Gestational Exposure to Phthalates and Social Responsiveness Scores in Children Using Quantile Regression: The EARLI and HOME Studies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Phthalate Exposure Assessment
2.3. ASD-Related Behavior Assessment
2.4. Covariates
2.5. Statistical Analysis
3. Results
3.1. Gestational Maternal Urinary Phthalate Concentrations and Social Responsiveness Scores
3.2. Secondary and Sensitivity Analyses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hauser, R.; Calafat, A.M. Phthalates and human health. Occup. Environ. Med. 2005, 62, 806–818. [Google Scholar] [CrossRef] [Green Version]
- Duty, S.M.; Ackerman, R.M.; Calafat, A.M.; Hauser, R. Personal care product use predicts urinary concentrations of some phthalate monoesters. Environ. Health Perspect. 2005, 113, 1530–1535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ejaredar, M.; Nyanza, E.C.; Ten Eycke, K.; Dewey, D. Phthalate exposure and childrens neurodevelopment: A systematic review. Environ. Res. 2015, 142, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Serrano, S.E.; Braun, J.; Trasande, L.; Dills, R.; Sathyanarayana, S. Phthalates and diet: A review of the food monitoring and epidemiology data. Environ. Health Glob. Access Sci. Source 2014, 13, 43. [Google Scholar] [CrossRef] [Green Version]
- Sakhi, A.K.; Lillegaard, I.T.L.; Voorspoels, S.; Carlsen, M.H.; Løken, E.B.; Brantsæter, A.L.; Haugen, M.; Meltzer, H.M.; Thomsen, C. Concentrations of phthalates and bisphenol A in Norwegian foods and beverages and estimated dietary exposure in adults. Environ. Int. 2014, 73, 259–269. [Google Scholar] [CrossRef] [PubMed]
- Braun, J.M.; Sathyanarayana, S.; Hauser, R. Phthalate exposure and children’s health. Curr. Opin. Pediatr. 2013, 25, 247–254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meeker, J.D.; Sathyanarayana, S.; Swan, S.H. Phthalates and other additives in plastics: Human exposure and associated health outcomes. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2009, 364, 2097–2113. [Google Scholar] [CrossRef] [Green Version]
- Adibi, J.J.; Perera, F.P.; Jedrychowski, W.; Camann, D.E.; Barr, D.; Jacek, R.; Whyatt, R.M. Prenatal exposures to phthalates among women in New York City and Krakow, Poland. Environ. Health Perspect. 2003, 111, 1719–1722. [Google Scholar] [CrossRef] [Green Version]
- Rudel, R.A.; Camann, D.E.; Spengler, J.D.; Korn, L.R.; Brody, J.G. Phthalates, alkylphenols, pesticides, polybrominated diphenyl ethers, and other endocrine-disrupting compounds in indoor air and dust. Environ. Sci. Technol. 2003, 37, 4543–4553. [Google Scholar] [CrossRef]
- Andersen, C.; Krais, A.M.; Eriksson, A.C.; Jakobsson, J.; Löndahl, J.; Nielsen, J.; Lindh, C.H.; Pagels, J.; Gudmundsson, A.; Wierzbicka, A. Inhalation and Dermal Uptake of Particle and Gas-Phase Phthalates-A Human Exposure Study. Environ. Sci. Technol. 2018, 52, 12792–12800. [Google Scholar] [CrossRef]
- Agency for Toxic Substances and Disease Registry (ATSDR) Toxicological Profile for Di(2-Ethylhexyl)Phthalate (DEHP). Available online: https://www.atsdr.cdc.gov/toxprofiles/tp.asp?id=684&tid=65 (accessed on 18 January 2021).
