Study Protocol on the Validation of the Quality of Sleep Data from Xiaomi Domestic Wristbands
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Settings
2.3. Eligibility Criteria
2.4. Recruitment Process
2.5. Justification of Sample Size
2.6. Outcomes
2.7. Data Collection and Management
2.8. Data Analysis
2.9. Ethics and Dissemination
3. Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Filip, I.; Tidman, M.; Saheba, N.; Bennett, H.; Wick, B.; Rouse, N.; Patriche, D.; Radfar, A. Public health burden of sleep disorders: Underreported problem. J. Public Health 2017, 25, 243–248. [Google Scholar] [CrossRef]
- Tester, N.J.; Foss, J.J. Sleep as an Occupational Need. Am. J. Occup. Ther. 2017, 72, 7201347010p1. [Google Scholar] [CrossRef] [PubMed]
- Matricciani, L.; Bin, Y.S.; Lallukka, T.; Kronholm, E.; Dumuid, D.; Paquet, C.; Olds, T. Past, present, and future: Trends in sleep duration and implications for public health. Sleep Health 2017, 3, 317–323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, G.; Liu, S.; Yu, X.; Zhao, X.; Ma, L.; Shan, P. High prevalence of sleep disorders and behavioral and psychological symptoms of dementia in late-onset Alzheimer disease. Medicine 2019, 98, e18405. [Google Scholar] [CrossRef]
- Pavlova, K.M.; Latreille, V. Sleep Disorders. Am. J. Med. 2019, 132, 292–299. [Google Scholar] [CrossRef]
- Chen, J.; Waite, L.; Kurina, L.M.; Thisted, R.A.; McClintock, M.; Lauderdale, D.S. Insomnia Symptoms and Actigraph-Estimated Sleep Characteristics in a Nationally Representative Sample of Older Adults. J. Gerontol. Ser. A 2015, 70, 185–192. [Google Scholar] [CrossRef]
- Acquavella, J.; Mehra, R.; Bron, M.; Suomi, J.M.H.; Hess, G.P. Prevalence of narcolepsy and other sleep disorders and frequency of diagnostic tests from 2013–2016 in insured patients actively seeking care. J. Clin. Sleep Med. 2020, 16, 1255–1263. [Google Scholar] [CrossRef]
- Hale, L.; Troxel, W.; Buysse, D.J. Sleep Health: An Opportunity for Public Health to Address Health Equity. Annu. Rev. Public Health 2020, 41, 81–99. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.; Choh, A.C.; Demerath, E.W.; Knutson, K.L.; Duren, D.L.; Sherwood, R.J.; Sun, S.S.; Chumlea, W.C.; Towne, B.; Siervogel, R.M.; et al. Sleep disturbance in relation to health-related quality of life in adults: The fels longitudinal study. J. Nutr. Health Aging 2009, 13, 576–583. [Google Scholar] [CrossRef] [Green Version]
- Webb, C.A.; Cui, R.; Titus, C.; Fiske, A.; Nadorff, M.R. Sleep disturbance, Activities of Daily Living, and Depressive Symptoms among Older Sdults. Clin. Gerontol. 2017, 41, 172–180. [Google Scholar] [CrossRef]
- Zailinawati, A.-H.; Mazza, D.; Teng, C.L. Prevalence of insomnia and its impact on daily function amongst Malaysian primary care patients. Asia Pac. Fam. Med. 2012, 11, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puri, S.; Herrick, J.E.; Collins, J.P.; Aldhahi, M.; Baattaiah, B. Physical functioning and risk for sleep disorders in US adults: Results from the National Health and Nutrition Examination Survey 2005–2014. Public Health 2017, 152, 123–128. [Google Scholar] [CrossRef] [PubMed]
- Hallit, S.; Hajj, A.; Sacre, H.; Al Karaki, G.; Malaeb, D.; Kheir, N.; Salameh, P.; Hallit, R. Impact of Sleep Disorders and Other Factors on the Quality of Life in General Population. J. Nerv. Ment. Dis. 2019, 207, 333–339. [Google Scholar] [CrossRef] [PubMed]
