Rethinking of Environmental Health Risks: A Systematic Approach of Physical—Social Health Vulnerability Assessment on Heavy-Metal Exposure through Soil and Vegetables
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.2.1. Heavy-Metal Pollution Data
2.2.2. Population Survey Data
2.3. Vulnerability Evaluation Method
2.3.1. Assessment of Physical Vulnerability
2.3.2. Social Vulnerability Index System
2.3.3. Environmental Health Vulnerability Assessment
3. Results
3.1. Physical Vulnerability Assessment
3.2. Social Vulnerability Assessment
3.3. Comprehensive Environmental Health Vulnerability Assessment
4. Discussion
4.1. Villages with High Values of Physical Vulnerability and Social Vulnerability Are Screened
4.2. Advantage of Establishing Physical and Social Vulnerability
4.3. Selected Village-Scale Dimension Applied to Draw Specific Contrasting Differences
4.4. Research Novelty and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
USEPA | U.S. Environmental Protection Agency |
EJ | Environmental justice |
CEHII | Cumulative Environmental Hazard Inequality Index |
EJSM | Environmental Justice Screening Method |
CCVSM | Climate Change Vulnerability Screening Method |
CEVA | Cumulative Environmental Vulnerability Assessment |
CalEnviroScreen | California Community Environmental Health Screening Tool |
Villages in polluted area: | |
WW | Weiwang, where sampling sites 1 and 2 were set |
JQ | Jinqiao, where sampling sites 3 and 4 were set |
WJZ | Wangjiazhuang, where sampling sites 5 and 6 were set |
LQ | Luoqiao, where sampling sites 7 and 8 were set |
HJ | Huajing, where sampling sites 9 and 10 were set |
CG | Chunguang, where sampling sites 11 and 12 were set |
CL | Changle, where sampling sites 13 and 14 were set |
GT | Guantang, where sampling sites 15 and 16 were set |
TN | Tuannao, where sampling sites 17 and 18 were set |
Villages in reference area: | |
SW | Shangwang, where sampling sites 19 and 20 were set |
ZS | Zhushan, where sampling sites 21 and 22 were set |
MS | Mingshan, where sampling sites 23 and 24 were set |
FD | Fandao, where sampling sites 25 and 26 were set |
WD | Wuduan, where sampling sites 27 and 28 were set |
YQ | Yangqiao, where sampling sites 29 and 30 were set |
SZ | Shangzhuang, where sampling sites 31 and 32 were set |
SV | Social vulnerability |
PV | Physical vulnerability |
SEC | Socioeconomic conditions |
EB | Receptor characteristics |
SS | Self-sensitivity |
HQv | Hazard quotients caused by vegetable intake |
HQo | Hazard quotients caused by soil ingestion |
HQd | Hazard quotients caused by dermal contact and inhalation |
HQi | Hazard quotients caused by inhalation |
RfDv | Corresponding reference dose for each toxic metal through the exposure pathway of vegetable intake |
RfDo | Corresponding reference dose for each toxic metal through the exposure pathway of soil ingestion |
RfDd | Corresponding reference dose for each toxic metal through the exposure pathway of dermal contact |
RfDi | Corresponding reference dose for each toxic metal through the exposure pathway of inhalation |
ADDv | Average daily dose from vegetable intake |
ADDo | Average daily dose from soil ingestion |
ADDd | Average daily dose from dermal contact |
ADDi | Average daily dose from inhalation |
Cv | Measured by the average heavy metals content of vegetables sampled in each village (mg/kg) |
Cs | Measured by the average heavy metal concentration of soils from two sample Sites in each village (mg/kg) |
IRv | Intake rate of vegetable (mg/day, m3/day) |
IRo | Ingestion rate of soil (mg/day, m3/day) |
IRb | Inhalation rate of soil (mg/day, m3/day) |
EF | Exposure frequency (day/year) |
ED | Exposure duration (year) |
BW | Average bodyweight of the exposed individual (kg) |
AT | Averaged contact time (day) |
PEF | Particle emission factor (m3/kg) |
SA | Exposed skin surface area (cm2) |
AF | Adherence factor (mg/m2·day) |
ABS | Dermal absorption factor (unitless) |
References
- Li, F.; Zhang, J.; Liu, C.; Xiao, M.; Wu, Z. Distribution, Bioavailability and Probabilistic Integrated Ecological Risk Assessment of Heavy Metals in Sediments from Honghu Lake, China. Process Saf. Environ. Prot. 2018, 116, 169–179. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention, U.S. The Fourth National Report on Human Exposure to Environmental Chemicals: Updated Tables. 2021. Available online: https://www.cdc.gov/exposurereport/index.html (accessed on 16 October 2021).
