salari-Moghaddam, A.; Ebrahimpour-Koujan, S. Internet use in relation to overweight and obesity: A systematic review and meta-analysis of cross-sectional studies. Adv. Nutr. 2020, 11, 349–356. [Google Scholar] [CrossRef] [PubMed]
- Bener, A.; Al-Mahdi, H.S.; Ali, A.I.; Al-Nufal, M.; Vachhani, P.J.; Tewfik, I. Obesity and low vision as a result of excessive Internet use and television viewing. Int. J. Food Sci. Nutr. 2011, 62, 60–62. [Google Scholar] [CrossRef] [PubMed]
- Ballard, M.; Gray, M.; Reilly, J.; Noggle, M. Correlates of video game screen time among males: Body mass, physical activity, and other media use. Eat. Behav. 2009, 10, 161–167. [Google Scholar] [CrossRef] [PubMed]
- Vandelanotte, C.; Sugiyama, T.; Gardiner, P.; Owen, N. Associations of leisure-time Internet and computer use with overweight and obesity, physical activity and sedentary behaviors: Cross-sectional study. J. Med. Internet Res. 2009, 11, e28. [Google Scholar] [CrossRef] [PubMed]
- Sandercock, G.R.H.; Alibrahim, M.; Bellamy, M. Media device ownership and media use: Associations with sedentary time, physical activity and fitness in English youth. Prev. Med. Rep. 2016, 4, 162–168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Engberg, E.; Leppanen, M.H.; Sarkkola, C.; Viljakainen, H. Physical activity among preadolescents modifies the long-term association between sedentary time spent using digital media and the increased risk of being overweight. J. Phys. Act. Health 2021, 18, 1105–1112. [Google Scholar] [CrossRef] [PubMed]
- Matusitz, J.; McCormick, J. Sedentarism: The effects of Internet use on human obesity in the United States. Soc. Work Public Health 2012, 27, 250–269. [Google Scholar] [CrossRef] [PubMed]
- Jordan, A.B.; Kramer-Golinkoff, E.K.; Strasburger, V.C. Does adolescent media use cause obesity and eating disorders? Adolesc. Med. State Art Rev. 2008, 19, 431–449. [Google Scholar] [PubMed]
- Xu, T.; Zhu, G.; Han, S. Prevalence of suboptimal health status and the relationships between suboptimal health status and lifestyle factors among Chinese adults using a multi-Level generalized estimating equation model. Int. J. Environ. Res. Public Health 2020, 17, 763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, Q.; Xu, X.; Zhang, J.; Sun, M.; Tian, Q.; Li, Q.; Cao, W.; Zhang, X.; Wang, H.; Liu, J.; et al. Association of suboptimal health status with intestinal microbiota in Chinese youths. J. Cell. Mol. Med. 2020, 24, 1837–1847. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.X.; Dong, J.; Liu, Y.Q.; Yang, X.H.; Li, M.; Shia, G.; Wang, W. Association of suboptimal health status and cardiovascular risk factors in urban Chinese workers. J. Urban Health-Bull. N. Y. Acad. Med. 2012, 89, 329–338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adua, E.; Roberts, P.; Wang, W. Incorporation of suboptimal health status as a potential risk assessment for type II diabetes mellitus: A case-control study in a Ghanaian population. Epma J. 2017, 8, 345–355. [Google Scholar] [CrossRef] [PubMed]
- Miao, J.; Liu, J.; Wang, Y.; Zhang, Y.; Yuan, H. Reliability and validity of SHMS v1.0 for suboptimal health status assessment of Tianjin residents and factors affecting sub-health a cross-sectional study. Medicine 2021, 100, e25401. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y.; Huang, Z.; Liu, G.; Zhang, Z.; Feng, Y.; Xu, M.; Jiang, L.; Li, W.; Xu, J. Associations of environment and lifestyle factors with suboptimal health status: A population-based cross-sectional study in urban China. Glob. Health 2021, 17. [Google Scholar] [CrossRef] [PubMed]
- Mahara, G.; Liang, J.; Zhang, Z.; Ge, Q.; Zhang, J. Associated factors of suboptimal health status among adolescents in China: A cross-sectional study. J. Multidiscip. Healthc. 2021, 14, 1063–1071. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Xu, W.; Zhou, L.; Ma, S.; Wang, Y. Association between lifestyle factors and suboptimal health status among Chinese college freshmen: A cross-sectional study. Bmc Public Health 2018, 18, 105. [Google Scholar] [CrossRef] [Green Version]
