Validity and Psychometric Properties of the Internet Gaming Disorder Scale in Three Large Independent Samples of Children and Adolescents
Abstract
:1. Introduction
2. Methods
2.1. Procedure
2.2. Participants
2.3. Measures
2.4. Statistical Analyses
3. Results
3.1. Sample Description
3.2. Item Analysis and Dimensionality
3.3. “Known-Groups” Analyses
3.3.1. Time Spent with Digital Media
3.3.2. Emotional and Behavioral Difficulties
4. Discussion
4.1. Psychometric Properties
4.2. Convergent Validity
4.3. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Label | Criterion |
---|---|
A. | Mental preoccupation with gaming |
B. | Withdrawal symptoms |
C. | Tolerance/increase of dosage (gaming time) |
D. | Failures to gain gaming control |
E. | Loss of previous interests or prior hobbies |
F. | Continuation of gaming despite insight into adverse consequences |
G. | Lying to significant others in respect of factual gaming |
H. | Gaming in order to regulate negative moods (‘escape’) |
I. | Elevated risk of losing an important social relationship (job/education) |
Age Group | Sex | b Typical Weekend Gaming Time (Minutes) | c Daily Social Media Use | b d SDQ Total Difficulties Score | ||
---|---|---|---|---|---|---|
2016 | 2017 | 2018 | ||||
12–13 | Girls | 120.11 | (59.71) | 120–179 min | 8.10 | (4.47) |
Boys | 178.40 | (105.53) | 120–179 min | 8.14 | (4.47) | |
14–17 | Girls | 147.97 | (102.62) | 180–239 min | 9.47 | (4.70) |
Boys | 223.70 | (120.50) | 120–179 min | 7.47 | (4.28) | |
Total | 174.64 | (110.83) | 120–179 min | 8.16 | (4.52) |
Age Group | Sex | a Emotional Symptoms | Conduct Problems | Hyperactivity/Inattention | Peer Relationship Problems | ||||
---|---|---|---|---|---|---|---|---|---|
12–13 | Girls | 2.01 | (1.87) | 1.30 | (1.26) | 3.30 | (2.36) | 2.24 | (1.69) |
Boys | 1.81 | (1.71) | 1.33 | (1.39) | 3.33 | (2.28) | 1.91 | (1.59) | |
14–17 | Girls | 3.41 | (2.40) | 1.15 | (1.15) | 2.67 | (1.96) | 2.24 | (1.69) |
Boys | 1.70 | (1.71) | 1.22 | (1.12) | 2.64 | (1.99) | 1.91 | (1.59) | |
Total | 2.15 | (2.03) | 1.24 | (1.20) | 2.88 | (2.12) | 1.88 | (1.57) |
Sex | Emotional Symptoms | a Conduct Problems | Hyperactivity/Inattention | b Peer Relationship Problems | c Total Difficulties Score |
---|---|---|---|---|---|
Girls | 0.712 | 0.291 | 0.642 | 0.469 | 0.709 |
Boys | 0.546 | 0.312 | 0.627 | 0.473 | 0.692 |
Total | 0.656 | 0.304 | 0.632 | 0.470 | 0.701 |
Sex | IGDS Score | a Emotional Symptoms | b Conduct Problems | Hyperactivity/Inattention | c Peer relation-Ship Problems | ||||
---|---|---|---|---|---|---|---|---|---|
% | n | % | n | % | n | % | n | ||
Girls | Normal | 14.6 | (38) | 8.8 | (23) | 11.9 | (31) | 13.8 | (36) |
At-risk | 38.1 | (8) | 28.6 | (6) | 23.6 | (5) | 33.3 | (7) | |
Pathologic | 66.7 | (2) | 33.3 | (1) | 33.3 | (1) | 33.3 | (1) | |
Boys | Normal | 10.5 | (43) | 3.6 | (15) | 7.5 | (31) | 15.8 | (65) |
At-risk | 32.8 | (22) | 11.9 | (8) | 28.4 | (19) | 25.4 | (17) | |
Pathologic | 57.1 | (12) | 19.0 | (4) | 33.3 | (7) | 42.9 | (9) | |
Total | Normal | 12.1 | (81) | 5.7 | (38) | 9.2 | (62) | 15.0 | (101) |
At-risk | 34.1 | (30) | 15.9 | (14) | 27.3 | (24) | 27.3 | (24) | |
Pathologic | 58.3 | (14) | 20.8 | (5) | 33.3 | (8) | 41.7 | (10) |
References
- WARC. Coronavirus Research: Multi-Market Research Wave 4. WARC, 2020. Available online: http://origin.warc.com/content/paywall/article/Warc-Research/GWI_Coronavirus_Research_Multimarket_research_wave_4/132717 (accessed on 20 June 2020).
