Greater Power but Not Strength Gains Using Flywheel Versus Equivolumed Traditional Strength Training in Junior Basketball Players
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Study Design
2.3. Measurements
2.4. Training Interventions
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Suchomel, T.J.; Nimphius, S.; Bellon, C.R.; Stone, M.H. The importance of muscular strength: Training considerations. Sports Med. 2018, 48, 765–785. [Google Scholar] [CrossRef]
- Cormie, P.; McGuigan, M.R.; Newton, R.U. Developing maximal neuromuscular power: Part 1. Biological basis of maximal power production. Sports Med. 2011, 41, 17–38. [Google Scholar] [CrossRef]
- McGuigan, M.R.; Wright, G.A.; Fleck, S.J. Strength training for athletes: Does it really help sports performance? Int. J. Sports Physiol. Perform. 2012, 7, 2–5. [Google Scholar] [CrossRef] [Green Version]
- Hernández-Davó, J.L.; Sabido, R.; Behm, D.G.; Blazevich, A.J. Effects of resistance training using known vs unknown loads on eccentric-phase adaptations and concentric velocity. Scand. J. Med. Sci. Sports 2018, 28, 407–417. [Google Scholar] [CrossRef] [PubMed]
- Illera-Domínguez, V.; Nuell, S.; Carmona, G.; Padullés, J.M.; Padullés, X.; Lloret, M.; Cussó, R.; Alomar, X.; Cadefau, J.A. Early Functional and Morphological Muscle Adaptations During Short-Term Inertial-Squat Training. Front. Physiol. 2018, 9, 1265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- American College of Sports Medicine. American College of Sports Medicine position stand. Progression models in resistance training for healthy adults. Med. Sci. Sports Exerc. 2009, 41, 687–708. [Google Scholar] [CrossRef] [PubMed]
- Dudley, G.A.; Tesch, P.A.; Miller, B.J.; Buchanan, P. Importance of eccentric actions in performance adaptations to resistance training. Aviat. Space Environ. Med. 1991, 62, 543–550. [Google Scholar] [PubMed]
- McNeill, C.; Beaven, C.; McMaster, D.; Gill, N. Eccentric Training Interventions and Team Sport Athletes. J. Funct. Morphol. Kinesiol. 2019, 4, 67. [Google Scholar] [CrossRef] [Green Version]
- Douglas, J.; Pearson, S.; Ross, A.; McGuigan, M. Chronic adaptations to eccentric training: A systematic review. Sports Med. 2017, 47, 917–941. [Google Scholar] [CrossRef]
- Tesch, P.A.; Fernandez-Gonzalo, R.; Lundberg, T.R. Clinical applications of iso-inertial, eccentric-overload (YoYo) resistance exercise. Front. Physiol. 2017, 8, 241. [Google Scholar] [CrossRef] [Green Version]
- Franchi, M.; Maffiuletti, N. Distinct modalities of eccentric exercise: Different recipes, not the same dish. J. Appl. Physiol. 2019, 127, 881–883. [Google Scholar] [CrossRef] [PubMed]
- Chiu, L.Z.; Salem, G.J. Comparison of joint kinetics during free weight and flywheel resistance exercise. J. Strength Cond. Res. 2006, 20, 555–562. [Google Scholar] [CrossRef]
- Petré, H.; Wernstål, F.; Mattsson, C.M. Effects of flywheel training on strength-related variables: A meta-analysis. Sports Med. Open 2018, 4, 55. [Google Scholar] [CrossRef] [PubMed]
- de Hoyo, M.; Pozzo, M.; Sañudo, B.; Carrasco, L.; Gonzalo-Skok, O.; Domínguez-Cobo, S.; Morán-Camacho, E. Effects of a 10-week in-season eccentric overload training program on muscle-injury prevention and performance in junior elite soccer players. Int. J. Sports Physiol. Perform. 2015, 10, 46–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tous-Fajardo, J.; Gonzalo-Skok, O.; Arjol-Serrano, J.L.; Tesch, P. Enhancing change-of-direction speed in soccer players by functional inertial eccentric overload and vibration training. Int. J. Sports Physiol. Perform. 2016, 11, 66–73. [Google Scholar] [CrossRef] [PubMed]