- ATSDR. Registry AAfTSaD. Toxicological Profile for di-n-Butyl Phthalate (DBP); Agency for Toxic Substances and Disease Registry: Atlanta, GA, USA, 2001. [Google Scholar]
- ATSDR. Registry AAfTSaD. Toxicological Profile for Diethyl Phthalate (DEP); Agency for Toxic Substances and Disease Registry: Atlanta, GA, USA, 1995. [Google Scholar]
- Chopra, V.; Harley, K.; Lahiff, M.; Eskenazi, B. Association between phthalates and attention deficit disorder and learning disability in U.S. children, 6-15 years. Environ. Res. 2014, 128, 64–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zota, A.R.; Calafat, A.M.; Woodruff, T.J. Temporal trends in phthalate exposures: Findings from the National Health and Nutrition Examination Survey, 2001–2010. Environ. Health Perspect. 2014, 122, 235–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, M.J.; Barr, D.B.; Reidy, J.A.; Malek, N.A.; Hodge, C.C.; Caudill, S.P.; Brock, J.W.; Needham, L.L.; Calafat, A.M. Urinary levels of seven phthalate metabolites in the U.S. population from the National Health and Nutrition Examination Survey (NHANES) 1999–2000. Environ. Health Perspect. 2004, 112, 331–338. [Google Scholar] [CrossRef] [PubMed]
- Wittassek, M.; Angerer, J.; Kolossa-Gehring, M.; Schäfer, S.D.; Klockenbusch, W.; Dobler, L.; Günsel, A.K.; Müller, A.; Wiesmüller, G.A. Fetal exposure to phthalates—A pilot study. Int. J. Hyg. Environ. Health 2009, 212, 492–498. [Google Scholar] [CrossRef]
- Huang, H.-B.; Pan, W.-H.; Chang, J.-W.; Chiang, H.-C.; Guo, Y.L.; Jaakkola, J.J.K.; Huang, P.-C. Does exposure to phthalates influence thyroid function and growth hormone homeostasis? The Taiwan Environmental Survey for Toxicants (TEST) 2013. Environ. Res. 2017, 153, 63–72. [Google Scholar] [CrossRef] [Green Version]
- Meeker, J.D.; Calafat, A.M.; Hauser, R. Di(2-ethylhexyl) phthalate metabolites may alter thyroid hormone levels in men. Environ. Health Perspect. 2007, 115, 1029–1034. [Google Scholar] [CrossRef]
- Meeker, J.D.; Ferguson, K.K. Relationship between urinary phthalate and bisphenol A concentrations and serum thyroid measures in U.S. adults and adolescents from the National Health and Nutrition Examination Survey (NHANES) 2007–2008. Environ. Health Perspect. 2011, 119, 1396–1402. [Google Scholar] [CrossRef]
- Quinn, T.A.; Ratnayake, U.; Dickinson, H.; Castillo-Melendez, M.; Walker, D.W. The feto-placental unit, and potential roles of dehydroepiandrosterone (DHEA) in prenatal and postnatal brain development: A re-examination using the spiny mouse. J. Steroid Biochem. Mol. Biol. 2016, 160, 204–213. [Google Scholar] [CrossRef]
- Hollier, L.P.; Keelan, J.A.; Hickey, M.; Maybery, M.T.; Whitehouse, A.J.O. Measurement of Androgen and Estrogen Concentrations in Cord Blood: Accuracy, Biological Interpretation, and Applications to Understanding Human Behavioral Development. Front. Endocrinol. 2014, 5. [Google Scholar] [CrossRef] [Green Version]
- Reynolds, R.M. Corticosteroid-mediated programming and the pathogenesis of obesity and diabetes. J. Steroid Biochem. Mol. Biol. 2010, 122, 3–9. [Google Scholar] [CrossRef]
- Braun, T.; Challis, J.R.; Newnham, J.P.; Sloboda, D.M. Early-life glucocorticoid exposure: The hypothalamic-pituitary-adrenal axis, placental function, and long-term disease risk. Endocr. Rev. 2013, 34, 885–916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Braun, J.M. Early-life exposure to EDCs: Role in childhood obesity and neurodevelopment. Nat. Rev. Endocrinol. 2017, 13, 161–173. [Google Scholar] [CrossRef] [Green Version]
