Attitudes towards Risk Prediction in a Help Seeking Population of Early Detection Centers for Mental Disorders—A Qualitative Approach
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Overall Attitudes towards Risk Prediction
3.2. Motives
3.2.1. Motives for an Approval of Predictive Measures
3.2.2. Motives for a Conditional Approval of Predictive Measures
3.2.3. Motives for a Rejection of Predictive Measures
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huys, Q.J.M.; Maia, T.V.; Frank, M.J. Computational psychiatry as a bridge from neuroscience to clinical applications. Nat. Neurosci. 2016, 19, 404–413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Solis, M. Prevention: Before the break. Nat. Cell Biol. 2014, 508, S12–S13. [Google Scholar] [CrossRef] [PubMed]
- Stewart, R.; Davis, K. ‘Big data’ in mental health research: Current status and emerging possibilities. Soc. Psychiatry Psychiatr. Epidemiol. 2016, 51, 1055–1072. [Google Scholar] [CrossRef] [Green Version]
- Chung, Y.; Allswede, D.; Addington, J.; Bearden, C.E.; Kelsven, S.; Cornblatt, B.; Mathalon, D.H.; McGlashan, T.; Perkins, D.; Seidman, L.J.; et al. Cortical abnormalities in youth at clinical high-risk for psychosis: Findings from the NAPLS2 cohort. NeuroImage Clin. 2019, 23, 101862. [Google Scholar] [CrossRef] [PubMed]
- Tognin, S.; Van Hell, H.H.; Merritt, K.; Rossum, I.W.-V.; Bossong, M.G.; Kempton, M.J.; Modinos, G.; Fusar-Poli, P.; Mechelli, A.; Dazzan, P.; et al. Towards Precision Medicine in Psychosis: Benefits and Challenges of Multimodal Multicenter Studies—PSYSCAN: Translating Neuroimaging Findings From Research into Clinical Practice. Schizophr. Bull. 2020, 46, 432–441. [Google Scholar] [CrossRef]
- Koutsouleris, N.; Kambeitz-Ilankovic, L.; Ruhrmann, S.; Rosen, M.; Ruef, A.; Dwyer, D.B.; Paolini, M.; Chisholm, K.; Kambeitz, J.; Haidl, T.; et al. Prediction Models of Functional Outcomes for Individuals in the Clinical High-Risk State for Psychosis or With Recent-Onset Depression: A multimodal, multisite machine learning analysis. JAMA Psychiatry 2018, 75, 1156–1172. [Google Scholar] [CrossRef] [Green Version]
- Klosterkotter, J.; Schultze-Lutter, F.; Bechdolf, A.; Ruhrmann, S. Prediction and prevention of schizophrenia: What has been achieved and where to go next? World Psychiatry 2011, 10, 165–174. [Google Scholar] [CrossRef] [Green Version]
- Bernardini, F.; Attademo, L.; Cleary, S.D.; Luther, C.; Shim, R.S.; Quartesan, R.; Compton, M.T. Risk Prediction Models in Psychiatry: Toward a New Frontier for the Prevention of Mental Illnesses. J. Clin. Psychiatry 2017, 78, 572–583. [Google Scholar] [CrossRef]
- Ruhrmann, S.; Schultze-Lutter, F.; Schmidt, S.J.; Kaiser, N.; Klosterkötter, J. Prediction and prevention of psychosis: Current progress and future tasks. Eur. Arch. Psychiatry Clin. Neurosci. 2014, 264, 9–16. [Google Scholar] [CrossRef]
- Radden, J. Public Mental Health and Prevention. Public Health Ethic 2017, 11, 126–138. [Google Scholar] [CrossRef]