- Askling, C.; Karlsson, J.; Thorstensson, A. Hamstring injury occurrence in elite soccer players after preseason strength training with eccentric overload. Scand J. Med. Sci. Sports 2003, 13, 244–250. [Google Scholar] [CrossRef]
- Coratella, G.; Beato, M.; Cè, E.; Scurati, R.; Milanese, C.; Schena, F.; Esposito, F. Effects of in-season enhanced negative work-based vs traditional weight training on change of direction and hamstrings-to-quadriceps ratio in soccer players. Biol. Sport 2019, 36, 241–248. [Google Scholar] [CrossRef]
- Fiorilli, G.; Mariano, I.; Iuliano, E.; Giombini, A.; Ciccarelli, A.; Buonsenso, A.; Calcagno, G.; di Cagno, A. Isoinertial Eccentric-Overload Training in Young Soccer Players: Effects on Strength, Sprint, Change of Direction, Agility and Soccer Shooting Precision. J. Sports Sci. Med. 2020, 19, 213–223. [Google Scholar]
- Maroto-Izquierdo, S.; García-López, D.; de Paz, J.A. Functional and muscle-size effects of flywheel resistance training with eccentric-overload in professional handball players. J. Hum. Kinet. 2017, 60, 133–143. [Google Scholar] [CrossRef] [Green Version]
- Sabido, R.; Hernández-Davó, J.L.; Botella, J.; Navarro, A.; Tous-Fajardo, J. Effects of adding a weekly eccentric-overload training session on strength and athletic performance in team-handball players. Eur. J. Sport Sci. 2017, 17, 530–538. [Google Scholar] [CrossRef]
- Gual, G.; Fort-Vanmeerhaeghe, A.; Romero-Rodrıguez, D.; Tesch, P.A. Effects of in-season inertial resistance training with eccentric overload in a sports population at risk for patellar tendinopathy. J. Strength Cond. Res. 2016, 30, 1834–1842. [Google Scholar] [CrossRef] [PubMed]
- Stojanović, E.; Stojiljković, N.; Scanlan, A.; Dalbo, V.; Berkelmans, D.; Milanović, Z. The Activity Demands and Physiological Responses Encountered During Basketball Match-Play: A Systematic Review. Sports Med. 2018, 48, 975–986. [Google Scholar] [CrossRef] [PubMed]
- Cormie, P.; McGuigan, M.R.; Newton, R.U. Developing maximal neuromuscular power. Part 2—Training considerations for improving maximal power production. Sports Med. 2011, 41, 125–146. [Google Scholar] [CrossRef] [PubMed]
- Calleja González, J.; Mielgo Ayuso, J.; Lekue, J.A.; Leibar, X.; Erauzkin, J.; Jukić, I.; Ostojić, S.M.; Ponce-González, J.G.; Fuentes-Azpiroz, M.; Terrados, N. Anthropometry and performance of top youth international male basketball players in Spanish national academy. Nutr. Hosp. 2018, 35, 1331–1339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harries, S.K.; Lubans, D.R.; Callister, R. Resistance training to improve power and sports performance in adolescent athletes: A systematic review and meta-analysis. J. Sci. Med. Sport 2012, 15, 532–540. [Google Scholar] [CrossRef] [PubMed]
- Gonzalo-Skok, O.; Tous-Fajardo, J.; Suarez-Arrones, L.; Arjol-Serrano, J.L.; Casajús, J.A.; Mendez-Villanueva, A. Single-leg power output and between-limb imbalances in team sports players: Unilateral vs. bilateral combined resistance training. Int. J. Sports Physiol. Perform. 2016, 32, 1–44. [Google Scholar] [CrossRef]
- Hellmann, F.; Verdi, M.; Schlemper, B.R., Jr.; Caponi, S. 50th anniversary of the Declaration of Helsinki: The double standard was introduced. Arch. Med. Res. 2014, 45, 600–601. [Google Scholar] [CrossRef] [PubMed]