- statista.com. Most Popular Apple App Store Categories in June 2020, by Share of Available Apps. Available online: https://www.statista.com/statistics/270291/popular-categories-in-the-app-store/ (accessed on 20 June 2020).
- statista.com. Online Games. Available online: https://www.statista.com/outlook/212/100/online-games/worldwide (accessed on 20 June 2020).
- Rehbein, F.; Psych, G.; Kleimann, M.; Mediasci, G.; Mößle, T. Prevalence and risk factors of video game dependency in adolescence: Results of a German nationwide survey. Cyberpsychol. Behav. Soc. Netw. 2010, 13, 269–277. [Google Scholar] [CrossRef]
- Veissière, S.P.L.; Stendel, M. Hypernatural monitoring: A social rehearsal account of smartphone addiction. Front. Psychol. 2018, 9. [Google Scholar] [CrossRef] [Green Version]
- Paschke, K.; Austermann, M.I.; Thomasius, R. Adolescent gaming and social media usage before and during the COVID-19 pandemic. Manuscript accepted for publication. Sucht 2021, 67. [Google Scholar] [CrossRef]
- Konrad, K.; Firk, C.; Uhlhaas, P.J. Brain development during adolescence: Neuroscientific insights into this developmental period. Dtsch. Arztebl. Int. 2013, 110, 425. [Google Scholar] [CrossRef] [Green Version]
- Arain, M.; Haque, M.; Johal, L.; Mathur, P.; Nel, W.; Rais, A.; Sandhu, R.; Sharma, S. Maturation of the adolescent brain. Neuropsychiatr. Dis. Treat. 2013, 9, 449–461. [Google Scholar] [CrossRef] [Green Version]
- Yuan, K.; Qin, W.; Yu, D.; Bi, Y.; Xing, L.; Jin, C.; Tian, J. Core brain networks interactions and cognitive control in internet gaming disorder individuals in late adolescence/early adulthood. Brain. Struct. Funct. 2016, 221, 1427–1442. [Google Scholar] [CrossRef]
- Sugaya, N.; Shirasaka, T.; Takahashi, K.; Kanda, H. Bio-psychosocial factors of children and adolescents with internet gaming disorder: A systematic review. BioPsychoSocial Med. 2019, 13, 3. [Google Scholar] [CrossRef]
- APA American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders: DSM-5; American Psychiatric Association: Washington, DC, USA, 2013. [Google Scholar]
- Paulus, F.W.; Ohmann, S.; Von Gontard, A.; Popow, C. Internet gaming disorder in children and adolescents: A systematic review. Dev. Med. Child. Neurol. 2018, 60, 645–659. [Google Scholar] [CrossRef]
- Fuster, H.; Carbonell, X.; Pontes, H.M.; Griffiths, M.D. Spanish validation of the Internet Gaming Disorder (IGD-20) Test. Comp. Hum. Behav. 2016, 56, 215–224. [Google Scholar] [CrossRef] [Green Version]
- Pontes, H.M.; Király, O.; Demetrovics, Z.; Griffiths, M.D. The conceptualisation and measurement of DSM-5 Internet Gaming Disorder: The development of the IGD-20 Test. PLoS ONE 2014, 9, e110137. [Google Scholar] [CrossRef] [Green Version]
- Milani, L.; La Torre, G.; Fiore, M.; Grumi, S.; Gentile, D.A.; Ferrante, M.; Di Blasio, P. Internet gaming addiction in adolescence: Risk factors and maladjustment correlates. Int. J. Ment. Health Addict. 2018, 16, 888–904. [Google Scholar] [CrossRef]
- Torres-Rodríguez, A.; Griffiths, M.D.; Carbonell, X.; Oberst, U. Internet gaming disorder in adolescence: Psychological characteristics of a clinical sample. J. Behav. Addict. 2018, 7, 707–718. [Google Scholar] [CrossRef]
- World Health Organization. International Classification of Diseases for Mortality and Morbidity Statistics. Available online: https://icd.who.int/browse11/l-m/en (accessed on 13 January 2020).
