Effect of Ambient Temperature on Daily Nebulized Asthma Hospital Visits in a Tropical City of Dhaka, Bangladesh
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients’ Data
2.2. Ethics Approval
2.3. Meteorological and Strike Data
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Masoli, M.; Fabian, D.; Holt, S.; Beasley, R. The global burden of asthma: Executive summary of the GINA Dissemination Committee report. Allergy 2004, 59, 469–478. [Google Scholar] [CrossRef] [PubMed]
- Cesaroni, G.; Farchi, S.; Davoli, M.; Forastiere, F.; Perucci, C.A. Individual and area-based indicators of socioeconomic status and childhood asthma. Eur. Respir. J. 2003, 22, 619–624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. Global Surveillance, Prevention and Control of Chronic Respiratory Diseases: A Comprehensive Approach; World Health Organization: Geneva, Switzerland, 2007; Available online: http://www.who.int/gard/publications/GARDBook2007.pdf (accessed on 2 February 2015).
- Eder, W.; Ege, M.J.; von Mutius, E. The asthma epidemic. N. Engl. J. Med. 2006, 355, 2226–2235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beasley, R.; Crane, J.; Lai, C.K.; Pearce, N. Prevalence and etiology of asthma. J. Allergy Clin. Immununol. 2000, 105, S466–S472. [Google Scholar] [CrossRef]
- Hassan, M.R.; Kabir, A.R.; Mahmud, A.M.; Rahman, F.; Hossain, M.A.; Bennoor, K.S.; Amin, R.; Rahman, M.M. Self-reported asthma symptoms in children and adults of Bangladesh: Findings of the National Asthma Prevalence Study. Int. J. Epidemiol. 2002, 31, 483–488. [Google Scholar] [CrossRef]
- Bangladesh Bureau of Statistics, Statistics and Informatics Division, Ministry of Planning. Statistical Pocketbook of Bangladesh – 2013; Bangladesh Bureau of Statistics: Dhaka, Bangladesh, 2014; Available online: http://203.112.218.65:8008/WebTestApplication/userfiles/Image/LatestReports/PB2013.pdf (accessed on 5 February 2015).
- Bhuiya, A. Health for the Rural Masses: Insights from Chakaria; ICDDR, B: Dhaka, Bangladesh, 2009. [Google Scholar]
- Hajat, S.; Haines, A. Associations of cold temperatures with GP consultations for respiratory and cardiovascular disease amongst the elderly in London. Int. J. Epidemiol. 2002, 31, 825–830. [Google Scholar] [CrossRef] [Green Version]
- Rossi, O.V.; Kinnula, V.L.; Tienari, J.; Huhti, E. Association of severe asthma attacks with weather, pollen, and air pollutants. Thorax 1993, 48, 244–248. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Jiang, F.; Peng, L.; Zhang, J.; Geng, F.; Xu, J.; Zhen, C.; Shen, X.; Tong, S.-L. The association between cold spells and pediatric outpatient visits for asthma in Shanghai, China. PLoS ONE 2012, 7, e42232. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Peng, L.; Kan, H.; Xu, J.; Chen, R.; Liu, Y.; Wang, W. Effects of meteorological factors on daily hospital admissions for asthma in adults: A time-series analysis. PLoS ONE 2014, 9, e102475. [Google Scholar] [CrossRef] [Green Version]
- Buckley, J.P.; Richardson, D.B. Seasonal modification of the association between temperature and adult emergency department visits for asthma: A case-crossover study. Environ. Health 2012, 11, 55. [Google Scholar] [CrossRef] [Green Version]