- Alonzo, R.; Hussain, J.; Stranges, S.; Anderson, K.K. Interplay between social media use, sleep quality, and mental health in youth: A systematic review. Sleep Med. Rev. 2021, 56, 101414. [Google Scholar] [CrossRef] [PubMed]
- Buda, G.; Lukoseviciute, J.; Salciunaite, L.; Smigelskas, K. Possible effects of social media use on adolescent health behaviors and perceptions. Psychol Rep 2021, 124, 1031–1048. [Google Scholar] [CrossRef]
- Dibb, B. Social media use and perceptions of physical health. Heliyon 2019, 5, e00989. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelly, Y.; Zilanawala, A.; Booker, C.; Sacker, A. social media use and adolescent mental health: Findings from the UK millennium cohort study. Eclinicalmedicine 2018, 6, 59–68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruggieri, S.; Santoro, G.; Pace, U.; Passanisi, A.; Schimmenti, A. Problematic Facebook use and anxiety concerning use of social media in mothers and their offspring: An actor-partner interdependence model. Addict. Behav. Rep. 2020, 11, 100256. [Google Scholar] [CrossRef] [PubMed]
- Sujarwoto, S.; Tampubolon, G.; Pierewan, A.C. A Tool to help or harm? Online social media use and adult mental health in indonesia. Int. J. Ment. Health Addict. 2019, 17, 1076–1093. [Google Scholar] [CrossRef] [Green Version]
- Brown, G.; Rathbone, A.L.; Prescott, J. Social media use for supporting mental health (SMILE). Ment. Health Rev. J. 2021, 26, 279–297. [Google Scholar] [CrossRef]
- Karim, F.; Oyewande, A.; Abdalla, L.F.; Ehsanullah, R.C.; Khan, S. Social media use and its connection to mental health: A systematic review. Cureus 2020, 12. [Google Scholar] [CrossRef] [PubMed]
- Haluza, D.; Boehm, I. Mobile and online health information: Exploring digital media use among austrian parents. Int. J. Environ. Res. Public Health 2020, 17, 6053. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.; Wang, J. Effects of new media use on health behaviors: A case study in china. Iran. J. Public Health 2021, 50, 949–958. [Google Scholar] [CrossRef]
- Rosenbaum, J.E.; Johnson, B.K.; Deane, A.E. Health literacy and digital media use: Assessing the Health Literacy Skills Instrument—Short Form and its correlates among African American college students. Digit. Health 2018, 4, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Liu, Q. Social media use, eHealth literacy, disease knowledge, and preventive behaviors in the COVID-19 pandemic: Cross-sectional study on Chinese netizens. J. Med Internet Res. 2020, 22. [Google Scholar] [CrossRef] [PubMed]
- Niu, Z.; Willoughby, J.; Zhou, R. Associations of health literacy, social media use, and self-efficacy with health information-seeking intentions among social media users in China: Cross-sectional survey. J. Med. Internet Res. 2021, 23. [Google Scholar] [CrossRef]
- Hingle, M.; Kunkel, D. Childhood obesity and the media. Pediatric Clin. North Am. 2012, 59, 677–692. [Google Scholar] [CrossRef] [PubMed]
- Malaeb, D.; Salameh, P.; Barbar, S.; Awad, E.; Haddad, C.; Hallit, R.; Sacre, H.; Akel, M.; Obeid, S.; Hallit, S. Problematic social media use and mental health (depression, anxiety, and insomnia) among Lebanese adults: Any mediating effect of stress? Perspect. Psychiatr. Care 2021, 57, 539–549. [Google Scholar] [CrossRef]
- Robinson, T.N.; Banda, J.A.; Hale, L.; Lu, A.S.; Fleming-Milici, F.; Calvert, S.L.; Wartella, E. Screen media exposure and obesity in children and adolescents. Pediatrics 2017, 140, S97–S101. [Google Scholar] [CrossRef] [Green Version]
- Szabo, A.; Allen, J.; Stephens, C.; Alpass, F. Longitudinal analysis of the relationship between purposes of Internet use and well-being among older adults. Gerontologist 2019, 59, 58–68. [Google Scholar] [CrossRef]
- Mendoza, J.A.; Zimmerman, F.J.; Christakis, D.A. Television viewing, computer use, obesity, and adiposity in US preschool children. Int. J. Behav. Nutr. Phys. Act. 2007, 4, 44. [Google Scholar] [CrossRef]
