Can We Use Grip Strength to Predict Other Types of Hand Exertions? An Example of Manufacturing Industry Workers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Types of Hand Motions
2.3. Equipment
2.4. Procedures
2.5. Statistical Analysis
3. Results
3.1. Sex, Types of Hand Motions, and Age: Effects on Hand Strength
3.2. General Linear Models Using Demographic Variables
3.3. General Linear Model Using Strength of Opposite Hand and Demographic Variables
3.4. Prediction Models of the Hand Strength by Other Strength of Hand Motions, Demographic Variables, and Their Interactions
3.5. Prediction Models of Hand Strength by Grip Strength, Demographic Variables, and Interactions of Demographic Variables
4. Discussion
4.1. General Linear Models Using Demographic Variables
4.2. General Linear Model Using Strength of Opposite Hand and Demographic Variables
4.3. Prediction Models of the Hand Strength by Strength of Other Hand Motions, Demographic Variables, and Their Interactions
4.4. Prediction Models of Hand Strength by Grip Strength, Demographic Variables, and Interactions of Demographic Variables
4.5. Limitations and Recommendations for Future Studies
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
HGS | Hand grip strength |
WRULDs | Work-related upper limb musculoskeletal disorders |
WHO | World Health Organization |
EAWS | Ergonomic Assessment Worksheet |
KIM-MHO | Key Indicator Method for Manual Handling Operations |
OCRA | Occupational Repetitive Actions |
CTS | Carpal tunnel syndrome |
ASHT | American Society of Hand Therapists |
Adjusted R2 | Adjusted R-square |
CV | Coefficient of variation |
BMI | Body mass index |
References
- World Health Organization. International Classification of Functioning, Disability and Health: ICF; World Health Organization: Geneva, Switzerland, 2001. [Google Scholar]
- Chen, L.-K.; Lee, W.-J.; Peng, L.-N.; Liu, L.-K.; Arai, H.; Akishita, M. Recent Advances in Sarcopenia Research in Asia: 2016 Update from the Asian Working Group for Sarcopenia. J. Am. Med. Dir. Assoc. 2016, 17, 767.e761–767.e767. [Google Scholar] [CrossRef] [PubMed]
- Dodds, R.M.; Syddall, H.E.; Cooper, R.; Kuh, D.; Cooper, C.; Sayer, A.A. Global Variation in Grip Strength: A Systematic Review and Meta-Analysis of Normative Data. Age Ageing 2016, 45, 209–216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, C.R.; Jeon, Y.J.; Kim, M.C.; Jeong, T.; Koo, W.R. Reference Values for Hand Grip Strength in the South Korean Population. PLoS ONE 2018, 13, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mendes, J.; Amaral, T.F.; Borges, N.; Santos, A.; Padrao, P.; Moreira, P.; Afonso, C.; Negrao, R. Handgrip Strength Values of Portuguese Older Adults: A Population Based Study. BMC Geriatr. 2017, 17, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ong, H.L.; Abdin, E.; Chua, B.Y.; Zhang, Y.J.; Seow, E.; Vaingankar, J.A.; Chong, S.A.; Subramaniam, M. Hand-Grip Strength among Older Adults in Singapore: A Comparison with International Norms and Associative Factors. BMC Geriatr. 2017, 17, 11. [Google Scholar] [CrossRef] [Green Version]