- Villeneuve, P.J.; Leech, J.; Bourque, D. Frequency of emergency room visits for childhood asthma in Ottawa, Canada: The role of weather. Int. J. Biometeorol. 2005, 50, 48–56. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, R.; Jayaraman, G.; Anand, S.; Marimathu, P. Assessing Respiratory Morbidity through Pollution Status and Meteorological Conditions for Delhi. Environ. Monit. Assess. 2006, 114, 489–504. [Google Scholar] [CrossRef] [PubMed]
- Hervás, D.; Utrera, J.F.; Hervás-Masip, J.; Hervás, J.A.; Garcia-Marcos, L. Can meteorological factors forecast asthma exacerbation in a pediatric population. Allergol. Immunopathol. 2015, 43, 32–36. [Google Scholar] [CrossRef] [PubMed]
- de Diego Damiá, A.; León Fabregas, M.; Perpiñá Tordera, M.; Compte Torrero, L. Effects of air pollution and weather conditions on asthma exacerbation. Respiration 1999, 66, 52–58. [Google Scholar] [CrossRef]
- Abe, T.; Tokuda, Y.; Ohde, S.; Ishimatsu, S.; Nakamura, T.; Birrer, R.B. The relationship of short-term air pollution and weather to ED visits for asthma in Japan. Am. J. Emerg. Med. 2009, 27, 153–159. [Google Scholar] [CrossRef]
- Lin, S.; Luo, M.; Walker, R.J.; Liu, X.; Hwang, S.A.; Chinery, R. Extreme high temperatures and hospital admissions for respiratory and cardiovascular diseases. Epidemiology 2009, 20, 738–746. [Google Scholar] [CrossRef]
- Mireku, N.; Wang, Y.; Ager, J.; Reddy, R.C.; Baptist, A.P. Changes in weather and the effects on pediatric asthma exacerbations. Ann. Allergy Asthma Immunol. 2009, 103, 220–224. [Google Scholar] [CrossRef]
- Holmén, A.; Blomqvist, J.; Frindberg, H.; Johnelius, Y.; Eriksson, N.E.; Henricson, K.A.; Herrström, P.; Hogstedt, B. Frequency of patients with acute asthma in relation to ozone, nitrogen dioxide, other pollutants of ambient air and meteorological observations. Int. Arch. Occup. Environ. Health 1997, 69, 317–322. [Google Scholar] [CrossRef]
- Price, J.I.; Bohara, A.K. Maternal health care amid political unrest: The effect of armed conflict on antenatal care utilization in Nepal. Health Policy Plan. 2003, 28, 309–319. [Google Scholar] [CrossRef] [Green Version]
- Carracedo-Martínez, E.; Taracido, M.; Tobias, A.; Saez, M.; Figueiras, A. Case-crossover analysis of air pollution health effects: A systematic review of methodology and application. Environ. Health Perspect. 2010, 118, 1173–1182. [Google Scholar] [CrossRef]
- Maclure, M. The case-crossover design—A method for studying transient effects on the risk of acute events. Am. J. Epidemiol. 1991, 133, 144–153. [Google Scholar] [CrossRef] [PubMed]
- Priftis, K.N.; Paliatsos, A.G.; Panagiotopoulou-Gartagani, P.; Tapratzi-Potamianou, P.; Zachariadi-Xypolita, A.; Nicolaidou, P.; Saxoni-Papageorgiou, P. Association of weather conditions with childhood admissions for wheezy bronchitis or asthma in Athens. Respiration 2006, 73, 783–790. [Google Scholar] [CrossRef] [PubMed]
- Cong, X.; Xu, X.; Zhang, Y.; Wang, Q.; Xu, L.; Huo, X. Temperature drop and the risk of asthma: A systematic review and meta-analysis. Environ. Sci. Pollut. Res. Int. 2017, 24, 22535–22546. [Google Scholar] [CrossRef] [PubMed]