- Clark, R.S.; Pellom, S.T.; Booker, B.; Ramesh, A.; Zhang, T.; Shanker, A.; Maguire, M.; Juarez, P.; Matthews-Juarez, P.; Langston, M.; et al. Validation of research trajectory 1 of an Exposome framework: Exposure to benzo(a)pyrene confers enhanced susceptibility to bacterial infection. Environ. Res. 2016, 146, 173–184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Juarez, P.D.; Matthews-Juarez, P.; Hood, D.B.; Im, W.; Levine, R.S.; Kilbourne, B.J.; Langston, M.A.; Al-Hamdan, M.Z.; Crosson, W.L.; Estes, M.G.; et al. The public health exposome: A population-based, exposure science approach to health disparities research. Int. J. Environ. Res. Public Health 2014, 11, 12866–12895. [Google Scholar] [CrossRef]
- Shmool, J.L.; Kubzansky, L.D.; Newman, O.D.; Spengler, J.; Shepard, P.; Clougherty, J.E. Social Stressors and Air Pollution across New York City Communities: A Spatial Approach for Assessing Correlations Among Multiple Exposures. Environ. Health 2014, 13, 91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caradee, Y.W.; Eoseanne, D. Air Pollution and Vulnerability: Solving the Puzzle of Prioritization. J. Environ. Health 2011, 73, 56–64. [Google Scholar]
- Marie, S.O.; Michael, J.; Ichiro, K.; Jonathan, I.L.; Aaron, J.C.; Nelson, G.; Paul, W.; Tony, F.; Luis, C.; Joel, S. Workshop on Air Pollution and Socioeconomic Conditions. Health, wealth, and air pollution: Advancing theory and methods. Environ. Health Perspect. 2003, 111, 1861–1870. [Google Scholar] [CrossRef]
- Peter, L.D.; Gary, W.E.; Elaine, A.H.; Amy, D.K.; Rachel, A.M.; David, R.W. Vulnerability as a Function of Individual and Group Resources in Cumulative Risk Assessment. Environ. Health Perspect. 2007, 115, 817–824. [Google Scholar] [CrossRef]
- Ken, S. Cumulative Risk Assessment: An Overview of Methodological Approaches for Evaluating Combined Health Effects from Exposure to Multiple Environmental Stressors. Int. J. Environ. Res. Public Health 2012, 9, 370–390. [Google Scholar] [CrossRef]
- Valerie, G.Z.; Bradley, D.S. The EPA’s Human Exposure Research Program for Assessing Cumulative Risk in Communities. J. Expo. Sci. Environ. Epidemiol. 2010, 20, 351–358. [Google Scholar] [CrossRef] [Green Version]
- Risk Assessment Forum, U.S.; EPA. Framework for Cumulative Risk Assessment. 2003. Available online: https://www.epa.gov/sites/production/files/2014-11/documents/frmwrk_cum_risk_assmnt.pdf (accessed on 16 October 2021).
- Huang, G.; London, J.K. Cumulative Environmental Vulnerability and Environmental Justice in California’s San Joaquin Valley. Int. J. Environ. Res. Public Health 2012, 9, 1593–1608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ge, Y.; Yang, G.; Chen, Y.; Dou, W. Examining Social Vulnerability and Inequality: A Joint Analysis through a Connectivity Lens in the Urban Agglomerations of China. Sustainability 2019, 11, 1042. [Google Scholar] [CrossRef] [Green Version]
- Annemarie, E.; Norman, K.; Alfred, S. Urban Social Vulnerability Assessment with Physical Proxies and Spatial Metrics Derived from Air- and Spaceborne Imagery and GIS Data. Nat. Hazards 2009, 48, 275–294. [Google Scholar] [CrossRef]
- Wang, Z.; Qin, H.; Liu, X. Health Risk Assessment of Heavy Metals in the Soil-Water-Rice System Around the Xiazhuang Uranium Mine, China. Environ. Sci. Pollut. Res. Int. 2019, 26, 5904–5912. [Google Scholar] [CrossRef]
- Chukwuma, N.M.; Johnbosco, C.E. The Hydrogeochemical Signatures, Quality Indices and Health Risk Assessment of Water Resources in Umunya District, Southeast Nigeria. Appl. Water Sci. 2019, 9, 22. [Google Scholar] [CrossRef] [Green Version]