- Steiber, N. Strong or Weak Handgrip? Normative Reference Values for the German Population across the Life Course Stratified by Sex, Age, and Body Height. PLoS ONE 2016, 11, 14. [Google Scholar] [CrossRef] [Green Version]
- Trajković, N.; Sporiš, G.; Krističević, T.; Bogataj, Š. Effects of Small-Sided Recreational Volleyball on Health Markers and Physical Fitness in Middle-Aged Men. Int. J. Environ. Res. Public Health 2020, 17, 3021. [Google Scholar] [CrossRef]
- Bogataj, S.; Pajek, M.; Pajek, J.; Ponikvar, J.B.; Paravlic, A.H. Exercise-Based Interventions in Hemodialysis Patients: A Systematic Review with a Meta-Analysis of Randomized Controlled Trials. J. Clin. Med. 2020, 9, 43. [Google Scholar] [CrossRef] [Green Version]
- Trajkovic, N.; Bogataj, S. Effects of Neuromuscular Training on Motor Competence and Physical Performance in Young Female Volleyball Players. Int. J. Environ. Res. Public Health 2020, 17, 1755. [Google Scholar] [CrossRef] [Green Version]
- Eksioglu, M. Normative Static Grip Strength of Population of Turkey, Effects of Various Factors and a Comparison with International Norms. Appl. Ergon. 2016, 52, 8–17. [Google Scholar] [CrossRef]
- Wu, S.-W.; Wu, S.-F.; Liang, H.-W.; Wu, Z.-T.; Huang, S. Measuring Factors Affecting Grip Strength in a Taiwan Chinese Population and a Comparison with Consolidated Norms. Appl. Ergon. 2009, 40, 811–815. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.C.; Bohannon, R.W.; Li, X.Y.; Sindhu, B.; Kapellusch, J. Hand-Grip Strength: Normative Reference Values and Equations for Individuals 18 to 85 Years of Age Residing in the United States. J. Orthop. Sports Phys. Ther. 2018, 48, 685. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Lin, J.-H.; Or, C.K.L. Prediction of Maximum Static Grip Strength in a Standing Posture and with Preferred Grip Span in a Chinese Sample. IISE Trans. Occup. Erg. Hum. Factors 2019, 7, 71–80. [Google Scholar] [CrossRef]
- Ugurlu, U.; Ozdogan, H. Age- and Gender-Specific Normative Data of Pinch Strengths in a Healthy Turkish Population. J. Hand Surg. Eur. Vol. 2012, 37E, 436–446. [Google Scholar] [CrossRef] [PubMed]
- Sung, P.C.; Hsu, C.C.; Lee, C.L.; Chiu, Y.S.P.; Chen, H.L. Formulating Grip Strength and Key Pinch Strength Prediction Models for Taiwanese: A Comparison between Stepwise Regression and Artificial Neural Networks. J. Ambient Intell. Hum. Comput. 2015, 6, 37–46. [Google Scholar] [CrossRef]
- Rostamzadeh, S.; Saremi, M.; Tabatabaei, S. Normative Hand Grip Strength and Prediction Models for Iranian Office Employees. Work 2019, 62, 233–241. [Google Scholar] [CrossRef]
- Nilsen, T.; Hermann, M.; Eriksen, C.S.; Dagfinrud, H.; Mowinckel, P.; Kjeken, I. Grip Force and Pinch Grip in an Adult Population: Reference Values and Factors Associated with Grip Force. Scand. J. Occup. 2012, 19, 288–296. [Google Scholar] [CrossRef]
- Mohammadian, M.; Choobineh, A.; Haghdoost, A.A.; Nejad, N.H. Investigation of Grip and Pinch Strengths in Iranian Adults and Their Correlated Anthropometric and Demographic Factors. Work 2016, 53, 429–437. [Google Scholar] [CrossRef]
- Maleki-Ghahfarokhi, A.; Dianat, I.; Feizi, H.; Asghari -Jafarabadi, M. Influences of Gender, Hand Dominance, and Anthropometric Characteristics on Different Types of Pinch Strength: A Partial Least Squares (PLS) Approach. Appl. Erg. 2019, 79, 9–16. [Google Scholar] [CrossRef]