- Király, O.; Tóth, D.; Urbán, R.; Demetrovics, Z.; Maraz, A. Intense video gaming is not essentially problematic. Psychol. Addict. Behav. 2017, 31, 807–817. [Google Scholar] [CrossRef]
- Lemmens, J.S.; Valkenburg, P.M.; Gentile, D.A. The Internet Gaming Disorder Scale. Psychol. Assess. 2015, 27, 567–582. [Google Scholar] [CrossRef]
- Pontes, H.M.; Griffiths, M.D. Measuring DSM-5 Internet gaming disorder: Development and validation of a short psychometric scale. Comput. Hum. Behav. 2015, 45, 137–143. [Google Scholar] [CrossRef] [Green Version]
- Donati, M.A.; Sanson, F.; Mazzarese, M.; Primi, C. Assessing video game habits and pathological behaviour in children through a new scale: Psychometric properties of the Video-Gaming Scale—For Children (VGS-C). Psychology 2019, 10, 2190–2208. [Google Scholar] [CrossRef] [Green Version]
- Primi, C.; Donati, M.A.; Chiesi, F. Scala per la Misura Dell’uso dei Videogiochi negli Adolescenti [Video-Gaming Scale for Adolescents, VGS-A.]; Hogrefe: Florence, Italy, 2017. [Google Scholar]
- King, D.L.; Chamberlain, S.R.; Carragher, N.; Billieux, J.; Stein, D.; Delfabbro, P.H. Screening and assessment tools for gaming disorder: A comprehensive systematic review. Clin. Psychol. Rev. 2020, 77, 101831. [Google Scholar] [CrossRef]
- Schivinski, B.; Brzozowska-Woś, M.; Buchanan, E.M.; Griffiths, M.D.; Pontes, H.M. Psychometric assessment of the internet gaming disorder diagnostic criteria: An item response theory study. Addict. Behav. Rep. 2018, 8, 176–184. [Google Scholar] [CrossRef]
- Wartberg, L.; Kriston, L.; Zieglmeier, M.; Lincoln, T.; Kammerl, R. A longitudinal study on psychosocial causes and consequences of Internet gaming disorder in adolescence. Psychol. Med. 2019, 49, 287–294. [Google Scholar] [CrossRef]
- Wartberg, L.; Kriston, L.; Thomasius, R. Internet gaming disorder and problematic social media use in a representative sample of German adolescents: Prevalence estimates, comorbid depressive symptoms and related psychosocial aspects. Comp. Hum. Behav. 2020, 103, 31–36. [Google Scholar] [CrossRef]
- Castro–Calvo, J.; King, D.L.; Stein, D.J.; Brand, M.; Carmi, L.; Chamberlain, S.R.; Billieux, J. Expert appraisal of criteria for assessing gaming disorder: An international Delphi study. Addiction 2021. [Google Scholar] [CrossRef]
- Meerkerk, G.J.; Van Den Eijnden, R.; Vermulst, A.A.; Garretsen, H.F.L. The Compulsive Internet Use Scale (CIUS): Some psychometric properties. CyberPsychology 2009, 12, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Besser, B.; Loerbroks, L.; Bischof, G.; Bischof, A.; Rumpf, H.-J. Performance of the DSM-5-based criteria for Internet addiction: A factor analytical examination of three samples. J. Behav. Addict. 2019, 8, 288–294. [Google Scholar] [CrossRef] [Green Version]
- Wartberg, L.; Kriston, L.; Thomasius, R. The prevalence and psychosocial correlates of internet gaming disorder—analysis in a nationally representative sample of 12-to 25-year-olds. Dtsch. Arztebl. Int. 2017, 114, 419–424. [Google Scholar] [CrossRef] [Green Version]