- Gina, M.S.; Rachel, M.F.; Lauren, Z.; John, B.F. Cumulative Environmental Impacts: Science and Policy to Protect Communities. Annu. Rev. Public Health 2016, 37, 83–96. [Google Scholar] [CrossRef] [Green Version]
- Audrius, D.; Auksė, M.; Regina, G. The Impact of Particulate Matter on Allergy Risk among Adults: Integrated Exposure Assessment. Environ. Sci. Pollut. Res. Int. 2019, 26, 10070–10082. [Google Scholar] [CrossRef]
- Jason, G.S.; Rachel, M.F.; Bill, M.J.; Amy, D.K.; Bhavna, S.; Michael, J. An Index for Assessing Demographic Inequalities in Cumulative Environmental Hazards with Application to Los Angeles, California. Environ. Sci. Technol. 2009, 43, 7626–7634. [Google Scholar] [CrossRef] [Green Version]
- Jason, G.S.; Michael, J.; Rachel, M.F.; Bill, M.J.; Amy, D.K. Inequalities in Cumulative Environmental Burdens among Three Urbanized Counties in California. Environ. Int. 2012, 40, 79–87. [Google Scholar] [CrossRef]
- Sadd, J.L.; Hall, E.S.; Pastor, M.; Morello-Frosch, R.A.; Lowe-Liang, D.; Hayes, J.; Swanson, C. Ground-Truthing Validation to Assess the Effect of Facility Locational Error on Cumulative Impacts Screening Tools. Geogr. J. 2015, 2015, 324683. [Google Scholar] [CrossRef] [Green Version]
- Sadd, J.L.; Morello-Frosch, R.A.; Pastor, M.; Matsuoka, M.; Prichard, M.; Carter, V. The Truth, the Whole Truth, and Nothing but the Ground-Truth: Methods to Advance Environmental Justice and Researcher-Community Partnerships. Health Educ. Behav. 2014, 41, 281–290. [Google Scholar] [CrossRef]
- English, P.; Richardson, M.; Morello-Frosh, R.; Pastor, M.; Sadd, J.; King, G.; Jesdale, W.; Jerrett, M. Racial and Income Disparities in Relation to a Proposed Climate Change Vulnerability Screening Method for California. Int. J. Clim. Chang. Impacts Responses 2013, 4, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Huang, G.; London, J.K. Mapping in and out of “Messes”: An adaptive, Participatory, and Transdisciplinary Approach to Assessing Cumulative Environmental Justice Impacts. Landsc. Urban Plan. 2016, 154, 57–67. [Google Scholar] [CrossRef] [Green Version]
- August, L.; Bangia, K.; Plummer, L.; Prasad, S.; Ranjbar, K.; Slocombe, A.; Wieland, W. California Communities Environmental Health Screening Tool, Version 4.0 (CalEnviroScreen 4.0): Guidance and Screening Tool; Office of Environmental Health Hazard Assessment: Sacramento, CA, USA, 2021. Available online: https://oehha.ca.gov/calenviroscreen/report/calenviroscreen-40 (accessed on 16 October 2021).
- Jiao, Y.; Bower, J.K.; Im, W.; Basta, N.; Obrycki, J.F.; Al-Hamdan, M.Z.; Wilder, A.; Bollinger, C.E.; Zhang, T.; Hatten, L.; et al. Application of Citizen Science Risk Communication Tools in a Vulnerable Urban Community. Int. J. Environ. Res. Public Health. 2016, 13, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Langston, M.A.; Levine, R.S.; Kilbourne, B.J.; Rogers, G.L.; Kershenbaum, A.D.; Baktash, S.H.; Coughlin, S.S.; Saxton, A.M.; Agboto, V.K.; Hood, D.B.; et al. Scalable combinatorial tools for health disparities research. Int. J. Environ. Res. Public Health. 2014, 11, 10419–10443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Juarez, P.D.; Hood, D.B.; Rogers, G.L.; Baktash, S.H.; Saxton, A.M.; Matthews-Juarez, P.; Im, W.; Cifuentes, M.P.; Phillips, C.A.; Lichtveld, M.Y.; et al. A novel approach to analyzing lung cancer mortality disparities: Using the exposome and a graph-theoretical toolchain. Environ. Dis. 2017, 2, 33–44. [Google Scholar] [CrossRef]