- Lim, S.H.; Kim, Y.H.; Lee, J.S. Normative Data on Grip Strength in a Population-Based Study with Adjusting Confounding Factors: Sixth Korea National Health and Nutrition Examination Survey (2014–2015). Int. J. Environ. Res. Public Health 2019, 16, 2235. [Google Scholar] [CrossRef] [Green Version]
- Hossain, M.G.; Zyroul, R.; Pereira, B.P.; Kamarul, T. Multiple Regression Analysis of Factors Influencing Dominant Hand Grip Strength in an Adult Malaysian Population. J. Hand Surg. Eur. Vol. 2012, 37E, 65–70. [Google Scholar] [CrossRef] [PubMed]
- Eidson, C.A.; Jenkins, G.R.; Hon, K.Y.; Abernathy, A.M.; Brannon, M.B.; Pung, A.R.; Ward, K.D.; Weaver, T.E. Investigation of the Relationship between Anthropometric Measurements and Maximal Handgrip Strength in Young Adults. Work 2017, 57, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Angst, F.; Drerup, S.; Werle, S.; Herren, D.B.; Simmen, B.R.; Goldhahn, J. Prediction of grip and key pinch strength in 978 healthy subjects. BMC Musculoskelet. Disord. 2010, 11, 94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, R.; Ong, S.; Cheung, O.; Leung, J.; Woo, J. Reference Values of Grip Strength, Prevalence of Low Grip Strength, and Factors Affecting Grip Strength Values in Chinese Adults. J. Am. Med. Dir. Assoc. 2017, 18, 8. [Google Scholar] [CrossRef] [PubMed]
- Shim, J.H.; Roh, S.Y.; Kim, J.S.; Lee, D.C.; Ki, S.H.; Yang, J.W.; Jeon, M.K.; Lee, S.M. Normative Measurements of Grip and Pinch Strengths of 21st Century Korean Population. Arch. Plast. Surg. 2013, 40, 52–56. [Google Scholar] [CrossRef] [Green Version]
- Puh, U. Age-Related and Sex-Related Differences in Hand and Pinch Grip Strength in Adults. Int. J. Rehabil. Res. 2010, 33, 4–11. [Google Scholar] [CrossRef]
- Michael, A.I.; Iyun, A.O.; Olawoye, O.A.; Ademola, S.A.; Nnabuko, R.E.; Oluwatosin, O.M. Normal Values of Key Pinch Strength in a Healthy Nigerian Population. Ann. Ib. Postgrad. Med. 2015, 13, 84–88. [Google Scholar]
- Lo, V.E.-W.; Chiu, Y.-C.; Tu, H.-H.; Liu, C.-W.; Yu, C.-Y. A Pilot Study of Five Types of Maximum Hand Strength among Manufacturing Industry Workers in Taiwan. Int. J. Environ. Res. Public Health 2019, 16, 4742. [Google Scholar] [CrossRef] [Green Version]
- Dodds, R.M.; Syddall, H.E.; Cooper, R.; Benzeval, M.; Deary, I.J.; Dennison, E.M.; Der, G.; Gale, C.R.; Inskip, H.M.; Jagger, C.; et al. Grip Strength across the Life Course: Normative Data from Twelve British Studies. PLoS ONE 2014, 9, 15. [Google Scholar] [CrossRef] [Green Version]
- Bohannon, R.W. Muscle Strength: Clinical and Prognostic Value of Hand-Grip Dynamometry. Curr. Opin. Clin. Nutr. Metab. Care 2015, 18, 465–470. [Google Scholar] [CrossRef]
- Bogataj, S.; Pajek, J.; Ponikvar, J.B.; Hadzic, V.; Pajek, M. Kinesiologist-Guided Functional Exercise in addition to Intradialytic Cycling Program in End-Stage Kidney Disease Patients: A Randomised Controlled Trial. Sci. Rep. 2020, 10, 10. [Google Scholar] [CrossRef]
- Trajković, N.; Radanović, D.; Madić, D.; Andrašić, S.; Cadenas-Sanchez, C.; Mačak, D.; Popović, B. Normative Data for Handgrip Strength in Serbian Children Measured with a Bulb Dynamometer. J Hand 2020. [Google Scholar] [CrossRef]