- Abdulah, D.M.; Piro, R.S. Sleep disorders as primary and secondary factors in relation with daily functioning in medical students. Ann. Saudi Med. 2018, 38, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Wade, A. The societal costs of insomnia. Neuropsychiatr. Dis. Treat. 2010, 7, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Botteman, M. Health economics of insomnia therapy: Implications for policy. Sleep Med. 2009, 10, S22–S25. [Google Scholar] [CrossRef]
- Johnson, D.A.; Billings, M.E.; Hale, L. Environmental Determinants of Insufficient Sleep and Sleep Disorders: Implications for Population Health. Curr. Epidemiol. Rep. 2018, 5, 61–69. [Google Scholar] [CrossRef]
- Skaer, T.L.; Sclar, D.A. Economic Implications of Sleep Disorders. Pharmacoeconomics 2010, 28, 1015–1023. [Google Scholar] [CrossRef]
- Markwald, R.R.; Bessman, S.C.; Reini, S.A.; Drummond, S.P.A. Performance of a Portable Sleep Monitoring Device in Individuals with High Versus Low Sleep Efficiency. J. Clin. Sleep Med. 2016, 12, 95–103. [Google Scholar] [CrossRef] [Green Version]
- de Zambotti, M.; Baker, F.C.; Willoughby, A.R.; Godino, J.G.; Wing, D.; Patrick, K.; Colrain, I.M. Measures of sleep and cardiac functioning during sleep using a multi-sensory commercially-available wristband in adolescents. Physiol. Behav. 2016, 158, 143–149. [Google Scholar] [CrossRef] [Green Version]
- Kurina, L.M.; Thisted, R.A.; Chen, J.H.; McClintock, M.K.; Waite, L.J.; Lauderdale, D.S. Actigraphic sleep characteristics among older Americans. Sleep Health 2015, 1, 285–292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chamorro, N.; Sellarés, J.; Millán, G.; Cano, E.; Soler, N.; Embid, C.; Montserrat, J.M. An integrated model involving sleep units and primary care for the diagnosis of sleep apnoea. Eur. Respir. J. 2013, 42, 1151–1154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Merilahti, J.; Korhonen, I. Association between Continuous Wearable Activity Monitoring and Self-Reported Functioning in Assisted Living Facility and Nursing Home Residents. J. Frailty Aging 2016, 5, 225–232. [Google Scholar] [CrossRef] [PubMed]
- Shelgikar, A.V.; Anderson, P.F.; Stephens, M.R. Sleep Tracking, Wearable Technology, and Opportunities for Research and Clinical Care. Chest 2016, 446, 732–743. [Google Scholar] [CrossRef]
- Griessenberger, H.; Heib, D.P.J.; Kunz, A.B.; Hoedlmoser, K.; Schabus, M. Assessment of a wireless headband for automatic sleep scoring. Sleep Breath. 2013, 17, 747–752. [Google Scholar] [CrossRef] [Green Version]
- Smith, M.T.; McCrae, C.S.; Cheung, J.; Martin, J.L.; Harrod, C.G.; Heald, J.L.; Carden, K.A. Use of actigraphy for the evaluation of sleep disorders and circadian rhythm sleep-wake disorders: An American academy of sleep medicine clinical practice guideline. J. Clin. Sleep Med. 2018, 14, 1231–1237. [Google Scholar] [CrossRef] [Green Version]
- Withrow, D.; Roth, T.; Koshorek, G.; Roehrs, T. Relation between ambulatory actigraphy and laboratory polysomnography in insomnia practice and research. J. Sleep Res. 2019, 176, e12854. [Google Scholar] [CrossRef]
- Faerman, A.; Kaplan, K.A.; Zeitzer, J.M. Subjective sleep quality is poorly associated with actigraphy and heart rate measures in community-dwelling older men. Sleep Med. 2020, 73, 154–161. [Google Scholar] [CrossRef]
- Williams, J.M.; Taylor, D.J.; Slavish, D.C.; Gardner, C.E.; Zimmerman, M.R.; Patel, K.; Reichenberger, D.A.; Francetich, J.M.; Dietch, J.R.; Estevez, R. Validity of Actigraphy in Young Adults With Insomnia. Behav. Sleep Med. 2020, 18, 91–106. [Google Scholar] [CrossRef]