- Stewart, A.; Marfell-Jones, M.; Olds, T.; Ridder, H. International Standards for Anthropometric Assessment; International Society for the Advancement of Kinanthropometry—ISAK: Lower Hutt, New Zealand, 2011. [Google Scholar]
- Bosco, C.; Luhtanen, P.; Komi, P.V. A simple method for measurement of mechanical power in jumping. Eur. J. Appl. Physiol. Occup. 1983, 50, 273–282. [Google Scholar] [CrossRef]
- Marković, G.; Dizdar, D.; Jukić, I.; Cardinale, M. Reliability and factorial validity of squat and countermovement jump tests. J. Strength Cond. Res. 2004, 18, 551–555. [Google Scholar] [CrossRef]
- Stølen, T.; Chamari, K.; Castagna, C.; Wisløff, U. Physiology of soccer: An update. Sports Med. 2005, 35, 501–536. [Google Scholar] [CrossRef]
- Semenick, D. Tests and measurements: The T-test. Strength Cond. J. 1990, 12, 36–37. [Google Scholar] [CrossRef]
- Wen, N.; Dalbo, V.J.; Burgos, B.; Pyne, D.B.; Scanlan, A.T. Power Testing in Basketball: Current Practice and Future Recommendations. J. Strength Cond. Res. 2018, 32, 2677–2691. [Google Scholar] [CrossRef] [PubMed]
- Sabido, R.; Hernández-Davó, J.L.; Pereyra-Gerber, G.T. Influence of Different Inertial Loads on Basic Training Variables during the Flywheel Squat Exercise. Int. J. Sports Physiol. Perform. 2018, 13, 482–489. [Google Scholar] [CrossRef] [PubMed]
- Tous-Fajardo, J.; Maldonado, R.A.; Quintana, J.M.; Pozzo, M.; Tesch, P.A. The flywheel leg-curl machine: Offering eccentric overload for hamstring development. Int. J. Sports Physiol. Perform. 2006, 1, 293–298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hopkins, W.; Marshall, S.; Batterham, A.; Hanin, J. Progressive statistics for studies in sports medicine and exercise science. Med. Sci. Sports Exerc. 2009, 41, 3–13. [Google Scholar] [CrossRef] [Green Version]
- Sagelv, E.H.; Pedersen, S.; Nilsen, L.P.R.; Casolo, A.; Welde, B.; Randers, M.B.; Pettersen, S.A. Flywheel squats versus free weight high load squats for improving high velocity movements in football. A randomized controlled trial. BMC Sports Sci. Med. Rehabil. 2020, 12, 61. [Google Scholar] [CrossRef] [PubMed]
- Behm, D.G.; Sale, D.G. Intended rather than actual movement velocity determines velocity-specific training response. J. Appl. Physiol. 1993, 74, 359–368. [Google Scholar] [CrossRef]
- Vicens-Bordas, J.; Esteve, E.; Fort-Vanmeerhaeghe, A.; Bandholm, T.; Thorborg, K. Is inertial flywheel resistance training superior to gravity-dependent resistance training in improving muscle strength? A systematic review with meta-analyses. J. Sci. Med. Sport 2018, 21, 75–83. [Google Scholar] [CrossRef]
- de Hoyo, M.; Sañudo, B.; Carrasco, L.; Domínguez-Cobo, S.; Mateo-Cortes, J.; Cadenas-Sánchez, M.M.; Nimphius, S. Effects of Traditional Versus Horizontal Inertial Flywheel Power Training on Common Sport-Related Tasks. J. Hum. Kinet. 2015, 47, 155–167. [Google Scholar] [CrossRef] [Green Version]
- Behm, D.G.; Faigenbaum, A.D.; Falk, B.; Klentrou, P. Canadian Society for Exercise Physiology position paper: Resistance training in children and adolescents. Appl. Physiol. Nutr. Metab. 2008, 33, 547–561. [Google Scholar] [CrossRef]
- Prieske, O.; Muehlbauer, T.; Borde, R.; Gube, M.; Bruhn, S.; Behm, D.G.; Granacher, U. Neuromuscular and athletic performance following core strength training in elite youth soccer: Role of instability. Scand. J. Med. Sci. Sports 2016, 26, 48–56. [Google Scholar] [CrossRef] [PubMed]