- Ciriello, V.M.; Maikala, R.V.; O’Brien, N.V. Maximal Acceptable Torques of Six Highly Repetitive Hand-Wrist Motions for Male Industrial Workers. Hum. Factors 2013, 55, 309–322. [Google Scholar] [CrossRef]
- Potvin, J.R.; Christy Calder, I.; Cort, J.A.; Agnew, M.J.; Stephens, A. Maximal Acceptable Forces for Manual Insertions Using a Pulp Pinch, Oblique Grasp and Finger Press. Int. J. Ind. Ergon. 2006, 36, 779–787. [Google Scholar] [CrossRef]
- Schaub, K.; Caragnano, G.; Britzke, B.; Bruder, R. The European Assembly Worksheet. Theor. Issues Ergon. Sci. 2013, 14, 616–639. [Google Scholar] [CrossRef]
- Schoorlemmer, W.; Kanis, H. Operation of Controls on Everyday Products. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 1992, 36, 509–513. [Google Scholar] [CrossRef]
- Sonne, M.W.; Potvin, J.R. A Psychophysical Study to Determine Maximum Acceptable Efforts for a Thumb Abduction Task with High Duty Cycles. Ergonomics 2015, 58, 118–127. [Google Scholar] [CrossRef]
- Schaub, K.; Wakula, J.; Berg, K.; Kaiser, B.; Bruder, R.; Glitsch, U.; Ellegast, R.-P. The Assembly Specific Force Atlas. Hum. Factors Erg. Manuf. Serv. Ind. 2015, 25, 329–339. [Google Scholar] [CrossRef]
- Mathiowetz, V.; Kashman, N.; Volland, G.; Weber, K.; Dowe, M.; Rogers, S. Grip and Pinch Strength: Normative Data for Adults. Arch. Phys. Med. Rehabil. 1985, 66, 69–74. [Google Scholar]
- Chaffin, D.B. Ergonomics Guide for the Assessment of Human Static Strength. Am. Ind. Hyg. Assoc. J. 1975, 36, 505–511. [Google Scholar] [CrossRef]
- MacDermid, J.; Solomon, G.; Valdes, K. American Society of Hand Therapists. In Clinical Assessment Recommendations, 3rd ed.; MacDermid, J., Ed.; American Society of Hand Therapists: Mt. Laurel, NJ, USA, 2015. [Google Scholar]
- Bogataj, Š.; Pajek, M.; Andrašić, S.; Trajković, N. Concurrent Validity and Reliability of My Jump 2 App for Measuring Vertical Jump Height in Recreationally Active Adults. Appl. Sci. 2020, 10, 3805. [Google Scholar] [CrossRef]
- Bogataj, Š.; Pajek, M.; Hadžić, V.; Andrašić, S.; Padulo, J.; Trajković, N. Validity, Reliability, and Usefulness of My Jump 2 App for Measuring Vertical Jump in Primary School Children. Int. J. Environ. Res. Public Health 2020, 17, 3708. [Google Scholar] [CrossRef]
- Espinoza, F.; Le Blay, P.; Coulon, D.; Lieu, S.; Munro, J.; Jorgensen, C.; Pers, Y.-M. Handgrip Strength Measured by A Dynamometer Connected to A Smartphone: A New Applied Health Technology Solution for the Self-Assessment of Rheumatoid Arthritis Disease Activity. Rheumatology 2016, 55, 897–901. [Google Scholar] [CrossRef] [Green Version]
- Jeune, B.; Skytthe, A.; Cournil, A.; Greco, V.; Gampe, J.; Berardelli, M.; Andersen-Ranberg, K.; Passarino, G.; DeBenedictis, G.; Robine, J.-M. Handgrip Strength among Nonagenarians and Centenarians in Three European Regions. J. Gerontol. Ser. A 2006, 61, 707–712. [Google Scholar] [CrossRef] [Green Version]
- Hanten, W.P.; Chen, W.-Y.; Austin, A.A.; Brooks, R.E.; Carter, H.C.; Law, C.A.; Morgan, M.K.; Sanders, D.J.; Swan, C.A.; Vanderslice, A.L. Maximum Grip Strength in Normal Subjects from 20 to 64 Years of Age. J. Hand 1999, 12, 193–200. [Google Scholar] [CrossRef]