- Roberts, D.M.; Schade, M.M.; Mathew, G.M.; Gartenberg, D.; Buxton, O.M. Detecting sleep using heart rate and motion data from multisensor consumer-grade wearables, relative to wrist actigraphy and polysomnography. Sleep 2020, 43, 1–15. [Google Scholar] [CrossRef]
- Xie, J.; Wen, D.; Liang, L.; Jia, Y.; Gao, L.; Lei, J. Evaluating the validity of current mainstream wearable devices in fitness tracking under various physical activities: Comparative study. J. Med. Internet Res. 2018, 20, e94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kubala, A.G.; Barone Gibbs, B.; Buysse, D.J.; Patel, S.R.; Hall, M.H.; Kline, C.E. Field-based Measurement of Sleep: Agreement between Six Commercial Activity Monitors and a Validated Accelerometer. Behav. Sleep Med. 2020, 18, 637–652. [Google Scholar] [CrossRef] [PubMed]
- Bravo, P.; Contreras, A.; Perestelo-Pérez, L.; Pérez-Ramos, J.; Málaga, G. Looking for a more participative healthcare: Sharing medical decision making. Rev. Peru. Med. Exp. Salud Publica 2013, 30, 691–697. [Google Scholar] [PubMed]
- Cook, J.D.; Prairie, M.L.; Plante, D.T. Utility of the Fitbit Flex to evaluate sleep in major depressive disorder: A comparison against polysomnography and wrist-worn actigraphy. J. Affect. Disord. 2017, 217, 299–305. [Google Scholar] [CrossRef] [PubMed]
- Wan, J.; Gu, X.; Chen, L.; Wang, J. Internet of things for ambientassisted living: Challenges and future opportunities. In Proceedings of the International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery(CyberC), Nanjing, China, 12–14 October 2017; pp. 354–357. [Google Scholar]
- Seo, D.; Yoo, B.; Ko, H. Distributed, Ambient and Pervasive Interactions; Streitz, N., Markopoulos, P., Eds.; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2016; Volume 9749, ISBN 978-3-319-39861-7. [Google Scholar]
- Banaee, H.; Ahmed, M.U.; Loutfi, A. Data mining for wearable sensors in health monitoring systems: A review of recent trends and challenges. Sensors 2013, 13, 17472–17500. [Google Scholar] [CrossRef] [Green Version]
- Singh, J.; Keer, N. Overview of Telemedicine and Sleep Disorders. Sleep Med. Clin. 2020, 15, 341–346. [Google Scholar] [CrossRef]
- Apesteguía, L.; Pina, L.J. Ultrasound-guided core-needle biopsy of breast lesions. Insights Imaging 2011, 2, 493–500. [Google Scholar] [CrossRef] [Green Version]
- Mičková, E.; Machová, K.; Daďová, K.; Svobodová, I. Does Dog Ownership Affect Physical Activity, Sleep, and Self-Reported Health in Older Adults? Int. J. Environ. Res. Public Health 2019, 16, 3355. [Google Scholar] [CrossRef] [Green Version]
- Nieto-Riveiro, L.; Groba, B.; Miranda, M.C.; Concheiro, P.; Pazos, A.; Pousada, T.; Pereira, J. Technologies for participatory medicine and health promotion in the elderly population. Medicine 2018, 97, e10791. [Google Scholar] [CrossRef]
- Rundo, J.V.; Downey, R. Polysomnography. In Handbook of Clinical Neurology; Elsevier: Amsterdam, The Netherlands, 2019; Volume 160, pp. 381–392. [Google Scholar]
- Jayarathna, T.; Gargiulo, G.D.; Breen, P.P. Continuous vital monitoring during sleep and light activity using carbon-black elastomer sensors. Sensors 2020, 20, 1583. [Google Scholar] [CrossRef] [Green Version]
- Noviyanto, A.; Isa, S.M.; Wasito, I.; Arymurthy, A.M. Selecting Features of Single Lead ECG Signal for Automatic Sleep Stages Classification using Correlation-based Feature Subset Selection. Int. J. Comput. Sci. Issues 2011, 8, 139–148. [Google Scholar]