- Behm, D.G.; Young, J.D.; Whitten, J.H.D.; Reid, J.C.; Quigley, P.J.; Low, J.; Li, Y.; Lima, C.D.; Hodgson, D.D.; Chaouachi, A.; et al. Effectiveness of Traditional Strength vs. Power Training on Muscle Strength, Power and Speed with Youth: A Systematic Review and Meta-Analysis. Front. Physiol. 2017, 8, 423. [Google Scholar] [CrossRef] [PubMed]
- Delextrat, A.; Cohen, D. Physiological testing of basketball players: Toward a standard evaluation of anaerobic fitness. J. Strength Cond. Res. 2008, 22, 1066–1072. [Google Scholar] [CrossRef] [PubMed]
- Townsend, J.R.; Bender, D.; Vantrease, W.C.; Hudy, J.; Huet, K.; Williamson, C.; Bechke, E.; Serafini, R.; Mangine, G.T. Isometric Midthigh Pull Performance Is Associated with Athletic Performance and Sprinting Kinetics in Division I Men and Women’s Basketball Players. J. Strength Cond. Res. 2019, 33, 2665–2673. [Google Scholar] [CrossRef] [PubMed]
- Campos, G.E.; Luecke, T.J.; Wendeln, H.K.; Toma, K.; Hagerman, F.C.; Murray, T.F.; Ragg, K.E.; Ratamess, N.A.; Kraemer, W.J.; Staron, R.S. Muscular adaptations in response to three different resistance-training regimens: Specificity of repetition maximum training zones. Eur. J. Appl. Physiol. 2002, 88, 50–60. [Google Scholar] [CrossRef] [PubMed]
- Heggelund, J.; Fimland, M.S.; Helgerud, J.; Hoff, J. Maximal strength training improves work economy, rate of force development and maximal strength more than conventional strength training. Eur. J. Appl. Physiol. 2013, 113, 1565–1573. [Google Scholar] [CrossRef]
- Douglas, J.; Pearson, S.; Ross, A.; McGuigan, M. Eccentric exercise: Physiological characteristics and acute Responses. Sport Med. 2017, 47, 663–675. [Google Scholar] [CrossRef]
- Hody, S.; Croisier, J.L.; Bury, T.; Rogister, B.; Leprince, P. Eccentric Muscle Contractions: Risks and Benefits. Front. Physiol. 2019, 10, 536. [Google Scholar] [CrossRef]
- Takarada, Y.; Hirano, Y.; Ishige, Y.; Ishii, N. Stretch-induced enhancement of mechanical power output in human multijoint exercise with countermovement. J. Appl. Physiol. 1997, 83, 1749–1755. [Google Scholar] [CrossRef]
- Doan, B.K.; Newton, R.U.; Marsit, J.L.; Triplett-McBride, N.T.; Koziris, L.P.; Fry, A.C.; Kraemer, W.J. Effects of increased eccentric loading on bench press 1RM. J. Strength Cond. Res. 2002, 16, 9–13. [Google Scholar]
- Sheppard, J.M.; Young, K. Using additional eccentric loads to increase concentric performance in the bench throw. J. Strength Cond. Res. 2010, 24, 2853–2856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
FST | TST |
---|---|
Week 1–2 | Week 1–2 |
Number of training sessions: 1 | Number of training sessions: 1 |
One-arm dumbbell row (2 × 8) | One-arm dumbbell row (2 × 8) |
Rotational pallof press 2 × (2 × 12–15) | Rotational pallof press 2 × (2 × 12–15) |
Biceps curls + upright row complex (2 × 8) | Biceps curls + upright row complex (2 × 8) |
Half squat on isoinertial device (2 × 8) | Half squat with free weights (2 × 8) |
Romanian Deadlift (RDL) on isoinertial device (2 × 8) | Romanian deadlift (RDL) with free weights (2 × 8) |
Week 3–4 | Week 3–4 |
Number of training sessions: 1 | Number of training sessions: 1 |
One-arm dumbbell row (3 × 8) | One-arm dumbbell row (3 × 8) |
Rotational pallof press 2× (3 × 12–15) | Rotational pallof press 2 × (3 × 12–15) |
Biceps curls + upright row complex (3 × 8) | Biceps curls + upright row complex (3 × 8) |
Half squat on isoinertial device (3 × 8) | Half squat with free weights (3 × 8) |
Romanian Deadlift (RDL) on isoinertial device (3 × 8) | Romanian deadlift (RDL) with free weights (3 × 8) |