- Thomee, S. Mobile Phone Use and Mental Health. A review of the research that takes a psychological perspective on exposure. Int. J. Environ. Res. Public Health 2018, 15, 2692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vandewater, E.A.; Denis, L.M. Media, Social networking, and pediatric obesity. Pediatric Clin. North Am. 2011, 58, 1509–1519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hou, H.; Feng, X.; Li, Y.; Meng, Z.; Guo, D.; Wang, F.; Guo, Z.; Zheng, Y.; Peng, Z.; Zhang, W.; et al. Suboptimal health status and psychological symptoms among Chinese college students: A perspective of predictive, preventive and personalised health. Epma J. 2018, 9, 367–377. [Google Scholar] [CrossRef] [PubMed]
- Niu, G.; Zhao, G. Survey data on political attitudes of China’s urban residents compiled from the Chinese General Social Survey (CGSS). Data Brief 2018, 20, 591–595. [Google Scholar] [CrossRef]
- Bian, Y.; Li, L. The Chinese general social survey (2003-8) sample designs and data evaluation. Chin. Sociol. Rev. 2012, 45, 70–97. [Google Scholar] [CrossRef]
- Bei-Fan, Z.; Cooperative Meta Anal Grp, W. Predictive values of body mass index and waist circumference for risk factors of certain related diseases in Chinese adults: Study on optimal cut-off points of body mass index and waist circumference in Chinese adults. Asia Pac. J. Clin. Nutr. 2002, 11, S685–S693. [Google Scholar] [CrossRef]
- Chen, Y.M.; Ho, S.C.; Lam, S.S.H.; Chan, S.S.G. Validity of body mass index and waist circumference in the classification of obesity as compared to percent body fat in Chinese middle-aged women. Int. J. Obes. 2006, 30, 918–925. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, W.; Li, Q.; Yang, M.; Jiao, J.; Ma, X.; Zhou, Y.; Song, A.; Heymsfield, S.B.; Zhang, S.; Zhu, S. Lower BMI cutoffs to define overweight and obesity in China. Obesity 2015, 23, 684–691. [Google Scholar] [CrossRef]
- WHO. Appropriate body-mass index in Asian populations and its implications for policy and intervention strategies. Lancet 2004, 363, 157–163, Erratum in 2004, 363, 902. [Google Scholar]
- Zhou, B.F. Effect of body mass index on all-cause mortality and incidence of cardiovascular diseases—Report for meta-analysis of prospective studies on optimal cut-off points of body mass index in Chinese adults. Biomed. Environ. Sci. 2002, 15, 245–252. [Google Scholar] [PubMed]
- Cronbach, L.J. Coefficient alpha and the internal structure of tests. Psychometrika 1951, 16, 297–334. [Google Scholar] [CrossRef] [Green Version]
- Bland, J.M.; Altman, D.G. Cronbach’s alpha. Br. Med. J. 1997, 314, 572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Long, C.; Han, J.; Yi, C. Does the effect of Internet use on Chinese citizens’ psychological well-being differ based on their Hukou category? Int. J. Environ. Res. Public Health 2020, 17, 6680. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, W.; von Soest, T. Adolescent alcohol use and binge drinking: An 18-year trend study of prevalence and correlates. Alcohol Alcohol. 2015, 50, 219–225. [Google Scholar] [CrossRef]
- Kachi, Y.; Abe, A.; Ando, E.; Kawada, T. Socioeconomic disparities in psychological distress in a nationally representative sample of Japanese adolescents: A time trend study. Aust. N. Z. J. Psychiatry 2017, 51, 278–286. [Google Scholar] [CrossRef]
- Chen, J.; Xiang, H.; Jiang, P.; Yu, L.; Jing, Y.; Li, F.; Wu, S.; Fu, X.; Liu, Y.; Kwan, H.; et al. The role of healthy lifestyle in the implementation of regressing suboptimal health status among college students in China: A nested case-control study. Int. J. Environ. Res. Public Health 2017, 14, 240. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.-M.; Chien, L.-Y.; Yeh, T.-C.; Lee, P.-H.; Chang, P.-C. Relationship between media viewing and obesity in school-aged children in Taipei, Taiwan. J. Nurs. Res. 2013, 21, 195–202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schneider, M.; Dunton, G.F.; Cooper, D.M. Media use and obesity in adolescent females. Obesity 2007, 15, 2328–2335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- CNNIC. The 41th China Statistical Report on Internet Development. Available online: http://www.cnnic.net.cn/hlwfzyj/hlwxzbg/hlwtjbg/201803/P020180305409870339136.pdf (accessed on 29 September 2021).