- Jorm, A.F.; Mulder, R.T. Prevention of mental disorders requires action on adverse childhood experiences. Aust. N. Z. J. Psychiatry 2018, 52, 316–319. [Google Scholar] [CrossRef] [PubMed]
- Beam, A.L.; Kohane, I.S. Big Data and Machine Learning in Health Care. JAMA 2018, 319, 1317–1318. [Google Scholar] [CrossRef] [PubMed]
- Knoppers, B.M.; Thorogood, A. Ethics and Big Data in health. Curr. Opin. Syst. Biol. 2017, 4, 53–57. [Google Scholar] [CrossRef]
- Lawrie, S.M.; Fletcher-Watson, S.; Whalley, H.C.; McIntosh, A.M. Predicting major mental illness: Ethical and practical considerations. BJPsych Open 2019, 5, e30. [Google Scholar] [CrossRef] [Green Version]
- Sørensen, K.; Broucke, S.V.D.; Pelikan, J.M.; Fullam, J.; Doyle, G.; Slonska, Z.; Kondilis, B.; Stoffels, V.; Osborne, R.H.; Brand, H. Measuring health literacy in populations: Illuminating the design and development process of the European Health Literacy Survey Questionnaire (HLS-EU-Q). BMC Public Health 2013, 13, 948. [Google Scholar] [CrossRef] [Green Version]
- Nutbeam, D. Health literacy as a public health goal: A challenge for contemporary health education and communication strategies into the 21st century. Health Promot. Int. 2000, 15, 259–267. [Google Scholar] [CrossRef] [Green Version]
- Illės, F.; Rietz, C.; Fuchs, M.; Ohlraun, S.; Prell, K.; Rudinger, G.; Maier, W.; Rietschel, M. Einstellung zu psychiatrisch-genetischer Forschung und prädiktiver Diagnostik. Ethik Med. 2003, 15, 268–281. [Google Scholar] [CrossRef]
- Mantell, P.K.; Baumeister, A.; Christ, H.; Ruhrmann, S.; Woopen, C. Peculiarities of health literacy in people with mental disorders: A cross-sectional study. Int. J. Soc. Psychiatry 2019, 66, 10–22. [Google Scholar] [CrossRef]
- Hautzinger, M.; Keller, F.; Kühner, C. Das Beck Depressionsinventar II: Deutsche Bearbeitung und Handbuch zum BDI II [The Beck Depression Inventory II: German Processing and Handbook for the BDI II]; Harcourt Test Services: Frankfurt, Germany, 2006. [Google Scholar]
- Green, J.; Thorogood, N. Qualitative Methods for Health Research, 4th ed.; SAGE Publications Ltd.: London, UK, 2004; ISBN 978-1473997110. [Google Scholar]
- Mayring, P. Qualitative Inhaltsanalyse. Grundlagen und Techniken, 12th ed.; Beltz (Beltz Pädagogik): Weinheim, Germany, 2015; Available online: http://content-select.com/index.php?id=bib_view&ean=9783407293930 (accessed on 15 July 2020).
- Flick, U. An Introduction to Qualitative Research, 6th ed.; Sage Publications Ltd.: London, UK, 2018; p. 459. ISBN 978-1-5264-4564-3. [Google Scholar]
- Guest, G.; Namey, E.; McKenna, K. How Many Focus Groups Are Enough? Building an Evidence Base for Nonprobability Sample Sizes. Field Methods 2016, 29, 3–22. [Google Scholar] [CrossRef]
- Flick, U. Qualitative Meta-Analysis. In The SAGE Handbook of Qualitative Data Analysis; Sage Publications Ltd.: London, UK, 2013; pp. 485–487. ISBN 978-1-4462-0898-4. [Google Scholar]
- VERBI Software. MAXQDA 2018. Software. 2017. Available online: maxqda.com (accessed on 9 December 2020).