- Park, C.; Choi, W.; Hwang, M.; Lee, Y.; Kim, S.; Yu, S.; Lee, I.; Paek, D.; Choi, K. Associations between urinary phthalate metabolites and bisphenol A levels, and serum thyroid hormones among the Korean adult population—Korean National Environmental Health Survey (KoNEHS) 2012–2014. Sci. Total Environ. 2017, 584–585, 950–957. [Google Scholar] [CrossRef] [PubMed]
- Moog, N.K.; Entringer, S.; Heim, C.; Wadhwa, P.D.; Kathmann, N.; Buss, C. Influence of maternal thyroid hormones during gestation on fetal brain development. Neuroscience 2017, 342, 68–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morreale de Escobar, G.; Obregon, M.J.; Escobar del Rey, F. Role of thyroid hormone during early brain development. Eur. J. Endocrinol. 2004, 151 (Suppl. 3), U25–U37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borch, J.; Metzdorff, S.B.; Vinggaard, A.M.; Brokken, L.; Dalgaard, M. Mechanisms underlying the anti-androgenic effects of diethylhexyl phthalate in fetal rat testis. Toxicology 2006, 223, 144–155. [Google Scholar] [CrossRef]
- Weiss, B. The intersection of neurotoxicology and endocrine disruption. Neurotoxicology 2012, 33, 1410–1419. [Google Scholar] [CrossRef] [Green Version]
- Bellinger, D.C. Prenatal Exposures to Environmental Chemicals and Children’s Neurodevelopment: An Update. Saf. Health Work 2013, 4, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Tanida, T.; Warita, K.; Ishihara, K.; Fukui, S.; Mitsuhashi, T.; Sugawara, T.; Tabuchi, Y.; Nanmori, T.; Qi, W.-M.; Inamoto, T.; et al. Fetal and neonatal exposure to three typical environmental chemicals with different mechanisms of action: Mixed exposure to phenol, phthalate, and dioxin cancels the effects of sole exposure on mouse midbrain dopaminergic nuclei. Toxicol. Lett. 2009, 189, 40–47. [Google Scholar] [CrossRef]
- Schmidt, R.J.; Lyall, K.; Hertz-Picciotto, I. Environment and Autism: Current State of the Science. Cut. Edge Psychiatry Pract. 2014, 1, 21–38. [Google Scholar]
- Miodovnik, A.; Engel, S.M.; Zhu, C.; Ye, X.; Soorya, L.V.; Silva, M.J.; Calafat, A.M.; Wolff, M.S. Endocrine disruptors and childhood social impairment. Neurotoxicology 2011, 32, 261–267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jankowska, A.; Polańska, K.; Hanke, W.; Wesołowska, E.; Ligocka, D.; Waszkowska, M.; Stańczak, A.; Tartaglione, A.M.; Mirabella, F.; Chiarotti, F.; et al. Prenatal and early postnatal phthalate exposure and child neurodevelopment at age of 7 years—Polish Mother and Child Cohort. Environ. Res. 2019, 177, 108626. [Google Scholar] [CrossRef] [PubMed]
- Alampi, J.D.; Lanphear, B.P.; Braun, J.M.; Chen, A.; Takaro, T.K.; Muckle, G.; Arbuckle, T.E.; McCandless, L.C. Gestational exposure to toxicants and autistic behaviours using Bayesian quantile regression. Am. J. Epidemiol. 2021, in press. [Google Scholar]
- Hyland, C.; Mora, A.M.; Kogut, K.; Calafat, A.M.; Harley, K.; Deardorff, J.; Holland, N.; Eskenazi, B.; Sagiv, S.K. Prenatal Exposure to Phthalates and Neurodevelopment in the CHAMACOS Cohort. Environ. Health Perspect. 2019, 127, 107010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Braun, J.M.; Kalkbrenner, A.E.; Just, A.C.; Yolton, K.; Calafat, A.M.; Sjödin, A.; Hauser, R.; Webster, G.M.; Chen, A.; Lanphear, B.P. Gestational exposure to endocrine-disrupting chemicals and reciprocal social, repetitive, and stereotypic behaviors in 4- and 5-year-old children: The HOME study. Environ. Health Perspect. 2014, 122, 513–520. [Google Scholar] [CrossRef]