- CNNIC. The 34th China Statistical Report on Internet Development. Available online: http://www.cnnic.net.cn/hlwfzyj/hlwxzbg/hlwtjbg/201407/P020140721507223212132.pdf (accessed on 28 September 2021).
- Thanasrivanitchai, J.; Moschis, G.P.; Shannon, R. Explaining older consumers’ low use of the Internet. Int. J. Internet Mark. Advert. 2017, 11, 355–375. [Google Scholar] [CrossRef]
- Seifert, A.; Schelling, H.R. Old and offline? Findings on the use of the Internet by people aged 65 years and older in Switzerland. Z. Fur Gerontol. Und Geriatr. 2016, 49, 619–625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, X.-F.; Wang, L.; Pan, A. Epidemiology and determinants of obesity in China. Lancet Diabetes Endocrinol. 2021, 9, 373–392. [Google Scholar] [CrossRef]
- Wang, L.; Zhou, B.; Zhao, Z.; Yang, L.; Zhang, M.; Jiang, Y.; Li, Y.; Zhou, M.; Wang, L.; Huang, Z.; et al. Body-mass index and obesity in urban and rural China: Findings from consecutive nationally representative surveys during 2004-18. Lancet 2021, 398, 53–63. [Google Scholar] [CrossRef]
- Zou, Y.; Xia, N.; Zou, Y.; Chen, Z.; Wen, Y. Smartphone addiction may be associated with adolescent hypertension: A cross-sectional study among junior school students in China. BMC Pediatrics 2019, 19, 310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kenney, E.L.; Gortmaker, S.L. United States adolescents’ television, computer, videogame, smartphone, and tablet use: Associations with sugary drinks, sleep, physical activity, and obesity. J. Pediatrics 2017, 182, 144–149. [Google Scholar] [CrossRef] [Green Version]
- Bekalu, M.A.; McCloud, R.F.; Viswanath, K. Association of social media use with social well-being, positive mental health, and self-rated health: Disentangling routine use from emotional connection to use. Health Educ. Behav. 2019, 46, 69–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alhusseini, N.; Banta, J.E.; Oh, J.; Montgomery, S.B. Social media use for health purposes by chronic disease patients in the United States. Saudi J. Med. Med Sci. 2021, 9, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Schehl, B. Outdoor activity among older adults: Exploring the role of informational Internet use. Educ. Gerontol. 2020, 46, 36–45. [Google Scholar] [CrossRef]
- Ko, D.; Myung, E.; Moon, T.-J.; Shah, D.V. Physical activity in persons with diabetes: Its relationship with media use for health information, socioeconomic status and age. Health Educ. Res. 2019, 34, 257–267. [Google Scholar] [CrossRef] [PubMed]