- Rädiker, S.; Kuckartz, U. Analyse Qualitativer Daten mit MAXQDA; Springer Fachmedien Wiesbaden: Wiesbaden, Germany, 2019; ISBN 978-3-658-22095-2. [Google Scholar]
- Clausen, W.; Watanabe-Galloway, S.; Baerentzen, M.B.; Britigan, D.H. Health Literacy Among People with Serious Mental Illness. Commun. Ment. Health J. 2016, 52, 399–405. [Google Scholar] [CrossRef]
- Friis, K.; Pedersen, M.H.; Aaby, A.; Lasgaard, M.; Maindal, H.T. Impact of low health literacy on healthcare utilization in individuals with cardiovascular disease, chronic obstructive pulmonary disease, diabetes and mental disorders. A Danish population-based 4-year follow-up study. Eur. J. Public Health 2020, 30, 866–872. [Google Scholar] [CrossRef]
- Degan, T.J.; Kelly, P.J.; Robinson, L.D.; Deane, F.P.; Wolstencroft, K.; Turut, S.; Meldrum, R. Health literacy in people living with mental illness: A latent profile analysis. Psychiatry Res. 2019, 280, 112499. [Google Scholar] [CrossRef] [PubMed]
- Blakeslee, S.B.; McCaskill-Stevens, W.; Parker, P.A.; Gunn, C.M.; Bandos, H.; Bevers, T.B.; Battaglia, T.A.; Fagerlin, A.; Müller-Nordhorn, J.; Holmberg, C. Deciding on breast cancer risk reduction: The role of counseling in individual decision-making—A qualitative study. Patient Educ. Couns. 2017, 100, 2346–2354. [Google Scholar] [CrossRef] [PubMed]
- Webster, R.; Heeley, E. Perceptions of risk: Understanding cardiovascular disease. Health Policy Politi de Sante 2010, 3, 49–60. [Google Scholar] [CrossRef] [Green Version]
- Markowitz, S.M.; Park, E.R.; Delahanty, L.M.; O’Brien, K.E.; Grant, R.W. Perceived Impact of Diabetes Genetic Risk Testing Among Patients at High Phenotypic Risk for Type 2 Diabetes. Diabetes Care 2011, 34, 568–573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anglin, D.M.; Greenspoon, M.I.; Lighty, Q.; Corcoran, C.M.; Yang, L.H. Spontaneous labelling and stigma associated with clinical characteristics of peers ‘at-risk’ for psychosis. Early Interv. Psychiatry 2013, 8, 247–252. [Google Scholar] [CrossRef] [Green Version]
- Schultze-Lutter, F.; Michel, C.; Klosterkötter, J. Nutzen-Risiko-Abschätzung bei der Prävention psychischer Störungen. In Handbuch Präventive Psychiatrie. Forschung—Lehre—Versorgung, 1st ed.; Klosterkötter, J., Maier, W., Eds.; Schattauer: Stuttgart, Germany, 2017; pp. 399–417. ISBN 978-3-608-43050-9. [Google Scholar]
- Rüsch, N.; Corrigan, P.; Heekeren, K.; Theodoridou, A.; Dvorsky, D.; Metzler, S.; Mueller, M.; Walitza, S.; Rossler, W. Well-Being Among Persons at Risk of Psychosis: The Role of Self-Labeling, Shame, and Stigma Stress. Psychiatr. Serv. 2014, 65, 483–489. [Google Scholar] [CrossRef]
- Rüsch, N.; Heekeren, K.; Theodoridou, A.; Mueller, M.; Corrigan, P.; Mayer, B.; Metzler, S.; Dvorsky, D.; Walitza, S.; Rossler, W. Stigma as a stressor and transition to schizophrenia after one year among young people at risk of psychosis. Schizophr. Res. 2015, 166, 43–48. [Google Scholar] [CrossRef]
- Lawson, N.D. “To Be a Good Lawyer, One Has to Be a Healthy Lawyer”: Lawyer Well-Being, Discrimination, and Discretionary Systems of Discipline. SSRN Electron. J. 2020, 34. [Google Scholar] [CrossRef]