- Gunther, C.M.; Burger, A.; Rickert, M.; Crispin, A.; Schulz, C.U. Grip Strength in Healthy Caucasian Adults: Reference Values. J. Hand Surg. Am. Vol. 2008, 33A, 558–565. [Google Scholar] [CrossRef]
- Anakwe, R.E.; Huntley, J.S.; McEachan, J.E. Grip Strength and Forearm Circumference in a Healthy Population. J. Hand Surg. (Eur. Vol.) 2007, 32, 203–209. [Google Scholar] [CrossRef]
- Werle, S.; Goldhahn, J.; Drerup, S.; Simmen, B.R.; Sprott, H.; Herren, D.B. Age- and Gender-Specific Normative Data of Grip and Pinch Strength in a Healthy Adult Swiss Population. J. Hand Surg. (Eur. Vol.) 2009, 34, 76–84. [Google Scholar] [CrossRef]
- Harth, A.; Vetter, W.R. Grip and Pinch Strength among Selected Adult Occupational Groups. Occup. Ther. Int. 1994, 1, 13–28. [Google Scholar] [CrossRef]
- Ng, P.K.; Bee, M.C.; Saptari, A.; Mohamad, N.A. A Review of Different Pinch Techniques. Theor. Issues Ergon. Sci. 2014, 15, 517–533. [Google Scholar] [CrossRef]
- Mathiowetz, V.; Weber, K.; Volland, G.; Kashman, N. Reliability and Validity of Grip and Pinch Strength Evaluations. J. Hand Surg. Am. Vol. 1984, 9A, 222–226. [Google Scholar] [CrossRef]
- Ruiz, J.R.; España-Romero, V.; Ortega, F.B.; Sjöström, M.; Castillo, M.J.; Gutierrez, A. Hand Span Influences Optimal Grip Span in Male and Female Teenagers. J. Hand Surg. Am. Vol. 2006, 31, 1367–1372. [Google Scholar] [CrossRef] [PubMed]
Sex | N | Age (Year) | Height (cm) a | Weight (kg) a | BMI (kg/m2) a | Handspan (cm) a | Hand Dominance | |
---|---|---|---|---|---|---|---|---|
Right | Left | |||||||
Male | 99 | 39.1 (12.8) | 171.9 (5.9) ** | 73.7 (12.8) ** | 24.9 (3.8) * | 20.0 (1.9) ** | 95 (48.0%) | 4 (2.0%) |
Female | 99 | 39.1 (13.1) | 159.5 (5.0) ** | 59.0 (9.3) ** | 23.2 (3.4) * | 17.8 (1.6) ** | 91 (46.0%) | 8 (4.0%) |
All | 198 | 39.1 (12.9) | 165.7 (8.3) | 66.3 (13.4) | 24.0 (3.7) | 18.9 (2.0) | 186 (93.9%) | 12 (6.1%) |
Types of Hand Motions | Regression Equation | Adjusted-R2 |
---|---|---|
Grip_R | 62.021 − 20.092 (gender) | 0.640 |
Grip_L | 41.136 − 16.026 (gender) + 0.198 (weight) | 0.688 |
Ball of Thumb_R | 8.966 − 2.76 (gender) + 0.065 (weight) | 0.291 |
Ball of Thumb_L | 10.817 − 3.291 (gender) + 0.051 (weight) | 0.297 |
Thumb Press_R | 11.879 − 3.276 (gender) | 0.322 |
Thumb Press_L | 11.831 − 3.375 (gender) | 0.349 |
Lateral Pinch_R | 11.979 − 3.278 (gender) | 0.617 |
Lateral Pinch_L | 8.752 − 2.721 (gender) + 0.029 (weight) | 0.584 |
Palmar Pinch_R | 10.653 − 2.689 (gender) | 0.449 |
Palmar Pinch_L | 9.834 − 2.429 (gender) | 0.418 |
Type of Hand Motions | Regression Equation | Adjusted-R2 |
---|---|---|
Grip_R | 0.776 + 1.029 (Grip_L) | 0.921 |
Grip_L | 2.594 + 0.81 (Grip_R) − 1.987 (gender) + 0.045 (weight) + 0.045 (age) | 0.929 |
Ball of Thumb_R | −0.196 + 0.904 (Ball of Thumb_L) + 0.015 (weight) | 0.931 |
Ball of Thumb_L | 1.979 + 0.986 (Ball of Thumb_R) − 0.57 (gender) − 0.013 (weight) | 0.932 |
Thumb Press_R | 0.401 + 0.97 (Thumb Press_L) | 0.924 |
Thumb Press_L | 0.958 + 0.915 (Thumb Press_R) − 0.376 (gender) | 0.926 |
Lateral Pinch_R | 3.304 + 0.768 (Lateral Pinch_L) − 0.871 (gender) | 0.845 |