- Shin, H.-M.; Schmidt, R.J.; Tancredi, D.; Barkoski, J.; Ozonoff, S.; Bennett, D.H.; Hertz-Picciotto, I. Prenatal exposure to phthalates and autism spectrum disorder in the MARBLES study. Environ. Health Glob. Access Sci. Source 2018, 17, 85. [Google Scholar] [CrossRef] [Green Version]
- Gascon, M.; Valvi, D.; Forns, J.; Casas, M.; Martínez, D.; Júlvez, J.; Monfort, N.; Ventura, R.; Sunyer, J.; Vrijheid, M. Prenatal exposure to phthalates and neuropsychological development during childhood. Int. J. Hyg. Environ. Health 2015, 218, 550–558. [Google Scholar] [CrossRef]
- Oulhote, Y.; Lanphear, B.; Braun, J.M.; Webster, G.M.; Arbuckle, T.E.; Etzel, T.; Forget-Dubois, N.; Seguin, J.R.; Bouchard, M.F.; MacFarlane, A.; et al. Gestational Exposures to Phthalates and Folic Acid, and Autistic Traits in Canadian Children. Environ. Health Perspect. 2020, 128, 27004. [Google Scholar] [CrossRef]
- Beyerlein, A. Quantile regression-opportunities and challenges from a user’s perspective. Am. J. Epidemiol. 2014, 180, 330–331. [Google Scholar] [CrossRef] [Green Version]
- Koenker, R.; Hallock, K.F. Quantile Regression. J. Econ. Perspect. 2001, 15, 143–156. [Google Scholar] [CrossRef]
- Koenker, R. Quantile Regression; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2005; ISBN 9780511130342. [Google Scholar]
- Newschaffer, C.J.; Croen, L.A.; Fallin, M.D.; Hertz-Picciotto, I.; Nguyen, D.V.; Lee, N.L.; Berry, C.A.; Farzadegan, H.; Hess, H.N.; Landa, R.J.; et al. Infant siblings and the investigation of autism risk factors. J. Neurodev. Disord. 2012, 4, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Braun, J.M.; Kalloo, G.; Chen, A.; Dietrich, K.N.; Liddy-Hicks, S.; Morgan, S.; Xu, Y.; Yolton, K.; Lanphear, B.P. Cohort Profile: The Health Outcomes and Measures of the Environment (HOME) study. Int. J. Epidemiol. 2017, 46, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fortier, I.; Burton, P.R.; Robson, P.J.; Ferretti, V.; Little, J.; L’Heureux, F.; Deschênes, M.; Knoppers, B.M.; Doiron, D.; Keers, J.C.; et al. Quality, quantity and harmony: The DataSHaPER approach to integrating data across bioclinical studies. Int. J. Epidemiol. 2010, 39, 1383–1393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fortier, I.; Doiron, D.; Burton, P.; Raina, P. Invited commentary: Consolidating data harmonization--how to obtain quality and applicability? Am. J. Epidemiol. 2011, 174, 265–266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fortier, I.; Doiron, D.; Little, J.; Ferretti, V.; L’Heureux, F.; Stolk, R.P.; Knoppers, B.M.; Hudson, T.J.; Burton, P.R. International Harmonization Initiative Is rigorous retrospective harmonization possible? Application of the DataSHaPER approach across 53 large studies. Int. J. Epidemiol. 2011, 40, 1314–1328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, M.J.; Samandar, E.; Preau, J.L.; Reidy, J.A.; Needham, L.L.; Calafat, A.M. Quantification of 22 phthalate metabolites in human urine. J. Chromatogr. B Analyt. Technol. Biomed. Life. Sci. 2007, 860, 106–112. [Google Scholar] [CrossRef] [PubMed]