- Lewicke, A.; Sazonov, E.; Corwin, M.J.; Neuman, M.; Schuckers, S. Sleep Versus Wake Classification From Heart Rate Variability Using Computational Intelligence: Consideration of Rejection in Classification Models. IEEE Trans. Biomed. Eng. 2008, 55, 108–118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fonseca, P.; Long, X.; Radha, M.; Haakma, R.; Aarts, R.M.; Rolink, J. Sleep stage classification with ECG and respiratory effort. Physiol. Meas. 2015, 36, 2027–2040. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Šušmáková, K.; Krakovská, A. Discrimination ability of individual measures used in sleep stages classification. Artif. Intell. Med. 2008, 44, 261–277. [Google Scholar] [CrossRef] [PubMed]
- Gharbali, A.A.; Najdi, S.; Fonseca, J.M. Investigating the contribution of distance-based features to automatic sleep stage classification. Comput. Biol. Med. 2018, 96, 8–23. [Google Scholar] [CrossRef] [PubMed]
- de Zambotti, M.; Goldstone, A.; Claudatos, S.; Colrain, I.M.; Baker, F.C. A validation study of Fitbit Charge 2TM compared with polysomnography in adults. Chronobiol. Int. 2018, 35, 465–476. [Google Scholar] [CrossRef] [PubMed]
- Kahawage, P.; Jumabhoy, R.; Hamill, K.; Zambotti, M.; Drummond, S.P.A. Validity, potential clinical utility, and comparison of consumer and research-grade activity trackers in Insomnia Disorder I: In-lab validation against polysomnography. J. Sleep Res. 2020, 29. [Google Scholar] [CrossRef]
- Ameen, M.S.; Cheung, L.M.; Hauser, T.; Hahn, M.A.; Schabus, M. About the Accuracy and Problems of Consumer Devices in the Assessment of Sleep. Sensors 2019, 19, 4160. [Google Scholar] [CrossRef] [Green Version]
- El-Amrawy, F.; Nounou, M.I. Are Currently Available Wearable Devices for Activity Tracking and Heart Rate Monitoring Accurate, Precise, and Medically Beneficial? Healthc. Inform. Res. 2015, 21, 315. [Google Scholar] [CrossRef]
- Puri, A.; Kim, B.; Nguyen, O.; Stolee, P.; Tung, J.; Lee, J. User Acceptance of Wrist-Worn Activity Trackers Among Community-Dwelling Older Adults: Mixed Method Study. JMIR mHealth uHealth 2017, 5, e173. [Google Scholar] [CrossRef] [Green Version]
- Lai, Y.-H.; Huang, F.-F. A Study on the Intention to Use the Wearable Device in Taiwan: A Case Study on Xiaomi Mi Band. In Advances in Intelligent Systems and Computing; Springer: Berlin, Germany, 2018; Volume 661, pp. 283–292. ISBN 9783319676173. [Google Scholar]
- Hulley, S.; Cummings, S.; Browner, W.; Grady, D.; Newman, T. Diseño de Investigaciones Clínicas, 4th ed.; Wolters Kluwer Health: Barcelona, Spain, 2014. [Google Scholar]
- Chan, A.; Tetzlaff, J.M.; Altman, D.G.; Laupacis, A.; Gøtzsche, P.C.; Krleža-Jerić, K.; Hróbjartsson, A.; Mann, H.; Dickersin, K.; Berlin, J.A.; et al. SPIRIT 2013 Statement: Defining Standard Protocol Items for Clinical Trials. Ann. Intern. Med. 2013, 158, 200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Zambotti, M.; Rosas, L.; Colrain, I.M.; Baker, F.C. The Sleep of the Ring: Comparison of the ŌURA Sleep Tracker against Polysomnography. Behav. Sleep Med. 2019, 17, 124–136. [Google Scholar] [CrossRef] [PubMed]
- Buysse, D.J.; Reynolds, C.F.; Monk, T.H.; Berman, S.R.; Kupfer, D.J. The Pittsburgh Sleep Quality Index (PSQI): A new instrument for psychiatric research and practice. Psychiatry Res. 1989, 28, 193–213. [Google Scholar] [CrossRef]
- Jafari, B.; Mohsenin, V. Polysomnography. Clin. Chest Med. 2010, 31, 287–297. [Google Scholar] [CrossRef]