- Deng, L.; Ma, P.; Wu, Y.; Ma, Y.; Yang, X.; Li, Y.; Deng, Q. High and low temperatures aggravate airway inflammation of asthma: Evidence in a mouse model. Environ. Pollut. 2020, 256, 113433. [Google Scholar] [CrossRef] [PubMed]
- Donaldson, G.C.; Seemungal, T.; Jeffries, D.J.; Wedzicha, J.A. Effect of temperature on lung function and symptoms in chronic obstructive pulmonary disease. Eur. Respir. J. 1999, 13, 844–849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, M.; Li, Q.; Yang, G.; Kolosov, V.P.; Perelman, J.M.; Zhou, X.D. Cold temperature induces mucin hypersecretion from normal human bronchial epithelial cells in vitro through a transient receptor potential melastatin 8 (TRPM8)-mediated mechanism. J. Allergy. Clin. Immunol. 2011, 128, 626–634. [Google Scholar] [CrossRef]
- Mäkinen, T.M.; Juvonen, R.; Jokelainen, J.; Harju, T.H.; Peitso, A.; Bloigu, A.; Silvennoinen-Kassinen, S.; Leinonen, M.; Hassi, J. Cold temperature and low humidity are associated with increased occurrence of respiratory tract infections. Respir. Med. 2009, 103, 456–462. [Google Scholar] [CrossRef] [Green Version]
- Heymann, P.W.; Carper, H.T.; Murphy, D.D.; Platts-Mills, T.A.; Patrie, J.; McLaughlin, A.P.; A Erwin, E.; Shaker, M.S.; Hellems, M.; Peerzada, J.; et al. Viral infections in relation to age, atopy, and season of admission among children hospitalized for wheezing. J. Allergy Clin. Immunol. 2004, 114, 239–247. [Google Scholar] [CrossRef]
- Wallace, L.A.; Mitchell, H.; O’Connor, G.T.; Neas, L.; Lippmann, M.; Kattan, M.; Koenig, J.; Stout, J.W.; Vaughn, B.J.; Wallace, D.; et al. Particle concentrations in inner-city homes of children with asthma: The effect of smoking, cooking, and outdoor pollution. Environ. Health Perspect. 2003, 111, 1265–1272. [Google Scholar] [CrossRef] [Green Version]
- Md Din, M.F.; Lee, Y.Y.; Ponraj, M.; Ossen, D.R.; Iwao, K.; Chelliapan, S. Thermal comfort of various building layouts with a proposed discomfort index range for tropical climate. J. Therm. Biol. 2014, 41, 6–15. [Google Scholar] [CrossRef]
- Hashizume, M.; Wagatsuma, Y.; Hayashi, T.; Saha, S.K.; Streatfield, K.; Yunus, M. The effect of temperature on mortality in rural Bangladesh—A population-based time-series study. Int. J. Epidemiol. 2009, 38, 1689–1697. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, U.; Levin, L.; Grinshpun, S.A.; Schaffer, C.; Adhikari, A.; Reponen, T. Influence of home characteristics on airborne and dustborne endotoxin and β-D-glucan. J. Environ. Monit. 2011, 13, 3246–3253. [Google Scholar] [CrossRef] [PubMed]
- Perez-Padilla, R.; Schilmann, A.; Riojas-Rodriguez, H. Respiratory health effects of indoor air pollution. Int. J. Tuberc. Lung Dis. 2010, 14, 1079–1086. [Google Scholar] [PubMed]
- Kurmi, O.P.; Semple, S.; Simkhada, P.; Smith, W.C.; Ayres, J.G. COPD and chronic bronchitis risk of indoor air pollution from solid fuel: A systematic review and meta-analysis. Thorax 2010, 65, 221–228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, L.; Shima, M.; Yoda, Y.; Yamamoto, H.; Nakai, S.; Tamura, K.; Nitta, H.; Watanabe, H.; Nishimuta, T. Effects of airborne particulate matter on respiratory morbidity in asthmatic children. J. Epidemiol. 2009, 18, 97–110. [Google Scholar] [CrossRef] [Green Version]