Week 5–6 | Week 5–6 |
Number of training sessions: 2 | Number of training sessions: 2 |
One-arm dumbbell row (3 × 8) | One-arm dumbbell row (3 × 8) |
Rotational pallof press 2 × (3 × 12–15) | Rotational pallof press 2 × (3 × 12–15) |
Biceps curls + upright row complex (3 × 8) | Biceps curls + upright row complex (3 × 8) |
Half squat on isoinertial device (3 × 8) | Half squat with free weights (3 × 8) |
Romanian Deadlift (RDL) on isoinertial device (3 × 8) | Romanian deadlift (RDL) with free weights (3 × 8) |
Week 7–8 | Week 7–8 |
Number of training sessions: 2 | Number of training sessions: 2 |
One-arm dumbbell row (4 × 8) | One-arm dumbbell row (4 × 8) |
Rotational pallof press 2 × (4 × 12–15) | Rotational pallof press 2 × (4 × 12–15) |
Biceps curls + upright row complex (4 × 8) | Biceps curls + upright row complex (4 × 8) |
Half squat on isoinertial device (4 × 8) | Half squat with free weights (4 × 8) |
Romanian Deadlift (RDL) on isoinertial device (4 × 8) | Romanian deadlift (RDL) with free weights (4 × 8) |
FST | TST | CON | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
IN | FIN | % | d | IN | FIN | % | d | IN | FIN | % | d | p | |
ISOMET | 92.33 ± 10.57 | 109.83 ± 7.81 | 18.7 | 1.883 | 90.25 ± 10.35 | 105.25 ± 9.36 | 16.6 | 1.520 | 92.42 ± 4.08 | 94.33 ± 3.28 | 2.9 | 0.516 | 0.000 ‡ |
CMJ | 52.36 ± 3.33 | 59.29 ± 2.97 | 11.7 | 2.196 | 51.45 ± 3.61 | 55.22 ± 3.07 | 6.8 | 1.125 | 50.77 ± 2.53 | 50.92 ± 2.56 | 0.3 | 0.059 | 0.001 †,‡,∆ |
SPR5m | 1.16 ± 0.04 | 1.04 ± 0.02 | 10.3 | 3.795 | 1.18 ± 0.07 | 1.11 ± 0.05 | 5.9 | 1.151 | 1.18 ± 0.03 | 1.14 ± 0.06 | 3.4 | 0.843 | 0.010 †,‡ |
SPR20m | 3.20 ± 0.11 | 3.07 ± 0.09 | 4.1 | 1.294 | 3.24 ± 0.10 | 3.13 ± 0.11 | 3.4 | 1.046 | 3.21 ± 0.051 | 3.19 ± 0.56 | 0.6 | 0.05 | 0.088 |
t-test | 10.07 ± 0.10 | 9.83 ± 0.07 | 2.4 | 2.781 | 10.04 ± 0.09 | 9.90 ± 0.08 | 1.4 | 1.644 | 10.12 ± 0.07 | 10.06 ± 0.06 | 0.6 | 0.92 | 0.000 †,‡,∆ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stojanović, M.D.M.; Mikić, M.; Drid, P.; Calleja-González, J.; Maksimović, N.; Belegišanin, B.; Sekulović, V. Greater Power but Not Strength Gains Using Flywheel Versus Equivolumed Traditional Strength Training in Junior Basketball Players. Int. J. Environ. Res. Public Health 2021, 18, 1181. https://doi.org/10.3390/ijerph18031181
Stojanović MDM, Mikić M, Drid P, Calleja-González J, Maksimović N, Belegišanin B, Sekulović V. Greater Power but Not Strength Gains Using Flywheel Versus Equivolumed Traditional Strength Training in Junior Basketball Players. International Journal of Environmental Research and Public Health. 2021; 18(3):1181. https://doi.org/10.3390/ijerph18031181
Chicago/Turabian StyleStojanović, Marko D. M., Mladen Mikić, Patrik Drid, Julio Calleja-González, Nebojša Maksimović, Bogdan Belegišanin, and Veselin Sekulović. 2021. "Greater Power but Not Strength Gains Using Flywheel Versus Equivolumed Traditional Strength Training in Junior Basketball Players" International Journal of Environmental Research and Public Health 18, no. 3: 1181. https://doi.org/10.3390/ijerph18031181
APA StyleStojanović, M. D. M., Mikić, M., Drid, P., Calleja-González, J., Maksimović, N., Belegišanin, B., & Sekulović, V. (2021). Greater Power but Not Strength Gains Using Flywheel Versus Equivolumed Traditional Strength Training in Junior Basketball Players. International Journal of Environmental Research and Public Health, 18(3), 1181. https://doi.org/10.3390/ijerph18031181