- Lettieri, G.; Marra, F.; Moriello, C.; Prisco, M.; Notari, T.; Trifuoggi, M.; Giarra, A.; Bosco, L.; Montano, L.; Piscopo, M. Molecular Alterations in Spermatozoa of a Family Case Living in the Land of Fires-A First Look at Possible Transgenerational Effects of Pollutants. Int. J. Mol. Sci. 2020, 21, 6710. [Google Scholar] [CrossRef]
- De Guglielmo, V.; Puoti, R.; Notariale, R.; Maresca, V.; Ausio, J.; Troisi, J.; Verrillo, M.; Basile, A.; Febbraio, F.; Piscopo, M. Alterations in the properties of sperm protamine-like II protein after exposure of Mytilus galloprovincialis (Lamarck 1819) to sub-toxic doses of cadmium. Ecotox. Environ. Saf. 2019, 169, 600–606. [Google Scholar] [CrossRef]
- Moon, J.Y.; Eom, S.Y.; Seo, J.W.; Lee, J.E.; Choi, B.S.; Kim, H.; Hong, Y.S.; Chang, J.Y.; Jeon, M.J.; Park, W.J.; et al. Effects of Exposure to Lead and Cadmium on Health of Inhabitants of Abandoned Metal Mine Area in Korea. Arch. Environ. Contam. Toxicol. 2021, 80, 490–498. [Google Scholar] [CrossRef]
- Neto, D.; Pereira, D.; Dias, N.; de Souza, S.; Teixeira, A.; de Lima, W.; Ramos, J.; do Amarante, B.; Fernandes, R. Environmental and human health risks of arsenic in gold mining areas in the eastern Amazon. Environ. Pollut. 2020, 265, 114969. [Google Scholar] [CrossRef]
- Kumar, V.; Parihar, D.; Sharma, A.; Bakshi, P.; Sidhu, S.; Bali, S.; Karaouzas, L.; Bhardwaj, R.; Thukral, K.; Gyasi-Agyei, Y.; et al. Global evaluation of heavy metal content in surface water bodies: A meta-analysis using heavy metal pollution indices and multivariate statistical analyses. Chemosphere 2019, 236, 124364. [Google Scholar] [CrossRef]
- Liu, X.M.; Song, Q.; Tang, Y.; Li, W.; Xu, J.; Wu, J.; Wang, F.; Brookes, C. Human health risk assessment of heavy metals in soil-vegetable system: A multi-medium analysis. Sci. Total Environ. 2013, 463, 530–540. [Google Scholar] [CrossRef] [PubMed]
- Obrycki, J.F.; Serafini, T.; Hood, D.B.; Alexander, C.; Blais, P.; Basta, N.T. Using Public Health Data for Soil Pb Hazard Management in Ohio. J. Public Health Manag. Pract. 2018, 24, 18–24. [Google Scholar] [CrossRef]
- Dong, W.Q.Y.; Cui, Y.; Liu, X. Instances of Soil and Crop Heavy Metal Contamination in China. Soil Sediment. Contam. 2010, 10, 497–510. [Google Scholar] [CrossRef]
- Zheng, L.; Liu, X.; Tang, Q.; Ou, J. Lead Pollution and Isotope Tracing of Surface Sediments in the Huainan Panji Coal Mining Subsidence Area, Anhui, China. Bull. Environ. Contam. Toxicol. 2019, 103, 10–15. [Google Scholar] [CrossRef]
- Li, F.; Zhang, J.; Jiang, W.; Liu, C.; Zhang, Z.; Zhang, C.; Zeng, G. Spatial Health Risk Assessment and Hierarchical Risk Management for Mercury in Soils from a Typical Contaminated Site, China. Environ. Geochem. Health. 2017, 39, 923–934. [Google Scholar] [CrossRef] [PubMed]
- Gurung, B.; Race, M.; Fabbricino, M.; Kominkova, D.; Libralato, G.; Siciliano, A.; Guida, M. Assessment of Metal Pollution in the Lambro Creek (Italy). Ecotoxicol. Environ. Saf. 2018, 148, 754–762. [Google Scholar] [CrossRef]
- Saxena, G.; Purchase, D.; Mulla, S.I.; Saratale, G.D.; Bharagava, R.N. Phytoremediation of Heavy Metal-Contaminated Sites: Eco-environmental Concerns, Field Studies. Sustainability Issues, and Future Prospects. Rev. Environ. Contam. Toxicol. 2020, 249, 71–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, F.; Zhang, J.; Liu, W.; Liu, J.; Huang, J.; Zeng, G. An Exploration of an Integrated Stochastic-Fuzzy Pollution Assessment for Heavy Metals in Urban Topsoil Based on Metal Enrichment and Bioaccessibility. Sci. Total Environ. 2018, 644, 649–660. [Google Scholar] [CrossRef] [PubMed]