- Wartberg, L.; Kriston, L.; Thomasius, R. Depressive Symptoms in Adolescents. Dtsch. Arztebl. Int. 2018, 115, 549–555. [Google Scholar] [CrossRef]
- Paschke, K.; Laurenz, L.; Thomasius, R. Chronic Sleep Reduction in Childhood and Adolescence. Dtsch. Arztebl. Int. 2020, 117, 661–667. [Google Scholar] [CrossRef]
- Becker, A.; Wang, B.; Kunze, B.; BELLA study group, T. Normative data of the self-report version of the German Strengths and Difficulties Questionnaire in an epidemiological setting. Z. Kinder Jugendpsychiatr. Psychother. 2018, 46, 523–533. [Google Scholar] [CrossRef]
- Altendorfer-Kling, U.; Ardelt-Gattinger, E.; Thun-Hohenstein, L. [The self-report version of the Strengths and Difficulties Questionnaire in an Austrian field sample. In German]. Z. Kinder Jugendpsychiatr. Psychother. 2007, 35, 265–271. [Google Scholar] [CrossRef]
- Lohbeck, A.; Schultheiss, J.; Petermann, F.; Petermann, U. The German self-report version of the strengths and difficulties questionnaire (SDQ-Deu-S): Psychometric properties, factor structure, and critical values. Diagnostica 2015, 61, 222–235. [Google Scholar] [CrossRef]
- Keller, F.; Langmeyer, A.N. An item response theory analysis of the Strengths and Difficulties Questionnaire (SDQ). Eur. J. Psychol. Assess. 2019, 35, 266–279. [Google Scholar] [CrossRef]
- Hooper, D.; Coughlan, J.; Mullen, M.R. Structural equation modelling: Guidelines for determining model fit. Electr. J. Bus. Res. Meth. 2008, 6, 53–60. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Routledge/Earlbaum: New York, NY, USA, 1988. [Google Scholar]
- Taber, K.S. The use of Cronbach’s alpha when developing and reporting research instruments in science education. Res. Sci. Educ. 2018, 48, 1273–1296. [Google Scholar] [CrossRef]
- Koning, I.M.; Peeters, M.; Finkenauer, C.; Van Den Eijnden, R.J. Bidirectional effects of Internet-specific parenting practices and compulsive social media and Internet game use. J. Behav. Addict. 2018, 7, 624–632. [Google Scholar] [CrossRef]
- Van Den Eijnden, R.; Koning, I.; Doornwaard, S.; Van Gurp, F.; Ter Bogt, T. The impact of heavy and disordered use of games and social media on adolescents’ psychological, social, and school functioning. J. Behav. Addict. 2018, 7, 697–706. [Google Scholar] [CrossRef]
- Peeters, M.; Koning, I.; van den Eijnden, R. Predicting Internet gaming disorder symptoms in young adolescents: A one-year follow-up study. Comput. Hum. Behav. 2018, 80, 255–261. [Google Scholar] [CrossRef]
- Schmitt, N. Uses and abuses of coefficient alpha. Psychol. Assess. 1996, 8, 350–353. [Google Scholar] [CrossRef]
- Jeong, H.; Yim, H.W.; Lee, S.-Y.; Lee, H.K.; Potenza, M.N.; Choi, J.-S. Discordance between self-report and clinical diagnosis of Internet gaming disorder in adolescents. Sci. Rep. 2018, 8, 10084. [Google Scholar] [CrossRef]
- Paschke, K.; Austermann, M.I.; Thomasius, R. Assessing ICD-11 gaming disorder in adolescent gamers: Development and validation of the Gaming Disorder Scale for Adolescents (GADIS-A). J. Clin. Med. 2020, 9, 993. [Google Scholar] [CrossRef] [Green Version]