- Buckley, J.P.; Samet, J.M.; Richardson, D.B. Commentary: Does air pollution confound studies of temperature? Epidemiology 2014, 25, 242–245. [Google Scholar] [CrossRef]
- Schisterman, E.F.; Cole, S.R.; Platt, R.W. Overadjustment bias and unnecessary adjustment in epidemiologic studies. Epidemiology 2009, 20, 488–495. [Google Scholar] [CrossRef] [Green Version]
Patients and Strike Events | Total n (%) | Age Group, n (%) | ||
---|---|---|---|---|
Children (≤18 Years) | Adults (19–59 Years) | Elderly (≥60 Years) | ||
Patients by sex | ||||
Male | 3483 (58) | 651 (19) | 2127 (61) | 705 (20) |
Female | 2506 (42) | 416 (17) | 1804 (72) | 286 (11) |
Total | 5989 (100) | 1067 (18) | 3931 (66) | 991 (16) |
Strike events | ||||
Total number of days | 48 | |||
Number of continuous episodes | 26 | |||
Mean number of days per episode (range) | 1.8 (1–4) | |||
Mean number of days per month | 4.8 |
Age Group | Male n = 3483 | Female n = 2506 | Total n = 5989 | ||||||
---|---|---|---|---|---|---|---|---|---|
Change (%) | 95% CI | Lag | Change (%) | 95% CI | Lag | Change (%) | 95% CI | Lag | |
Children | 0.80 | (−7.78, 10.19) | 0–6 | −2.45 | (−9.77, 5.47) | 0-2 | −1.44 | (−7.98, 5.57) | 0–6 |
Adults | 8.22 | (2.81, 13.92) ** | 0–7 | 3.18 | (−2.58, 9.28) | 0-7 | 5.84 | (1.87, 9.97) ** | 0–7 |
Elderly | 6.38 | (−0.19, 13.39) * | 0–2 | 5.59 | (−8.39, 21.71) | 0-7 | 5.69 | (−1.49, 13.39) | 0–6 |
All ages | 6.29 | (2.40, 10.33) ** | 0–6 | 2.20 | (−2.63, 7.28) | 0-7 | 4.47 | (1.53, 7.50) ** | 0–6 |
Age Group | Days Not Affected by Strike * (n = 4682) | Days Immediately After a Strike (n = 633) | ||||
---|---|---|---|---|---|---|
Change (%) | 95% CI | Lag | Change (%) | 95% CI | Lag | |
Children | 0.69 | (−6.26, 8.15) | 0–6 | −7.05 | (−19.52, 7.35) | 0–7 |
Adults | 7.21 | (3.03, 11.56) ** | 0–7 | 5.20 | (−3.64, 14.84) | 0–11 |
Elderly | 5.58 | (−1.75, 13.46) | 0–6 | 15.65 | (1.23, 32.12) ** | 0–4 |
All ages | 5.76 | (2.40, 9.22) ** | 0–7 | 3.13 | (−2.16, 8.72) | 0–5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kabir, A.F.; Ng, C.F.S.; Yasumoto, S.; Hayashi, T.; Watanabe, C. Effect of Ambient Temperature on Daily Nebulized Asthma Hospital Visits in a Tropical City of Dhaka, Bangladesh. Int. J. Environ. Res. Public Health 2021, 18, 890. https://doi.org/10.3390/ijerph18030890
Kabir AF, Ng CFS, Yasumoto S, Hayashi T, Watanabe C. Effect of Ambient Temperature on Daily Nebulized Asthma Hospital Visits in a Tropical City of Dhaka, Bangladesh. International Journal of Environmental Research and Public Health. 2021; 18(3):890. https://doi.org/10.3390/ijerph18030890
Chicago/Turabian StyleKabir, Ayesha Ferdosi, Chris Fook Sheng Ng, Shinya Yasumoto, Taiichi Hayashi, and Chiho Watanabe. 2021. "Effect of Ambient Temperature on Daily Nebulized Asthma Hospital Visits in a Tropical City of Dhaka, Bangladesh" International Journal of Environmental Research and Public Health 18, no. 3: 890. https://doi.org/10.3390/ijerph18030890
APA StyleKabir, A. F., Ng, C. F. S., Yasumoto, S., Hayashi, T., & Watanabe, C. (2021). Effect of Ambient Temperature on Daily Nebulized Asthma Hospital Visits in a Tropical City of Dhaka, Bangladesh. International Journal of Environmental Research and Public Health, 18(3), 890. https://doi.org/10.3390/ijerph18030890