- Fei, X.; Lou, Z.; Christakos, G.; Ren, Z.; Liu, Q.; Lv, X. The Association Between Heavy Metal Soil Pollution and Stomach Cancer: A Case Study in Hangzhou City, China. Environ. Geochem. Health 2018, 40, 2481–2490. [Google Scholar] [CrossRef]
- Jarup, L. Hazards of Heavy Metal Contamination. Br. Med. Bull. 2003, 68, 167–182. [Google Scholar] [CrossRef] [Green Version]
- Giller, K.E.; McGrath, S.P. Pollution by Toxic Metals on Agricultural Soils. Nature 1988, 335, 676. [Google Scholar] [CrossRef]
- Rodrigues, S.M.; Cruz, N.; Coelho, C.; Henriques, B.; Carvalho, L.; Duarte, A.C.; Pereira, E.; Romkens, P.F. Risk Assessment for Cd, Cu, Pb and Zn in Urban Soils: Chemical Availability as the Central Concept. Environ. Pollut. 2013, 183, 234–242. [Google Scholar] [CrossRef]
- Rana, M.N.; Tangpong, J.; Rahman, M.M. Toxicodynamics of Lead, Cadmium, Mercury and Arsenic-Induced Kidney Toxicity and Treatment Strategy: A Mini Review. Toxicol. Rep. 2018, 5, 704–713. [Google Scholar] [CrossRef]
- He, B.; Yun, Z.; Shi, J.; Jiang, G. Research Progress of Heavy Metal Pollution in China: Sources, Analytical Methods, Status, and Toxicity. Chin. Sci. Bull. 2012, 58, 134–140. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Ma, S.; Zhou, J.; Song, Y.; Li, F. Heavy Metal Contamination in Soils and Vegetables and Health Risk Assessment of Inhabitants in Daye, China. J. Int. Med. Res. 2018, 46, 3374–3387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gabor, T.; Terri, K.G. The Assessment of Community Vulnerability to Acute Hazardous Materials Incidents. J. Hazard. Mater. 1980, 3, 323–333. [Google Scholar] [CrossRef] [Green Version]
- Xie, X.; Zu, W.; Liu, X.; Peng, X. Environmental Risk Management of Sudden Accident Based on Vulnerability Assessment. Environ. Pollut. Control. 2013, 35, 92–96. [Google Scholar] [CrossRef]
- Lievanos, R.S. Retooling CalEnviroScreen: Cumulative Pollution Burden and Race-Based Environmental Health Vulnerabilities in California. Int. J. Environ. Res. Public Health 2018, 15, 762. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Cai, Y.; Zhang, J. Spatial Characteristics, Health Risk Assessment and Sustainable Management of Heavy Metals and Metalloids in Soils from Central China. Sustainability 2018, 10, 91. [Google Scholar] [CrossRef] [Green Version]
- Tobias, W.; Marc, K.; Eva, N. Needs, Comparisons, and Adaptation: The Importance of Relative Income for Life Satisfaction. Eur. Sociol. Rev. 2013, 29, 86–104. [Google Scholar] [CrossRef]
- Sheng, X.; Wang, Y.; Hong, W.; Zhu, Z.; Zhang, X. The Curvilinear Relationship Between Daily Time Pressure and Work Engagement: The Role of Psychological Capital and Sleep. Int. J. Stress Manag. 2019, 26, 25–35. [Google Scholar] [CrossRef]
- Elliott, C.F.; Kairuo, W.; Melissa, A.; Michael, A.G.; Dawei, X.; Charles, C.B.; Nalaka, S.G. Sleep Debt at the Community Level: Impact of Age, Sex, Race/Ethnicity and Health. Sleep Health 2018, 4, 317–324. [Google Scholar] [CrossRef]
- Carpenter, M.G.; Adkin, A.L.; Brawley, L.R.; Frank, J.S. Postural, Physiological and Psychological Reactions to Challenging Balance: Does Age Make a Difference? Age Ageing 2006, 35, 298–303. [Google Scholar] [CrossRef] [Green Version]