- Hornung, R.W.; Reed, L.D. Estimation of Average Concentration in the Presence of Nondetectable Values. Appl. Occup. Environ. Hyg. 1990, 5, 46–51. [Google Scholar] [CrossRef]
- Buckley, J.P.; Herring, A.H.; Wolff, M.S.; Calafat, A.M.; Engel, S.M. Prenatal exposure to environmental phenols and childhood fat mass in the Mount Sinai Children’s Environmental Health Study. Environ. Int. 2016, 91, 350–356. [Google Scholar] [CrossRef] [Green Version]
- Constantino, J.; Gruber, C. (SRS-2) Social Responsiveness Scale, Second Edition; Western Psychological Services: Los Angeles, CA, USA, 2005. [Google Scholar]
- Constantino, J.N.; Davis, S.A.; Todd, R.D.; Schindler, M.K.; Gross, M.M.; Brophy, S.L.; Metzger, L.M.; Shoushtari, C.S.; Splinter, R.; Reich, W. Validation of a brief quantitative measure of autistic traits: Comparison of the social responsiveness scale with the autism diagnostic interview-revised. J. Autism. Dev. Disord. 2003, 33, 427–433. [Google Scholar] [CrossRef]
- Constantino, J.N.; Gruber, C.P.; Davis, S.; Hayes, S.; Passanante, N.; Przybeck, T. The factor structure of autistic traits. J. Child. Psychol. Psychiatry 2004, 45, 719–726. [Google Scholar] [CrossRef]
- Constantino, J.N.; Todd, R.D. Intergenerational transmission of subthreshold autistic traits in the general population. Biol. Psychiatry 2005, 57, 655–660. [Google Scholar] [CrossRef] [PubMed]
- Frazier, T.W.; Ratliff, K.R.; Gruber, C.; Zhang, Y.; Law, P.A.; Constantino, J.N. Confirmatory factor analytic structure and measurement invariance of quantitative autistic traits measured by the social responsiveness scale-2. Autism Int. J. Res. Pract. 2014, 18, 31–44. [Google Scholar] [CrossRef] [PubMed]
- Virkud, Y.V.; Todd, R.D.; Abbacchi, A.M.; Zhang, Y.; Constantino, J.N. Familial aggregation of quantitative autistic traits in multiplex versus simplex autism. Am. J. Med. Genet. Part. B Neuropsychiatr. Genet. Off. Publ. Int. Soc. Psychiatr. Genet. 2009, 150B, 328–334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duvall, J.A.; Lu, A.; Cantor, R.M.; Todd, R.D.; Constantino, J.N.; Geschwind, D.H. A quantitative trait locus analysis of social responsiveness in multiplex autism families. Am. J. Psychiatry 2007, 164, 656–662. [Google Scholar] [CrossRef] [PubMed]
- Bölte, S.; Poustka, F.; Constantino, J.N. Assessing autistic traits: Cross-cultural validation of the social responsiveness scale (SRS). Autism Res. Off. J. Int. Soc. Autism Res. 2008, 1, 354–363. [Google Scholar] [CrossRef] [PubMed]
- Braun, J.M.; Yolton, K.; Stacy, S.L.; Erar, B.; Papandonatos, G.D.; Bellinger, D.C.; Lanphear, B.P.; Chen, A. Prenatal environmental chemical exposures and longitudinal patterns of child neurobehavior. NeuroToxicology 2017, 62, 192–199. [Google Scholar] [CrossRef]
- Benowitz, N.L.; Bernert, J.T.; Caraballo, R.S.; Holiday, D.B.; Wang, J. Optimal serum cotinine levels for distinguishing cigarette smokers and nonsmokers within different racial/ethnic groups in the United States between 1999 and 2004. Am. J. Epidemiol. 2009, 169, 236–248. [Google Scholar] [CrossRef] [Green Version]
- Kim, S. Overview of Cotinine Cutoff Values for Smoking Status Classification. Int. J. Environ. Res. Public. Health 2016, 13, 1236. [Google Scholar] [CrossRef]