- Paschke, K.; Austermann, M.I.; Thomasius, R. Assessing ICD-11 gaming disorder in adolescent gamers by parental ratings: Development and validation of the Gaming Disorder Scale for Parents (GADIS-P). J. Behav. Addict. 2021. [Google Scholar] [CrossRef]
- Pontes, H.M.; Schivinski, B.; Sindermann, C.; Li, M.; Becker, B.; Zhou, M.; Montag, C. Measurement and conceptualization of gaming disorder according to the World Health Organization framework: The development of the Gaming Disorder Test. Int. J. Ment. Health. Add. 2019, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Colder Carras, M.; Kardefelt-Winther, D. When addiction symptoms and life problems diverge: A latent class analysis of problematic gaming in a representative multinational sample of European adolescents. Eur. Child. Adolesc. Psychiatry 2018, 27, 513–525. [Google Scholar] [CrossRef]
- Esposito, M.R.; Serra, N.; Guillari, A.; Simeone, S.; Sarracino, F.; Continisio, G.I.; Rea, T. An investigation into video game addiction in pre-adolescents and adolescents: A cross-sectional study. Medicina (Kaunas) 2020, 56, 221. [Google Scholar] [CrossRef]
Sample | Age | Sex | School | Job-Training | Other a | Total |
---|---|---|---|---|---|---|
2016 | 12–13 | Girls | 133 | --- | --- | 133 |
Boys | 150 | --- | --- | 150 | ||
14–17 | Girls | 198 | 17 | 7 | 222 | |
Boys | 236 | 18 | 3 | 257 | ||
Total % | 717 94.1 | 35 4.6 | 10 1.3 | 762 100 | ||
2017 | 12–13 | Girls | 129 | --- | --- | 129 |
Boys | 163 | --- | --- | 163 | ||
14–17 | Girls | 175 | 8 | 5 | 222 | |
Boys | 271 | 21 | 5 | 257 | ||
Total % | 738 95.0 | 29 3.4 | 10 1.3 | 777 100 | ||
2018 | 12–13 | Girls | 108 | --- | --- | 108 |
Boys | 162 | --- | --- | 162 | ||
14–17 | Girls | 162 | 11 | 4 | 222 | |
Boys | 303 | 29 | 5 | 257 | ||
Total % | 735 93.8 | 40 5.1 | 9 1.1 | 784 100 |
Sample | Age Group | Sex | b Sum Score | Cronbach’s Alpha | c Portion of at-Risk Gamers | c Portion of Pathologic Gamers | |||
---|---|---|---|---|---|---|---|---|---|
2016 | 12–13 | Girls | 1.56 | (1.84) | 0.754 | 7.1 | (20) | 3.9 | (11) |
Boys | 2.71 | (2.17) | 0.703 | 15.9 | (45) | 10.2 | (29) | ||
14–17 | Girls | 1.01 | (1.58) | 0.784 | 3.8 | (18) | 2.5 | (12) | |
Boys | 2.38 | (2.20) | 0.770 | 12.7 | (61) | 8.8 | (42) | ||
Total | 1.90 | (2.08) | 0.778 | 18.9 | (144) | 12.3 | (94) | ||
2017 | 12–13 | Girls | 0.71 | (1.34) | 0.756 | 2.7 | (8) | 1.0 | (3) |
Boys | 1.60 | (1.65) | 0.613 | 9.6 | (28) | 3.1 | (9) | ||
14–17 | Girls | 0.61 | (1.05) | 0.600 | 1.9 | (9) | 0.4 | (2) | |
Boys | 1.60 | (1.71) | 0.646 | 9.9 | (48) | 4.1 | (20) | ||
Total | 1.21 | (1.56) | 0.724 | 12.0 | (93) | 4.4 | (34) | ||
2018 | 12–13 | Girls | 0.75 | (1.10) | 0.514 | 3.3 | (9) | 0.4 | (1) |
Boys | 1.45 | (1.56) | 0.570 | 10.4 | (28) | 2.6 | (7) | ||
14–17 | Girls | 0.74 | (1.15) | 0.682 | 2.3 | (12) | 0.4 | (2) | |
Boys | 1.21 | (1.37) | 0.528 | 7.6 | (39) | 2.7 | (14) | ||
Total | 1.09 | (1.36) | 0.563 | 11.2 | (88) | 3.1 | (24) |
Index | 2016 | 2017 | 2018 | Cut-off |
---|---|---|---|---|
χ2/df | 82.688/27 = 3.063 p < 0.001 | 50.563/27 =1.872 p = 0.004 | 42.656/27 = 1.580 p = 0.028 | <5 |