- Che, Y.; Li, X. Retirement and Health: Evidence from China. China Econ. Rev. 2018, 49, 84–95. [Google Scholar] [CrossRef]
- YoungHo, K.; InKyoung, P.; SooJin, K. Age and Gender Differences in Health Risk Perception. Cent. Eur. J. Public Health 2018, 26, 54–59. [Google Scholar] [CrossRef]
- Phillips, S.P. Including Gender in Public Health Research. Public Health Rep. 2011, 126, 16–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tachibanaki, T. Education and Income Distribution. Int. Encycl. Soc. Behav. Sci. 2001, 45, 4186–4189. [Google Scholar] [CrossRef]
- Li, X.; Guan, H. The Impact of Education Input on Labor Migration and Inequality in China. China Econ. 2018, 13, 92–107. [Google Scholar] [CrossRef]
- Berghella, A.M.; Contasta, I.; Del Beato, T.; Pellegrini, P. The Discovery of How Gender Influences Age Immunological Mechanisms in Health and Disease, and the Identification of Ageing Gender-Specific Biomarkers, Could Lead to Specifically Tailored Treatment and Ultimately Improve Therapeutic Success Rates. Immun. Ageing 2012, 9, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Parameter | Symbol | Units | Distribution |
---|---|---|---|
Vegetable intake rate | IRv | mg/day | 153.84 1 |
Soil ingestion rate | IRo | mg/day | 100 |
Soil inhalation rate | IRb | m3/day | 20 |
Exposure frequency | EFv and EF | day/year | 365 and 350 |
Exposure duration | ED | year | 24 |
Body weight | BW | kg | 58.53 1 |
Averaged contact time | AT | day | ED × 365 |
Particle emission factor | PEF | m3/kg | 1.36 × 109 |
Dermal absorption factor | ABS | unitless | 0.001 |
Skin surface area | SA | cm2 | 5218.3 2 |
Adherence factor | AF | mg/m2·day | 0.07 |
Aspects | Indicators | Indicators Explanation | Quantization Method | Weight |
---|---|---|---|---|
Socioeconomic conditions (SEC) 0.343 | Education | Divided into 6 categories: undergraduate or above, junior college, secondary school or high school, junior high school, primary school and below, and others | Ratio of qualifications below senior high school | 0.109 |
Occupation Structure | Divided into 7 categories: agriculture, industry and mining, construction, housewives, self-employed, students, and others | Ratio of occupations with more exposure to heavy-metal pollution | 0.117 | |
Income | Per capita disposable income | Ratio of households below average income | 0.117 | |
Receptor characteristics (EB) 0.357 | Working conditions | Divided into three categories: good, medium, and poor | Ratio of people in relatively poorer working conditions | 0.128 |
Labor intensity | Divided into three categories: high, medium, and low | Ratio of people with relatively higher labor intensity | 0.086 | |
Working time | - | Ratio of people working more than 8 h | 0.078 | |
Sleeping time | - | Ratio of people suffering from deficient sleeping time | 0.065 | |
Self-sensitivity (SS) 0.300 | Gender | Males and females | Female ratio | 0.086 |
Age | - | Percentage of people younger than 14 or older than 65 | 0.105 | |
Disease Situation | Divided into two categories: people who have suffered from disease and those who have not | Percentage of people who have suffered from chronic or major diseases | 0.109 |
Village | HI | Pollution Hazard Index for Different Exposure Pathways | Pollution Hazard Index for Different Heavy Metals | |||||||
---|---|---|---|---|---|---|---|---|---|---|
HQo | HQd (10−4) | HQi (10−6) | HQv | HICu | HIZn | HIAs | HICd | HIPb | ||
SW | 0.86 | 0.05 | 4.48 | 1.28 | 0.81 | 0.19 | 0.07 | 0.42 | 0.09 | 0.09 |