- Christensen, D.L.; Bilder, D.A.; Zahorodny, W.; Pettygrove, S.; Durkin, M.S.; Fitzgerald, R.T.; Rice, C.; Kurzius-Spencer, M.; Baio, J.; Yeargin-Allsopp, M. Prevalence and Characteristics of Autism Spectrum Disorder Among 4-Year-Old Children in the Autism and Developmental Disabilities Monitoring Network. J. Dev. Behav. Pediatr. JDBP 2016, 37, 1–8. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; R Core Team: Vienna, Austria, 2013. [Google Scholar]
- Rosner, B. On the estimation and testing of interclass correlations: The general case of multiple replicates for each variable. Am. J. Epidemiol. 1982, 116, 722–730. [Google Scholar] [CrossRef]
- Meeker, J.D.; Ferguson, K.K. Urinary Phthalate Metabolites Are Associated With Decreased Serum Testosterone in Men, Women, and Children From NHANES 2011–2012. J. Clin. Endocrinol. Metab. 2014, 99, 4346–4352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bennett, D.; Bellinger, D.C.; Birnbaum, L.S.; Bradman, A.; Chen, A.; Cory-Slechta, D.A.; Engel, S.M.; Fallin, M.D.; Halladay, A.; Hauser, R.; et al. Project TENDR: Targeting Environmental Neuro-Developmental Risks The TENDR Consensus Statement. Environ. Health Perspect. 2016, 124, A118–A122. [Google Scholar] [CrossRef] [PubMed]
- Factor-Litvak, P.; Insel, B.; Calafat, A.M.; Liu, X.; Perera, F.; Rauh, V.A.; Whyatt, R.M. Persistent Associations between Maternal Prenatal Exposure to Phthalates on Child IQ at Age 7 Years. PLoS ONE 2014, 9, e114003. [Google Scholar] [CrossRef] [Green Version]
- Whyatt, R.M.; Liu, X.; Rauh, V.A.; Calafat, A.M.; Just, A.C.; Hoepner, L.; Diaz, D.; Quinn, J.; Adibi, J.; Perera, F.P.; et al. Maternal prenatal urinary phthalate metabolite concentrations and child mental, psychomotor, and behavioral development at 3 years of age. Environ. Health Perspect. 2012, 120, 290–295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Engel, S.M.; Miodovnik, A.; Canfield, R.L.; Zhu, C.; Silva, M.J.; Calafat, A.M.; Wolff, M.S. Prenatal phthalate exposure is associated with childhood behavior and executive functioning. Environ. Health Perspect. 2010, 118, 565–571. [Google Scholar] [CrossRef]
- Kobrosly, R.W.; Evans, S.; Miodovnik, A.; Barrett, E.S.; Thurston, S.W.; Calafat, A.M.; Swan, S.H. Prenatal phthalate exposures and neurobehavioral development scores in boys and girls at 6-10 years of age. Environ. Health Perspect. 2014, 122, 521–528. [Google Scholar] [CrossRef] [Green Version]
- Lien, Y.-J.; Ku, H.-Y.; Su, P.-H.; Chen, S.-J.; Chen, H.-Y.; Liao, P.-C.; Chen, W.-J.; Wang, S.-L. Prenatal exposure to phthalate esters and behavioral syndromes in children at 8 years of age: Taiwan Maternal and Infant Cohort Study. Environ. Health Perspect. 2015, 123, 95–100. [Google Scholar] [CrossRef]
- Engel, S.M.; Villanger, G.D.; Nethery, R.C.; Thomsen, C.; Sakhi, A.K.; Drover, S.S.M.; Hoppin, J.A.; Zeiner, P.; Knudsen, G.P.; Reichborn-Kjennerud, T.; et al. Prenatal Phthalates, Maternal Thyroid Function, and Risk of Attention-Deficit Hyperactivity Disorder in the Norwegian Mother and Child Cohort. Environ. Health Perspect. 2018, 126, 057004. [Google Scholar] [CrossRef] [Green Version]
- Minatoya, M.; Itoh, S.; Yamazaki, K.; Araki, A.; Miyashita, C.; Tamura, N.; Yamamoto, J.; Onoda, Y.; Ogasawara, K.; Matsumura, T.; et al. Prenatal exposure to bisphenol A and phthalates and behavioral problems in children at preschool age: The Hokkaido Study on Environment and Children’s Health. Environ. Health Prev. Med. 2018, 23, 43. [Google Scholar] [CrossRef]