- Adua, E.; Afrifa-Yamoah, E.; Frimpong, K.; Adama, E.; Karthigesu, S.P.; Anto, E.O.; Aboagye, E.; Yan, Y.; Wang, Y.; Tan, X.; et al. Construct validity of the Suboptimal Health Status Questionnaire-25 in a Ghanaian population. Health Qual. Life Outcomes 2021, 19, 180. [Google Scholar] [CrossRef]
Total (N = 34,468) | 2013 (N = 11,263) | 2015 (N = 10,838) | 2017 (N = 12,367) | P for Time Change | |||||
---|---|---|---|---|---|---|---|---|---|
M/N | SD/% | M/N | SD/% | M/N | SD/% | M/N | SD/% | ||
Male | 16624 | 48.23% | 5685 | 50.48% | 5078 | 46.85% | 5861 | 47.39% | |
Female | 17844 | 51.77% | 5578 | 49.52% | 5760 | 53.15% | 6506 | 52.61% | |
Age | 49.95 | 16.72 | 48.56 | 16.37 | 50.32 | 16.88 | 50.90 | 16.80 | |
Hukou | |||||||||
Rural | 20297 | 58.89% | 6739 | 59.83% | 6862 | 63.31% | 6696 | 54.14% | |
Urban | 14171 | 41.11% | 4524 | 40.17% | 3976 | 36.69% | 5671 | 45.86% | |
Education | |||||||||
Illiterate | 22087 | 64.08% | 7265 | 64.50% | 7114 | 65.64% | 7708 | 62.32% | |
Primary | 6312 | 18.31% | 2154 | 19.12% | 1953 | 18.02% | 2205 | 17.82% | |
Junior high Middle school | 2730 | 7.92% | 915 | 8.12% | 781 | 7.21% | 1034 | 8.36% | |
High school | 2944 | 8.54% | 837 | 7.43% | 874 | 8.06% | 1233 | 9.97% | |
College or Bachelor and above | 395 | 1.15% | 92 | 0.82% | 116 | 1.07% | 187 | 1.51% | |
Physical activity | 2.35 | 1.52 | 2.07 | 1.38 | 2.46 | 1.53 | 2.50 | 1.60 | |
Newspaper | 1.92 | 1.16 | 2.10 | 1.22 | 1.90 | 1.12 | 1.77 | 1.11 | 1–2, 1–3, 2–3 |
Magazine | 1.71 | 0.95 | 1.83 | 1.01 | 1.72 | 0.94 | 1.61 | 0.90 | 1–2, 1–3, 2–3 |
Broadcast | 1.80 | 1.11 | 1.86 | 1.12 | 1.80 | 1.09 | 1.75 | 1.11 | 1–2, 1–3, 2–3 |
Television | 3.93 | 1.05 | 4.10 | 0.96 | 3.92 | 1.04 | 3.78 | 1.13 | 1–2, 1–3, 2–3 |
Internet | 2.48 | 1.66 | 2.20 | 1.55 | 2.37 | 1.64 | 2.82 | 1.72 | 1–2, 1–3, 2–3 |
Cellphone | 1.65 | 1.14 | 1.63 | 1.10 | 1.62 | 1.09 | 1.70 | 1.21 | 1–3, 2–3 |
Obesity (%) | 6.5 | 5.7 | 6.2 | 7.6 | 1–3, 2–3 | ||||
SHS | 6.65 | 2.62 | 6.39 | 2.61 | 6.69 | 2.57 | 6.84 | 2.65 | 1–2, 1–3, 2–3 |
2013 | 2015 | 2017 | |||||||
---|---|---|---|---|---|---|---|---|---|
OR | 95% CI | OR | 95% CI | OR | 95% CI | ||||
Gender | 0.98 | 0.83 | 1.16 | 0.95 | 0.81 | 1.11 | 0.96 | 0.84 | 1.10 |
Age | 1.00 | 0.99 | 1.01 | 0.99 * | 0.99 | 1.00 | 1.00 | 1.00 | 1.01 |
Rural/Urban | 1.60 *** | 1.32 | 1.94 | 1.52 *** | 1.26 | 1.83 | 1.30 ** | 1.10 | 1.53 |
Illiterate | Reference N/A | Reference N/A | Reference N/A | ||||||
Primary | 0.75 * | 0.59 | 0.96 | 0.90 | 0.71 | 1.13 | 0.89 | 0.73 | 1.08 |
Middle school | 0.73 | 0.51 | 1.04 | 0.62 * | 0.43 | 0.90 | 0.80 | 0.61 | 1.06 |