- Iber, C.; Ancoli-Israel, S.; Chesson, A.L.; Quan, S.F. The AASM Manual for the Scoring of Sleep and Associated Events: Rules, Terminology and Technical Specifications; American Academy of Sleep Medicine, Ed.; American Academy of Sleep Medicine: Westchester, NY, USA, 2007. [Google Scholar]
- Kemp, B.; Olivan, J. European data format ‘plus’ (EDF+), an EDF alike standard format for the exchange of physiological data. Clin. Neurophysiol. 2003, 114, 1755–1761. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum Associates: Hillsdale, NJ, USA, 1998. [Google Scholar]
- Bunce, C. Correlation, Agreement, and Bland–Altman Analysis: Statistical Analysis of Method Comparison Studies. Am. J. Ophthalmol. 2009, 148, 4–6. [Google Scholar] [CrossRef]
- Martin Bland, J.; Altman, D. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986, 327, 307–310. [Google Scholar] [CrossRef]
- Agencia Española de Protección de datos Reglamento General de Protección de Datos. Available online: http://www.agpd.es/portalwebAGPD/temas/reglamento/index-ides-idphp.php (accessed on 26 January 2021).
- The European Parliament; The Council of the European Union. Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the Protection of Natural Persons with Regard to the Processing of Personal Data and on the Free Movement of such Data, and Repealing; European Parliament: Brussels, Belgium, 2016; pp. 45–62. [Google Scholar]
- Faulkner, S.; Mairs, H. An exploration of the role of the occupational therapist in relation to sleep problems in mental health settings. Br. J. Occup. Ther. 2015, 78, 516–524. [Google Scholar] [CrossRef]
Variable | Description | Dimension |
---|---|---|
Time in bed (TIB) | Total time the patient is laying down | min |
Sleep onset latency (SOL) | Length of time from full wakefulness to sleep | min |
Wake after sleep onset (WASO) | Periods of wakefulness after defined sleep onset | min |
Sleep efficiency (SE) | Time asleep/TIB × 100 | % |
Light sleep | N1 + N2 sleep stages | min |
Deep sleep | N3 sleep stages | min |
Rapid Eye Movement (REM) sleep | - | min |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Concheiro-Moscoso, P.; Martínez-Martínez, F.J.; Miranda-Duro, M.d.C.; Pousada, T.; Nieto-Riveiro, L.; Groba, B.; Mejuto-Muiño, F.J.; Pereira, J. Study Protocol on the Validation of the Quality of Sleep Data from Xiaomi Domestic Wristbands. Int. J. Environ. Res. Public Health 2021, 18, 1106. https://doi.org/10.3390/ijerph18031106
Concheiro-Moscoso P, Martínez-Martínez FJ, Miranda-Duro MdC, Pousada T, Nieto-Riveiro L, Groba B, Mejuto-Muiño FJ, Pereira J. Study Protocol on the Validation of the Quality of Sleep Data from Xiaomi Domestic Wristbands. International Journal of Environmental Research and Public Health. 2021; 18(3):1106. https://doi.org/10.3390/ijerph18031106
Chicago/Turabian StyleConcheiro-Moscoso, Patricia, Francisco José Martínez-Martínez, María del Carmen Miranda-Duro, Thais Pousada, Laura Nieto-Riveiro, Betania Groba, Francisco Javier Mejuto-Muiño, and Javier Pereira. 2021. "Study Protocol on the Validation of the Quality of Sleep Data from Xiaomi Domestic Wristbands" International Journal of Environmental Research and Public Health 18, no. 3: 1106. https://doi.org/10.3390/ijerph18031106
APA StyleConcheiro-Moscoso, P., Martínez-Martínez, F. J., Miranda-Duro, M. d. C., Pousada, T., Nieto-Riveiro, L., Groba, B., Mejuto-Muiño, F. J., & Pereira, J. (2021). Study Protocol on the Validation of the Quality of Sleep Data from Xiaomi Domestic Wristbands. International Journal of Environmental Research and Public Health, 18(3), 1106. https://doi.org/10.3390/ijerph18031106