- Nakiwala, D.; Peyre, H.; Heude, B.; Bernard, J.Y.; Béranger, R.; Slama, R.; Philippat, C. EDEN mother-child study group In-utero exposure to phenols and phthalates and the intelligence quotient of boys at 5 years. Environ. Health Glob. Access Sci. Source 2018, 17, 17. [Google Scholar] [CrossRef]
- Huang, H.-B.; Chen, H.-Y.; Su, P.-H.; Huang, P.-C.; Sun, C.-W.; Wang, C.-J.; Chen, H.-Y.; Hsiung, C.A.; Wang, S.-L. Fetal and Childhood Exposure to Phthalate Diesters and Cognitive Function in Children Up to 12 Years of Age: Taiwanese Maternal and Infant Cohort Study. PLoS ONE 2015, 10, e0131910. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Howdeshell, K.L.; Wilson, V.S.; Furr, J.; Lambright, C.R.; Rider, C.V.; Blystone, C.R.; Hotchkiss, A.K.; Gray, L.E. A mixture of five phthalate esters inhibits fetal testicular testosterone production in the sprague-dawley rat in a cumulative, dose-additive manner. Toxicol. Sci. Off. J. Soc. Toxicol. 2008, 105, 153–165. [Google Scholar] [CrossRef] [Green Version]
- Werling, D.M.; Geschwind, D.H. Sex differences in autism spectrum disorders. Curr. Opin. Neurol. 2013, 26, 146–153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baron-Cohen, S. The extreme male brain theory of autism. Trends Cogn. Sci. 2002, 6, 248–254. [Google Scholar] [CrossRef]
- Auyeung, B.; Baron-Cohen, S.; Ashwin, E.; Knickmeyer, R.; Taylor, K.; Hackett, G. Fetal testosterone and autistic traits. Br. J. Psychol. Lond. Engl. 1953 2009, 100, 1–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radke, E.G.; Braun, J.M.; Meeker, J.D.; Cooper, G.S. Phthalate exposure and male reproductive outcomes: A systematic review of the human epidemiological evidence. Environ. Int. 2018, 121, 764–793. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Chen, X.-Z.; Huang, X.; Wang, M.; Wu, J. The association between prenatal exposure to phthalates and cognition and neurobehavior of children-evidence from birth cohorts. Neurotoxicology 2019, 73, 199–212. [Google Scholar] [CrossRef]
- Hyland, C.; Kogut, K.; Gunier, R.B.; Castorina, R.; Curl, C.; Eskenazi, B.; Bradman, A. Organophosphate pesticide dose estimation from spot and 24-hr urine samples collected from children in an agricultural community. Environ. Int. 2020, 146, 106226. [Google Scholar] [CrossRef]
- Kissel, J.C.; Curl, C.L.; Kedan, G.; Lu, C.; Griffith, W.; Barr, D.B.; Needham, L.L.; Fenske, R.A. Comparison of organophosphorus pesticide metabolite levels in single and multiple daily urine samples collected from preschool children in Washington State. J. Expo. Anal. Environ. Epidemiol. 2005, 15, 164–171. [Google Scholar] [CrossRef] [Green Version]
- Carrico, C.; Gennings, C.; Wheeler, D.C.; Factor-Litvak, P. Characterization of Weighted Quantile Sum Regression for Highly Correlated Data in a Risk Analysis Setting. J. Agric. Biol. Environ. Stat. 2015, 20, 100–120. [Google Scholar] [CrossRef]
- Bobb, J.F.; Valeri, L.; Claus Henn, B.; Christiani, D.C.; Wright, R.O.; Mazumdar, M.; Godleski, J.J.; Coull, B.A. Bayesian kernel machine regression for estimating the health effects of multi-pollutant mixtures. Biostat. Oxf. Engl. 2015, 16, 493–508. [Google Scholar] [CrossRef]
- Buckley, J.P.; Kim, H.; Wong, E.; Rebholz, C.M. Ultra-processed food consumption and exposure to phthalates and bisphenols in the US National Health and Nutrition Examination Survey, 2013–2014. Environ. Int. 2019, 131, 105057. [Google Scholar] [CrossRef]