High school | 0.78 | 0.54 | 1.14 | 0.55 ** | 0.37 | 0.81 | 0.48 *** | 0.35 | 0.66 |
College or Bachelor and above | 0.58 | 0.20 | 1.62 | 0.41 | 0.15 | 1.15 | 0.31 ** | 0.13 | 0.72 |
Physical activity | 1.02 | 0.96 | 1.09 | 1.04 | 0.98 | 1.10 | 1.02 | 0.98 | 1.07 |
Newspaper | 1.06 | 0.97 | 1.16 | 0.97 | 0.87 | 1.07 | 0.95 | 0.87 | 1.03 |
Magazine | 0.82 *** | 0.73 | 0.91 | 0.96 | 0.85 | 1.08 | 1.00 | 0.90 | 1.11 |
Broadcast | 1.07 | 1.00 | 1.16 | 1.09 * | 1.01 | 1.18 | 0.99 | 0.92 | 1.05 |
Television | 1.14 ** | 1.04 | 1.25 | 1.08 * | 1.00 | 1.17 | 1.04 | 0.97 | 1.10 |
Internet | 1.03 | 0.95 | 1.11 | 0.97 | 0.90 | 1.05 | 1.02 | 0.96 | 1.08 |
Cellphone | 1.04 | 0.96 | 1.14 | 0.97 | 0.89 | 1.06 | 1.08 ** | 1.02 | 1.15 |
Constant | 0.02 *** | 0.05*** | 0.06 *** |
2013–2015 a | 2015–2017 b | 2013–2017 c | |||||||
---|---|---|---|---|---|---|---|---|---|
OR | 95% CI | OR | 95% CI | OR | 95% CI | ||||
Gender | 0.96 | 0.86 | 1.08 | 0.96 | 0.86 | 1.06 | 1.08 | 0.97 | 1.20 |
Age | 1.00 | 0.99 | 1.00 | 1.00 | 0.99 | 1.00 | 1.00 | 1.00 | 1.01 |
Rural/Urban | 1.56 *** | 1.36 | 1.78 | 1.39 *** | 1.23 | 1.57 | 1.15 * | 1.02 | 1.30 |
Illiterate | Reference N/A | Reference N/A | Reference N/A | ||||||
Primary | 0.82 * | 0.69 | 0.97 | 0.89 | 0.76 | 1.03 | 0.94 | 0.80 | 1.10 |
Middle school | 0.68 ** | 0.52 | 0.87 | 0.73 ** | 0.58 | 0.91 | 0.88 | 0.63 | 1.23 |
High school | 0.66 ** | 0.51 | 0.86 | 0.50 *** | 0.39 | 0.64 | 0.98 | 0.69 | 1.39 |
College or Bachelor and above | 0.48 * | 0.23 | 1.00 | 0.34 *** | 0.18 | 0.65 | 0.74 | 0.26 | 2.06 |
Physical activity | 1.03 | 0.99 | 1.08 | 1.03 | 0.99 | 1.07 | 1.03 | 0.99 | 1.07 |
Newspaper | 1.06 | 0.97 | 1.16 | 0.97 | 0.88 | 1.07 | 1.09 | 0.99 | 1.19 |
Magazine | 0.81 *** | 0.73 | 0.91 | 0.97 | 0.86 | 1.09 | 0.80 *** | 0.72 | 0.90 |
Broadcast | 1.08 * | 1.00 | 1.16 | 1.09* | 1.01 | 1.17 | 1.09 * | 1.01 | 1.17 |
Television | 1.14 ** | 1.04 | 1.25 | 1.08 | 1.00 | 1.17 | 1.15 ** | 1.05 | 1.26 |
Internet | 1.02 | 0.95 | 1.09 | 1.00 | 0.94 | 1.07 | 1.03 | 0.95 | 1.11 |
Cellphone | 1.04 | 0.95 | 1.13 | 0.98 | 0.89 | 1.06 | 1.04 | 0.95 | 1.13 |
Year (Time period) | 1.52 | 0.86 | 2.69 | 2.00 ** | 1.23 | 3.28 | 1.85 * | 1.08 | 3.17 |
Newspaper*Year | 0.90 | 0.79 | 1.03 | 0.98 | 0.87 | 1.12 | 0.84 ** | 0.73 | 0.95 |
Magazine*Year | 1.18 * | 1.00 | 1.39 | 1.02 | 0.87 | 1.20 | 1.34 *** | 1.14 | 1.58 |
Broadcast*Year | 1.00 | 0.90 | 1.11 | 0.91 * | 0.82 | 1.00 | 0.92 | 0.83 | 1.02 |
Television*Year | 0.95 | 0.84 | 1.08 | 0.96 | 0.87 | 1.07 | 0.93 | 0.83 | 1.04 |