CFI | 0.768 | 0.885 | 0.903 | ≥0.95 |
RMSEA | 0.060 | 0.034 | 0.027 | <0.08 |
TLI | 0.768 | 0.847 | 0.871 | ≥0.95 |
Items | Loadings | |||
1. Preoccupation | 0.233 | 0.229 | 0.194 | |
2. Tolerance | 0.280 | 0.205 | 0.184 | |
3. Withdrawal | 0.303 | 0.179 | 0.147 | |
4. Persistence | 0.215 | 0.115 | 0.092 | |
5. Escape | 0.096 | 0.159 | 0.092 | |
6. Problems | 0.231 | 0.142 | 0.112 | |
7. Deception | 0.184 | 0.111 | 0.102 | |
8. Displacement | 0.172 | 0.099 | 0.035 | |
9. Conflict | 0.148 | 0.055 | 0.071 |
Sample | 2016 | 2017 | 2018 | ||||||
---|---|---|---|---|---|---|---|---|---|
Item | p (i) | rit | a | p (i) | rit | a | p (i) | rit | a |
1. Preoccupation | 19.0 | 0.488 | 0.617 | 19.5 | 0.463 | 0.654 | 13.4 | 0.404 | 0.648 |
2. Tolerance | 27.8 | 0.493 | 0.613 | 16.6 | 0.440 | 0.623 | 12.9 | 0.369 | 0.632 |
3. Withdrawal | 24.4 | 0.572 | 0.676 | 14.4 | 0.400 | 0.590 | 13.3 | 0.295 | 0.537 |
4. Persistence | 18.2 | 0.473 | 0.642 | 14.0 | 0.261 | 0.414 | 12.4 | 0.232 | 0.389 |
5. Escape | 26.9 | 0.202 | 0.255 | 26.4 | 0.290 | 0.451 | 27.8 | 0.152 | 0.283 |
6. Problems | 24.8 | 0.468 | 0.627 | 12.1 | 0.344 | 0.534 | 13.5 | 0.257 | 0.454 |
7. Deception | 17.5 | 0.417 | 0.528 | 8.8 | 0.319 | 0.494 | 7.5 | 0.277 | 0.511 |
8. Displacement | 13.4 | 0.467 | 0.549 | 6.5 | 0.323 | 0.499 | 4.1 | 0.144 | 0.272 |
9. Conflict | 9.0 | 0.446 | 0.595 | 2.2 | 0.296 | 0.471 | 4.2 | 0.289 | 0.482 |
Sex | IGDS Score | a Typical Weekend Gaming Time (Minutes) | b Daily Social Media Use 4+ Hours | ||
---|---|---|---|---|---|
Girls | Normal | 129.95 | (85.78) | 3.5 | (23) |
At-risk | 162.24 | (104.38) | 4.3 | (4) | |
Pathological | 193.70 | (93.12) | 8.8 | (3) | |
Boys | Normal | 184.02 | (103.47) | 14.2 | (92) |
At-risk | 236.18 | (125.12) | 30.1 | (28) | |
Pathological | 237.89 | (130.70) | 41.2 | (14) | |
Total | Normal | 153.68 | (97.63) | 17.7 | (115) |
At-risk | 216.67 | (124.03) | 34.4 | (32) | |
Pathological | 227.07 | (123.59) | 50.0 | (17) |
Typical weekend gaming time | |||||||||
Univariate analyses of variance | Helmert contrasts p; effect size d | ||||||||
df | F | p | η2 | Normal vs. at-risk/pathologic | At-risk vs. pathologic | ||||
2016 | Girls | 2 | 7.21 | 0.001 | 0.039 | <0.001 | 0.449 | 0.179 | 0.252 |
Boys | 2 | 10.67 | <0.001 | 0.050 | <0.001 | 0.450 | 0.923 | 0.143 | |
Total | 2 | 32.77 | <0.001 | 0.079 | <0.001 | 0.577 | 0.481 | 0.084 | |
Daily social media use 4+ hours | |||||||||
a Kruskal–Wallis H-tests | b Mann–Whitney U-tests p; effect size d | ||||||||
df | F | p | η2 | Normal vs. at-risk/pathologic | At-risk vs. pathologic | ||||
2017 | Girls | 2 | 19.63 | 0.001 | 0.489 | 0.002 | 0.212 | 0.274 | 0.536 |
Boys | 2 | 8.99 | 0.011 | 0.250 | 0.007 | 0.205 | 0.373 | 0.177 | |
Total | 2 | 31.22 | <0.001 | 0.397 | <0.001 | 0.269 | 0.149 | 0.240 |
Sex | IGDS Score | a Emotional Problems | b Conduct Problems | Hyperactivity/Inattention | c Peer Relationship Problems | ||||
---|---|---|---|---|---|---|---|---|---|
Girls | Normal | 2.73 | (2.18) | 1.15 | (1.11) | 2.82 | (2.12) | 1.88 | (1.54) |