Lateral Pinch_L | 1.502 + 0.818 (Lateral Pinch_R) − 0.454 (gender) | 0.831 |
Palmar Pinch_R | 2.837 + 0.795 (Palmar Pinch_L) − 0.759 (gender) | 0.769 |
Palmar Pinch_L | 2.012 + 0.734 (Palmar Pinch_R) − 0.454 (gender) | 0.756 |
Laterality | Type of Hand Motions | Regression Equation | Adjusted-R2 |
---|---|---|---|
Right | Grip | 26.676 + 2.950 (Lateral Pinch_R) − 10.420 (gender) | 0.744 |
Ball of Thumb | 2.749 + 1.014 (Thumb Press_R) + 0.049 (weight) − 0.086 (Grip_R) − 0.008 (height) × (gender) | 0.746 | |
Thumb Press | 0.522 + 0.574 (Ball of Thumb_R) + 0.056 (Grip_R) − 0.028 (weight) + 0.177 (Lateral Pinch_R) | 0.786 | |
Lateral Pinch | 2.770 + 0.465 (Palmar Pinch_R) − 0.862 (gender) + 0.055 (Grip_R) + 0.000116 (height) × (age) | 0.777 | |
Palmar Pinch | 1.268 + 0.531 (Lateral Pinch_R) + 0.05 (Grip_R) | 0.713 | |
Left | Grip | 27.996 + 2.137 (Lateral Pinch_L) − 10.181 (gender) + 1.347 (Thumb Press_L) − 0.618 (Ball of Thumb_L) | 0.785 |
Ball of Thumb | 5.596 + 1.161 (Thumb Press_L) − 0.127 (Grip_R) − 1.952 (gender) + 0.039 (weight) | 0.719 | |
Thumb Press | −2.949 + 0.502 (Ball of Thumb_L) + 0.078 (Grip_L) + 0.24 (Palmar Pinch_L) + 0.005 (gender) × (height) | 0.782 | |
Lateral Pinch | 1.344 + 0.711 (Palmar Pinch_L) + 0.041 (Grip_L) − 0.593 (gender) + 0.000078 (height) × (age) | 0.857 | |
Palmar Pinch | 1.313 + 0.740 (Lateral Pinch_L) + 0.072 (Thumb Press_L) − 0.000076 (height) × (age) | 0.810 |
Laterality | Type of Hand Motion | Regression Equation | Adjusted-R2 |
---|---|---|---|
Right | Ball of Thumb | 7.973 + 0.022 (Grip_R) − 0.2.381 (gender) + 0.061 (weight) | 0.289 |
Thumb Press | 2.456 + 0.141 (Grip_R) | 0.378 | |
Lateral Pinch | 4.417 + 0.017 (Grip_R) − 1.073 (gender) + 0.000133 (height) × (age) | 0.719 | |
Palmar Pinch | 2.644 + 0.125 (Grip_R) | 0.609 | |
Left | Ball of Thumb | 10.385 + 0.011 (Grip_L) − 3.123 (gender) + 0.049 (weight) | 0.293 |
Thumb Press | 1.959 + 0.159 (Grip_L) | 0.425 | |
Lateral Pinch | 4.527 + 0.116 (Grip_L) − 0.947 (gender) | 0.687 | |
Palmar Pinch | 2.528 + 0.121 (Grip_L) | 0.572 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lo, V.E.-W.; Chiu, Y.-C.; Tu, H.-H. Can We Use Grip Strength to Predict Other Types of Hand Exertions? An Example of Manufacturing Industry Workers. Int. J. Environ. Res. Public Health 2021, 18, 856. https://doi.org/10.3390/ijerph18030856
Lo VE-W, Chiu Y-C, Tu H-H. Can We Use Grip Strength to Predict Other Types of Hand Exertions? An Example of Manufacturing Industry Workers. International Journal of Environmental Research and Public Health. 2021; 18(3):856. https://doi.org/10.3390/ijerph18030856
Chicago/Turabian StyleLo, Victor Ei-Wen, Yi-Chen Chiu, and Hsin-Hung Tu. 2021. "Can We Use Grip Strength to Predict Other Types of Hand Exertions? An Example of Manufacturing Industry Workers" International Journal of Environmental Research and Public Health 18, no. 3: 856. https://doi.org/10.3390/ijerph18030856
APA StyleLo, V. E. -W., Chiu, Y. -C., & Tu, H. -H. (2021). Can We Use Grip Strength to Predict Other Types of Hand Exertions? An Example of Manufacturing Industry Workers. International Journal of Environmental Research and Public Health, 18(3), 856. https://doi.org/10.3390/ijerph18030856