ZS | 1.75 | 0.04 | 3.69 | 1.04 | 1.71 | 0.17 | 0.07 | 1.27 | 0.14 | 0.11 |
MS | 0.52 | 0.07 | 4.66 | 1.72 | 0.45 | 0.16 | 0.05 | 0.16 | 0.05 | 0.10 |
FD | 0.57 | 0.06 | 4.42 | 1.45 | 0.51 | 0.12 | 0.09 | 0.13 | 0.16 | 0.07 |
WD | 0.74 | 0.06 | 4.89 | 1.67 | 0.68 | 0.20 | 0.08 | 0.34 | 0.09 | 0.04 |
YQ | 1.55 | 0.04 | 3.29 | 8.79 | 1.51 | 0.12 | 0.07 | 1.07 | 0.14 | 0.15 |
SZ | 1.01 | 0.07 | 5.32 | 1.76 | 0.94 | 0.16 | 0.07 | 0.58 | 0.11 | 0.09 |
GT | 4.05 | 0.29 | 17.9 | 7.86 | 3.76 | 0.19 | 0.07 | 3.54 | 0.10 | 0.14 |
CL | 2.41 | 0.12 | 15.6 | 2.65 | 2.29 | 0.23 | 0.08 | 1.22 | 0.84 | 0.03 |
CG | 2.37 | 0.19 | 19.5 | 4.55 | 2.18 | 0.26 | 0.07 | 1.32 | 0.55 | 0.16 |
HJ | 2.52 | 0.17 | 17.9 | 4.34 | 2.34 | 0.27 | 0.09 | 1.38 | 0.62 | 0.16 |
WJZ | 3.87 | 0.10 | 8.25 | 2.41 | 3.78 | 0.35 | 0.09 | 2.76 | 0.40 | 0.27 |
WW | 8.55 | 0.14 | 18.2 | 3.14 | 8.41 | 0.36 | 0.13 | 6.40 | 1.32 | 0.34 |
JQ | 7.30 | 0.12 | 12.4 | 2.88 | 7.18 | 0.35 | 0.17 | 3.91 | 2.30 | 0.58 |
LQ | 3.86 | 0.09 | 7.26 | 2.29 | 3.77 | 0.37 | 0.15 | 2.46 | 0.31 | 0.57 |
TN | 1.02 | 0.07 | 5.24 | 1.92 | 0.94 | 0.26 | 0.05 | 0.58 | 0.10 | 0.03 |
Village | Social Vulnerability | Total SV Score | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Socioeconomic Conditions (SEC) | SEC Composite Score | Behavior Characteristics (BE) | RE Composite Score | Self-Sensitivity (SS) | SS Composite Score | |||||||||
Education | Occupation Structure | Income | Working Conditions | Labor Intensity | Working Time | Sleeping Time | Gender | Age | Disease Situation | |||||
SW | 0.09 | 0.08 | 0.12 | 0.29 | 0.13 | 0.09 | 0.04 | 0.03 | 0.28 | 0.03 | 0.04 | 0.05 | 0.12 | 0.69 |
ZS | 0.09 | 0.09 | 0.07 | 0.25 | 0.11 | 0.07 | 0.02 | 0.03 | 0.23 | 0.01 | 0.05 | 0.05 | 0.11 | 0.59 |
MS | 0.11 | 0.11 | 0.09 | 0.31 | 0.02 | 0.06 | 0.07 | 0.05 | 0.20 | 0.01 | 0.05 | 0.07 | 0.13 | 0.64 |
FD | 0.05 | 0.09 | 0.05 | 0.19 | 0.08 | 0.08 | 0.03 | 0.06 | 0.25 | 0.07 | 0.08 | 0.11 | 0.25 | 0.69 |
WD | 0.02 | 0.00 | 0.02 | 0.04 | 0.06 | 0.04 | 0.08 | 0.05 | 0.24 | 0.00 | 0.00 | 0.07 | 0.07 | 0.35 |
YQ | 0.03 | 0.08 | 0.05 | 0.15 | 0.07 | 0.04 | 0.03 | 0.05 | 0.19 | 0.01 | 0.03 | 0.06 | 0.11 | 0.45 |
SZ | 0.00 | 0.10 | 0.04 | 0.14 | 0.00 | 0.03 | 0.04 | 0.03 | 0.09 | 0.01 | 0.03 | 0.07 | 0.11 | 0.34 |
GT | 0.02 | 0.07 | 0.12 | 0.20 | 0.07 | 0.06 | 0.02 | 0.04 | 0.19 | 0.03 | 0.06 | 0.06 | 0.15 | 0.54 |
CL | 0.11 | 0.03 | 0.09 | 0.23 | 0.02 | 0.04 | 0.06 | 0.03 | 0.14 | 0.00 | 0.06 | 0.05 | 0.11 | 0.49 |
CG | 0.02 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 0.04 | 0.03 | 0.07 | 0.04 | 0.02 | 0.05 | 0.10 | 0.19 |
HJ | 0.03 | 0.03 | 0.05 | 0.11 | 0.01 | 0.03 | 0.02 | 0.02 | 0.08 | 0.04 | 0.03 | 0.07 | 0.15 | 0.33 |
WJZ | 0.06 | 0.07 | 0.07 | 0.20 | 0.00 | 0.04 | 0.03 | 0.06 | 0.12 | 0.05 | 0.03 | 0.06 | 0.13 | 0.46 |
WW | 0.05 | 0.03 | 0.06 | 0.14 | 0.02 | 0.00 | 0.00 | 0.00 | 0.02 | 0.07 | 0.06 | 0.07 | 0.19 | 0.36 |
JQ | 0.09 | 0.01 | 0.07 | 0.17 | 0.07 | 0.06 | 0.03 | 0.05 | 0.22 | 0.05 | 0.03 | 0.00 | 0.07 | 0.46 |
LQ | 0.09 | 0.12 | 0.09 | 0.30 | 0.05 | 0.02 | 0.05 | 0.07 | 0.18 | 0.09 | 0.11 | 0.10 | 0.29 | 0.77 |
TN | 0.03 | 0.08 | 0.09 | 0.20 | 0.09 | 0.02 | 0.00 | 0.04 | 0.15 | 0.04 | 0.03 | 0.07 | 0.15 | 0.50 |
Correlation Index | Education | Occupation Structure | Income | Working Condition | Labor Intensity | Working Time | Sleeping Time | Gender | Age | Disease Situation | |
---|---|---|---|---|---|---|---|---|---|---|---|
Education | Pearson Correlation | 1 | 0.217 | 0.531 1 | 0.223 | 0.414 | 0.278 | 0.179 | 0.055 | 0.453 | −0.215 |