- Lyall, K.; Schmidt, R.J.; Hertz-Picciotto, I. Maternal lifestyle and environmental risk factors for autism spectrum disorders. Int. J. Epidemiol. 2014, 43, 443–464. [Google Scholar] [CrossRef]
Variable | SRS T-Scores | |||
---|---|---|---|---|
EARLI | HOME | EARLI | HOME | |
N (%) | N (%) | Mean (SD) | Mean (SD) | |
Overall | 140 (100) | 276 (100) | 48 (11) | 52 (10) |
Maternal Age | ||||
<25 years | 2 (1) | 59 (21) | 48 (1.4) | 57 (12) |
25–<35 years | 68 (49) | 170 (62) | 50 (13) | 50 (8.1) |
35+ years | 70 (50) | 47 (17) | 46 (7.6) | 52 (13) |
Maternal Race | ||||
White | 95 (68) | 178 (64) | 48 (10) | 49 (8.5) |
Non-White | 45 (32) | 98 (36) | 48 (12) | 57 (12) |
Maternal Education | ||||
High School or less | 14 (10) | 64 (23) | 50 (10) | 58 (12) |
Some College | 40 (29) | 75 (27) | 53 (15) | 53 (9.4) |
Completed College | 86 (61) | 137 (50) | 45 (7.5) | 48 (8.3) |
Annual Income | ||||
<$30,000 | 15 (11) | 87 (32) | 53 (17) | 58 (12) |
$30,000–$75,000 | 42 (30) | 87 (32) | 50 (12) | 50 (8.9) |
≥$75,000 | 83 (59) | 102 (36) | 46 (7.9) | 47 (7.4) |
Maternal Smoking 1,2 | ||||
Non-Smoking | 132 (94) | 245 (89) | 47 (10) | 52 (11) |
Active Smoking | 8 (6) | 31 (11) | 60 (19) | 55 (8.7) |
Parity 3 | ||||
0 | -- | 128 (46) | -- | 51 (10) |
1 | 66 (47) | 86 (31) | 49 (12) | 51 (10) |
2+ | 74 (53) | 62 (23) | 47 (10) | 55 (11) |
Pre-pregnancy BMI (kg/m2) | ||||
Normal/Underweight <25 | 54 (39) | 142 (51) | 45 (8.5) | 50 (11) |
Overweight ≥25–<30 | 40 (29) | 69 (25) | 47 (9.0) | 51 (8.2) |
Obese ≥30 | 46 (33) | 65 (24) | 52 (13) | 55 (12) |
Child Sex | ||||
Male | 77 (55) | 123 (45) | 50 (13) | 51 (9.7) |
Female | 63 (45) | 153 (55) | 45 (6.9) | 53 (11) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patti, M.A.; Newschaffer, C.; Eliot, M.; Hamra, G.B.; Chen, A.; Croen, L.A.; Fallin, M.D.; Hertz-Picciotto, I.; Kalloo, G.; Khoury, J.C.; et al. Gestational Exposure to Phthalates and Social Responsiveness Scores in Children Using Quantile Regression: The EARLI and HOME Studies. Int. J. Environ. Res. Public Health 2021, 18, 1254. https://doi.org/10.3390/ijerph18031254
Patti MA, Newschaffer C, Eliot M, Hamra GB, Chen A, Croen LA, Fallin MD, Hertz-Picciotto I, Kalloo G, Khoury JC, et al. Gestational Exposure to Phthalates and Social Responsiveness Scores in Children Using Quantile Regression: The EARLI and HOME Studies. International Journal of Environmental Research and Public Health. 2021; 18(3):1254. https://doi.org/10.3390/ijerph18031254
Chicago/Turabian StylePatti, Marisa A., Craig Newschaffer, Melissa Eliot, Ghassan B. Hamra, Aimin Chen, Lisa A. Croen, M. Daniele Fallin, Irva Hertz-Picciotto, Geetika Kalloo, Jane C. Khoury, and et al. 2021. "Gestational Exposure to Phthalates and Social Responsiveness Scores in Children Using Quantile Regression: The EARLI and HOME Studies" International Journal of Environmental Research and Public Health 18, no. 3: 1254. https://doi.org/10.3390/ijerph18031254
APA StylePatti, M. A., Newschaffer, C., Eliot, M., Hamra, G. B., Chen, A., Croen, L. A., Fallin, M. D., Hertz-Picciotto, I., Kalloo, G., Khoury, J. C., Lanphear, B. P., Lyall, K., Yolton, K., & Braun, J. M. (2021). Gestational Exposure to Phthalates and Social Responsiveness Scores in Children Using Quantile Regression: The EARLI and HOME Studies. International Journal of Environmental Research and Public Health, 18(3), 1254. https://doi.org/10.3390/ijerph18031254