Internet*Year | 0.97 | 0.89 | 1.05 | 1.00 | 0.93 | 1.07 | 0.98 | 0.90 | 1.07 |
Cellphone*Year | 0.94 | 0.83 | 1.06 | 1.11 * | 1.00 | 1.23 | 1.05 | 0.94 | 1.18 |
Constant | 0.02 *** | 0.04 *** | 0.02 *** |
2013 | 2015 | 2017 | ||||
---|---|---|---|---|---|---|
Model1 Model2 | Model1 Model2 | Model1 Model2 | ||||
Beta | Beta | Beta | Beta | Beta | Beta | |
Gender | 0.05 *** | 0.05 *** | 0.07 *** | 0.06 *** | 0.06 *** | 0.06 *** |
Age | 0.33 *** | 0.30 *** | 0.32 *** | 0.27 *** | 0.30 *** | 0.24 *** |
Rural/Urban | −0.06 *** | −0.04 *** | −0.07 *** | −0.04 *** | −0.11 *** | −0.07 *** |
Illiterate | Reference N/A | Reference N/A | Reference N/A | |||
Primary | −0.05 *** | −0.03 * | −0.06 *** | −0.03 ** | −0.06 *** | −0.03 *** |
Middle school | −0.03 *** | −0.01 | −0.06 *** | −0.03 ** | −0.06 *** | −0.03 *** |
High school | −0.03 ** | −0.01 | −0.03 *** | 0.01 | −0.04 *** | −0.02 * |
College or Bachelor and above | −0.01 | −0.01 | −0.02 | −0.01 | −0.01 | 0.01 |
Obesity | 0.01 | 0.01 | 0.03 *** | 0.03 *** | 0.04 *** | 0.04 *** |
Physical activity | −0.09 ** | −0.07 *** | −0.11 *** | −0.07 *** | −0.15 *** | −0.12 *** |
Newspaper | −0.06 *** | −0.06 *** | −0.07 *** | |||
Magazine | 0.01 | −0.01 | 0.03 * | |||
Broadcast | 0.05 *** | 0.01 | 0.01 | |||
Television | −0.12 *** | −0.10 *** | −0.06 *** | |||
Internet | −0.08 *** | −0.13 *** | −0.16 *** | |||
Cellphone | 0.01 | 0.01 | 0.01 | |||
Adjusted R2 | 0.156 | 0.178 | 0.163 | 0.183 | 0.188 | 0.206 |
R2 change | 0.156 | 0.023 | 0.164 | 0.020 | 0.189 | 0.018 |
F | 231.569 *** | 52.839 *** | 235.457 *** | 44.619 *** | 319.696 *** | 45.924 *** |
2013–2015 a | 2015–2017 b | 2013–2017 c | |||||||
---|---|---|---|---|---|---|---|---|---|
Model1 Model2 Model3 | Model1 Model2 Model3 | Model1 Model2 Model3 | |||||||
Beta | Beta | Beta | Beta | Beta | Beta | Beta | Beta | Beta | |
Gender | 0.06 *** | 0.05 *** | 0.05 *** | 0.06 *** | −0.06 *** | 0.06 *** | 0.06 *** | 0.05 *** | 0.05 *** |
Age | 0.33 *** | 0.28 *** | 0.28 *** | 0.30 *** | 0.25 *** | 0.25 *** | 0.32 *** | 0.27 *** | 0.27 *** |
Rural/Urban | −0.07 *** | −0.04 *** | −0.04 *** | −0.08 *** | −0.08 *** | −0.08 *** | −0.12 *** | −0.08 *** | −0.08 *** |
Illiterate | Reference N/A | Reference N/A | Reference N/A | ||||||
Primary | −0.06 *** | −0.03 *** | −0.03 *** | −0.07 *** | −0.03 *** | −0.03 *** | −0.06 *** | −0.03 *** | −0.03 *** |
Middle school | −0.04 *** | −0.02 ** | −0.02 ** | −0.07 *** | −0.03 *** | −0.03 *** | −0.05 *** | −0.02 *** | −0.02 *** |
High school | −0.03 *** | −0.01 | −0.01 | −0.05 *** | −0.01 * | −0.01 | −0.03 | −0.02 * | −0.01 * |