Significance (bilateral) | 0.419 | 0.034 | 0.406 | 0.111 | 0.297 | 0.507 | 0.840 | 0.078 | 0.424 | ||
Occupation | Pearson Correlation | 0.217 | 1 | 0.490 | 0.250 | 0.331 | −0.050 | 0.387 | 0.117 | 0.557 1 | 0.504 1 |
Significance (bilateral) | 0.419 | 0.054 | 0.350 | 0.210 | 0.855 | 0.139 | 0.666 | 0.025 | 0.046 | ||
Income | Pearson Correlation | 0.531 1 | 0.490 | 1 | 0.453 | 0.474 | −0.147 | 0.093 | 0.073 | 0.474 | −0.066 |
Significance (bilateral) | 0.034 | 0.054 | 0.078 | 0.064 | 0.588 | 0.732 | 0.787 | 0.063 | 0.808 | ||
working | Pearson Correlation | 0.223 | 0.250 | 0.453 | 1 | 0.647 2 | −0.182 | 0.157 | −0.030 | 0.118 | −0.088 |
Significance (bilateral) | 0.406 | 0.350 | 0.078 | 0.007 | 0.501 | 0.562 | 0.913 | 0.664 | 0.746 | ||
Labor Intensity | Pearson Correlation | 0.414 | 0.331 | 0.474 | 0.647 2 | 1 | 0.183 | 0.305 | −0.233 | 0.110 | −0.120 |
Significance (bilateral) | 0.111 | 0.210 | 0.064 | 0.007 | 0.497 | 0.251 | 0.386 | 0.686 | 0.658 | ||
Working Time | Pearson Correlation | 0.278 | −0.050 | −0.147 | −0.182 | 0.183 | 1 | 0.411 | −0.427 | −0.086 | 0.057 |
Significance (bilateral) | 0.297 | 0.855 | 0.588 | 0.501 | 0.497 | 0.113 | 0.099 | 0.750 | 0.835 | ||
Sleeping Time | Pearson Correlation | 0.179 | 0.387 | 0.093 | 0.157 | 0.305 | 0.411 | 1 | 0.183 | 0.234 | 0.239 |
Significance (bilateral) | 0.507 | 0.139 | 0.732 | 0.562 | 0.251 | 0.113 | 0.498 | 0.384 | 0.372 | ||
Gender | Pearson Correlation | 0.055 | 0.117 | 0.073 | −0.030 | −0.233 | −0.427 | 0.183 | 1 | 0.576 1 | 0.339 |
Significance (bilateral) | 0.840 | 0.666 | 0.787 | 0.913 | 0.386 | 0.099 | 0.498 | 0.020 | 0.200 | ||
Age | Pearson Correlation | 0.453 | 0.557 1 | 0.474 | 0.118 | 0.110 | −0.086 | 0.234 | 0.576 1 | 1 | 0.502 1 |
Significance (bilateral) | 0.078 | 0.025 | 0.063 | 0.664 | 0.686 | 0.750 | 0.384 | 0.020 | 0.048 | ||
Disease Situation | Pearson Correlation | −0.215 | 0.504 1 | −0.066 | −0.088 | −0.120 | 0.057 | 0.239 | 0.339 | 0.502 1 | 1 |
Significance (bilateral) | 0.424 | 0.046 | 0.808 | 0.746 | 0.658 | 0.835 | 0.372 | 0.200 | 0.048 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.; Ma, S.; Song, Y.; Li, F.; Zhou, J. Rethinking of Environmental Health Risks: A Systematic Approach of Physical—Social Health Vulnerability Assessment on Heavy-Metal Exposure through Soil and Vegetables. Int. J. Environ. Res. Public Health 2021, 18, 13379. https://doi.org/10.3390/ijerph182413379
Yang J, Ma S, Song Y, Li F, Zhou J. Rethinking of Environmental Health Risks: A Systematic Approach of Physical—Social Health Vulnerability Assessment on Heavy-Metal Exposure through Soil and Vegetables. International Journal of Environmental Research and Public Health. 2021; 18(24):13379. https://doi.org/10.3390/ijerph182413379
Chicago/Turabian StyleYang, Jun, Silu Ma, Yongwei Song, Fei Li, and Jingcheng Zhou. 2021. "Rethinking of Environmental Health Risks: A Systematic Approach of Physical—Social Health Vulnerability Assessment on Heavy-Metal Exposure through Soil and Vegetables" International Journal of Environmental Research and Public Health 18, no. 24: 13379. https://doi.org/10.3390/ijerph182413379
APA StyleYang, J., Ma, S., Song, Y., Li, F., & Zhou, J. (2021). Rethinking of Environmental Health Risks: A Systematic Approach of Physical—Social Health Vulnerability Assessment on Heavy-Metal Exposure through Soil and Vegetables. International Journal of Environmental Research and Public Health, 18(24), 13379. https://doi.org/10.3390/ijerph182413379