- Institute of Medicine (US) Committee on Health Research and the Privacy of Health Information: The HIPAA Privacy Rule. In Beyond the HIPAA Privacy Rule: Enhancing Privacy, Improving Health through Research, 1st ed.; Nass, S.J.; Gostin, L.O. (Eds.) National Academies Press (US): Washington, DC, USA, 2009; Volume 80. [Google Scholar]
- Whiting, P.; Davenport, C.; Jameson, C.; Burke, M.; Sterne, J.A.C.; Hyde, C.; Ben-Shlomo, Y. How well do health professionals interpret diagnostic information? A systematic review. BMJ Open 2015, 5, e008155. [Google Scholar] [CrossRef] [Green Version]
Study Participants (N = 269) | |
Age, years, mean (SD) | 24.75 (5.3) |
(min–max) | (15 to 41 years) |
≤18 years, no. (%) | 21 (7.8) |
19 to 25 years, no. (%) | 139 (51.7) |
26 to 30 years, no. (%) | 69 (25.7) |
31 to 41 years, no. (%) | 40 (14.9) |
n = 269 | |
Sex | |
Female, no. (%) | 105 (39.0) |
Male, no. (%) No information | 163 (60.6) 1 (0.4) |
n = 269 | |
Educational degree | |
No degree/lower secondary education (“Hauptschulabschluss”), no. (%) | 25 (9.3) |
Medium secondary education (“Mittlere Reife”), no. (%) | 58 (21.6) |
Upper secondary education (“(Fach-) Hochschulreife”), no. (%) | 133 (49.4) |
≥ University degree, no. (%) Unknown | 52 (19.3) 1 (0.4) |
n = 269 | |
Migration background | |
Yes, no. (%) No, no. (%) Not specified by participant | 126 (46.8) 105 (39.0) 38 (14.2) |
n = 269 | |
Psychopathology (according to ICD-10) 1 | |
Depressive disorders, no. (%) | 104 (38.6) |
Schizophrenia, schizotypal and delusional disorders, no. (%) | 48 (17.8) |
Neurotic, stress-related and somatoform disorders, no. (%) | 37 (13.8) |
Others No diagnosis unclear | 45 (16.7) 6 (2.2) 29 (10.8) |
n = 269 | |
Increased risk for psychosis (yes), no (%) | 56 (20.8) n = 269 |
Level of depression (according to BDI-II) 2 | |
No depression (or remitted) (scores 0–13), no. (%) | 72 (29.3) |
Mild depression (scores 14–19), no. (%) | 38 (15.5) |
Moderate depression (scores 20–28), no. (%) | 77 (31.3) |
Severe depression (scores 29–63), no. (%) | 59 (24.0) |
n = 246 | |
Level of Health Literacy (according to HLS-EU-Q47) 3 | |
General HL, M(SD) | 31.25 (07.15) |
n = 267 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mantell, P.K.; Baumeister, A.; Ruhrmann, S.; Janhsen, A.; Woopen, C. Attitudes towards Risk Prediction in a Help Seeking Population of Early Detection Centers for Mental Disorders—A Qualitative Approach. Int. J. Environ. Res. Public Health 2021, 18, 1036. https://doi.org/10.3390/ijerph18031036
Mantell PK, Baumeister A, Ruhrmann S, Janhsen A, Woopen C. Attitudes towards Risk Prediction in a Help Seeking Population of Early Detection Centers for Mental Disorders—A Qualitative Approach. International Journal of Environmental Research and Public Health. 2021; 18(3):1036. https://doi.org/10.3390/ijerph18031036
Chicago/Turabian StyleMantell, Pauline Katharina, Annika Baumeister, Stephan Ruhrmann, Anna Janhsen, and Christiane Woopen. 2021. "Attitudes towards Risk Prediction in a Help Seeking Population of Early Detection Centers for Mental Disorders—A Qualitative Approach" International Journal of Environmental Research and Public Health 18, no. 3: 1036. https://doi.org/10.3390/ijerph18031036