College or Bachelor and above | −0.01 | −0.01 | −0.01 | −0.02 ** | −0.01 | −0.01 | −0.01 | 0.01 | 0.01 |
Obesity | 0.02 ** | 0.02 ** | 0.02 ** | 0.03 *** | 0.03 *** | 0.03 *** | 0.02 *** | 0.02 *** | 0.02 *** |
Physical activity | −0.09 *** | −0.07 *** | −0.07 *** | −0.14 *** | −0.10 *** | −0.10 *** | −0.13 *** | −0.10 *** | −0.10 *** |
Newspaper | −0.06 *** | −0.06 *** | −0.06 *** | −0.04 *** | −0.07 *** | −0.05 *** | |||
Magazine | 0.01 | 0.01 | 0.01 | −0.01 | 0.01 | 0.01 | |||
Broadcast | 0.03 *** | 0.05 *** | 0.01 | 0.02 * | 0.02 *** | 0.05 *** | |||
Television | −0.11 *** | −0.13 *** | −0.08 *** | −0.10 *** | −0.09 *** | −0.13 *** | |||
Internet | −0.11 *** | −0.10 *** | −0.15 *** | −0.13 *** | −0.12 *** | −0.10 *** | |||
Cellphone | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | |||
Year (Time period) | 0.04 *** | 0.01 | −0.02 | −0.03 | 0.03 ** | −0.02 | |||
Newspaper*Year | 0.01 | −0.04 * | −0.04 *** | ||||||
Magazine*Year | 0.01 | 0.03 | 0.03 | ||||||
Broadcast*Year | −0.04 ** | −0.03 | −0.07 *** | ||||||
Television*Year | 0.07 ** | 0.08 *** | 0.15 *** | ||||||
Internet*Year | −0.02 | −0.03 * | −0.05 ** | ||||||
Cellphone*Year | 0.01 | −0.01 | −0.01 | ||||||
Adjusted R2 | 0.160 | 0.183 | 0.183 | 0.175 | 0.194 | 0.195 | 0.177 | 0.195 | 0.198 |
R2 change | 0.160 | 0.023 | 0.001 | 0.175 | 0.020 | 0.001 | 0.77 | 0.018 | 0.003 |
F | 467.193 *** | 89.975 *** | 3.276 ** | 547.582 *** | 80.405 *** | 5.116 *** | 565.152 *** | 73.536 *** | 15.976 *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Q.; Li, X. The Interactions of Media Use, Obesity, and Suboptimal Health Status: A Nationwide Time-Trend Study in China. Int. J. Environ. Res. Public Health 2021, 18, 13214. https://doi.org/10.3390/ijerph182413214
Liu Q, Li X. The Interactions of Media Use, Obesity, and Suboptimal Health Status: A Nationwide Time-Trend Study in China. International Journal of Environmental Research and Public Health. 2021; 18(24):13214. https://doi.org/10.3390/ijerph182413214
Chicago/Turabian StyleLiu, Qinliang, and Xiaojing Li. 2021. "The Interactions of Media Use, Obesity, and Suboptimal Health Status: A Nationwide Time-Trend Study in China" International Journal of Environmental Research and Public Health 18, no. 24: 13214. https://doi.org/10.3390/ijerph182413214
APA StyleLiu, Q., & Li, X. (2021). The Interactions of Media Use, Obesity, and Suboptimal Health Status: A Nationwide Time-Trend Study in China. International Journal of Environmental Research and Public Health, 18(24), 13214. https://doi.org/10.3390/ijerph182413214