At-risk | 4.33 | (3.09) | 1.90 | (1.70) | 4.10 | (1.92) | 2.90 | (1.61) | |
Pathological | 6.00 | (2.65) | 1.67 | (2.08) | 2.00 | (3.46) | 2.33 | (2.31) | |
Boys | Normal | 1.51 | (1.48) | 1.14 | (1.11) | 2.60 | (1.95) | 1.72 | (1.46) |
At-risk | 2.42 | (2.18) | 1.84 | (1.47) | 3.84 | (2.26) | 2.27 | (1.18) | |
Pathological | 3.95 | (2.13) | 1.71 | (1.59) | 4.95 | (2.64) | 2.71 | (2.31) | |
Total | Normal | 1.99 | (1.88) | 1.14 | (1.11) | 2.68 | (2.02) | 1.78 | (1.49) |
At-risk | 2.88 | (2.54) | 1.85 | (1.52) | 3.90 | (2.18) | 2.42 | (1.79) | |
Pathological | 4.21 | (2.25) | 1.71 | (1.60) | 4.58 | (2.84) | 2.67 | (2.26) |
Univariate ANOVA Results | Helmert Contrasts and Effect Sizes | |||||||
---|---|---|---|---|---|---|---|---|
Normal vs. at-Risk/Pathological | At-Risk vs. Pathological | |||||||
df | F | p | η2 | p | d | p | d | |
Emotional problems | ||||||||
Girls | 2 | 7.79 | 0.001 | 0.052 | 0.001 | 0.610 | 0.233 | 0.616 |
Boys | 2 | 29.42 | <0.001 | 0.106 | <0.001 | 0.595 | <0.001 | 0.716 |
Total | 2 | 21.28 | <0.001 | 0.052 | <0.001 | 0.480 | 0.003 | 0.577 |
a Conduct problems | ||||||||
Girls | 2 | 4.29 | 0.015 | 0.030 | 0.084 | 0.439 | 0.743 | 0.117 |
Boys | 2 | 11.57 | <0.001 | 0.045 | <0.001 | 0.467 | 0.682 | 0.078 |
Total | 2 | 16.08 | <0.001 | 0.040 | <0.001 | 0.460 | 0.596 | 0.091 |
Hyperactivity inattention | ||||||||
Girls | 2 | 3.80 | 0.023 | 0.026 | 0.733 | 0.466 | 0.110 | 0.633 |
Boys | 2 | 22.43 | <0.001 | 0.083 | <0.001 | 0.654 | 0.028 | 0.438 |
Total | 2 | 21.87 | <0.001 | 0.053 | <0.001 | 0.593 | 0.150 | 0.253 |
b Peer relationship problems | ||||||||
Girls | 2 | 4.32 | 0.014 | 0.030 | 0.132 | 0.577 | 0.551 | 0.256 |
Boys | 2 | 9.22 | 0.001 | 0.028 | <0.001 | 0.352 | 0.252 | 0.202 |
Total | 2 | 9.79 | <0.001 | 0.024 | <0.001 | 0.404 | 0.492 | 0.114 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paschke, K.; Sack, P.-M.; Thomasius, R. Validity and Psychometric Properties of the Internet Gaming Disorder Scale in Three Large Independent Samples of Children and Adolescents. Int. J. Environ. Res. Public Health 2021, 18, 1095. https://doi.org/10.3390/ijerph18031095
Paschke K, Sack P-M, Thomasius R. Validity and Psychometric Properties of the Internet Gaming Disorder Scale in Three Large Independent Samples of Children and Adolescents. International Journal of Environmental Research and Public Health. 2021; 18(3):1095. https://doi.org/10.3390/ijerph18031095
Chicago/Turabian StylePaschke, Kerstin, Peter-Michael Sack, and Rainer Thomasius. 2021. "Validity and Psychometric Properties of the Internet Gaming Disorder Scale in Three Large Independent Samples of Children and Adolescents" International Journal of Environmental Research and Public Health 18, no. 3: 1095. https://doi.org/10.3390/ijerph18031095
APA StylePaschke, K., Sack, P. -M., & Thomasius, R. (2021). Validity and Psychometric Properties of the Internet Gaming Disorder Scale in Three Large Independent Samples of Children and Adolescents. International Journal of Environmental Research and Public Health, 18(3), 1095. https://doi.org/10.3390/ijerph18031095