Validation and Practical Applications of Performance in a 6-Min Rowing Test in the Danish Armed Forces
Abstract
:1. Introduction
1.1. Preface
1.2. Background
1.3. Aims
2. Materials and Methods
2.1. Study Design
2.2. Subjects
2.3. Testing
2.3.1. Cooper’s 12-Min Run Test
2.3.2. 6-Min Rowing Test
2.4. Anthropometrics
2.5. Calculations
2.6. Statistics
3. Results
3.1. Maximal Oxygen Uptake
3.2. Comparison of Performance Characteristics Between Cooper’s 12-min Run Test and the 6-min Rowing Test
3.3. Test Performance Correlations
3.4. Test-Retest Comparisons of the 6-min Rowing Test
4. Discussions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gilchrist, J.; Jones, B.H.; Sleet, D.A.; Kimsey, C.D. Exercise-related injuries among women: Strategies for prevention from civilian and military studies. MMWR. Recomm. Rep. 2000, 49, 15–33. [Google Scholar]
- Rayson, M.; Holliman, D.; Belyavin, A. Development of physical selection procedures for the British Army. Phase 2: Relationship between physical performance tests and criterion tasks. Ergonomics 2000, 43, 73–105. [Google Scholar] [CrossRef] [PubMed]
- Santtila, M. Effects of Added Endurance or Strength Training on Cardiovascular and Neuromuscular Performance of Conscripts during the 8-Week Basic Training Period. Academic Dissertation, Faculty of Sport and Health Sciences, University of Jyväskylä. Stud. Sport Phys. Educ. Health 2010, 146, 9. [Google Scholar]
- Reilly, T. Canada’s physical fitness standard for the land force: A global comparison. Can. Army J. 2010, 13, 59–69. [Google Scholar]
- Andersen, A.; University of Aarhus, Aarhus, Denmark; Nielsen, A.H.; University of Southern Denmark, Odense, Denmark; Kilen, T.A.; University of Copenhagen, Copenhagen, Denmark and Center for Military Physical Training, Copenhagen, Denmark. Personal Communication, 2018.
- Bassett, D.R. Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med. Sci. Sports Exerc. 2000, 32, 70–84. [Google Scholar] [CrossRef]
- Larsen, H.B.; Sheel, A.W. The Kenyan runners. Scand. J. Med. Sci. Sports 2015, 25, 110–118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nevill, A.M.; Allen, S.V.; Ingham, S.A. Modelling the determinants of 2000 m rowing ergometer performance: A proportional, curvilinear allometric approach. Scand. J. Med. Sci. Sports 2011, 21, 73–78. [Google Scholar] [CrossRef]
- Ingham, S.; Whyte, G.; Jones, K.; Nevill, A. Determinants of 2000 m rowing ergometer performance in elite rowers. Eur. J. Appl. Physiol. 2002, 88, 243–246. [Google Scholar] [CrossRef]
- Jensen, M.B.; Johansen, L.; Secher, N.H. Influence of body mass on maximal oxygen uptake: Effect of sample size. Graefe’s Arch. Clin. Exp. Ophthalmol. 2001, 84, 201–205. [Google Scholar] [CrossRef]
- Nevill, A.M.; Beech, C.; Holder, R.L.; Wyon, M. Scaling concept II rowing ergometer performance for differences in body mass to better reflect rowing in water. Scand. J. Med. Sci. Sports 2010, 20, 122–127. [Google Scholar] [CrossRef]
- Cureton, K.J.; Sparling, P.B.; Evans, B.W.; Johnson, S.M.; Kong, U.D.; Purvis, J.W. Effect of experimental alterations in excess weight on aerobic capacity and distance running performance. Med. Sci. Sports 1978, 10, 194–199. [Google Scholar] [PubMed]
- Sedeaud, A.; Marc, A.; Marck, A.; Dor, F.; Schipman, J.; Dorsey, M.; Haida, A.; Berthelot, G.; Toussaint, J.-F. BMI, a Performance Parameter for Speed Improvement. PLoS ONE 2014, 9, e90183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poole, D.C.; Jones, A.M. Measurement of the maximum oxygen uptake VO2max: VO2peak is no longer acceptable. J. Appl. Physiol. 2017, 122, 997–1002. [Google Scholar] [CrossRef]
- Helgerud, J.; Høydal, K.; Wang, E.; Karlsen, T.; Berg, P.; Bjerkaas, M.; Simonsen, T.; Helgesen, C.; Hjorth, N.; Bach, R.; et al. Aerobic High-Intensity Intervals Improve VO2max More Than Moderate Training. Med. Sci. Sports Exerc. 2007, 39, 665–671. [Google Scholar] [CrossRef] [Green Version]
- Cooper, K.H. A Means of Assessing Maximal Oxygen Intake. JAMA 1968, 203, 201–204. [Google Scholar] [CrossRef] [PubMed]
- McNaughton, L.; Hall, P.; Cooley, D. Validation of Several Methods of Estimating Maximal Oxygen Uptake in Young Men. Percept. Mot. Ski. 1998, 87, 575–584. [Google Scholar] [CrossRef]
- Penry, J.T.; Wilcox, A.R.; Yun, J. Validity and Reliability Analysis of Cooper’s 12-min Run and the Multistage Shuttle Run in Healthy Adults. J. Strength Cond. Res. 2011, 25, 597–605. [Google Scholar] [CrossRef]
- Mayorga-Vega, D.; Bocanegra-Parrilla, R.; Ornelas, M.; Viciana, J. Criterion-Related Validity of the Distance- and Time-Based Walk/Run Field Tests for Estimating Cardiorespiratory Fitness: A Systematic Review and Meta-Analysis. PLoS ONE 2016, 11, e0151671. [Google Scholar] [CrossRef] [Green Version]
- Gunnarsson, T.P.; Bangsbo, J. The 10-20-30 training concept improves performance and health profile in moderately trained runners. J. Appl. Physiol. 2012, 113, 16–24. [Google Scholar] [CrossRef] [Green Version]
- Edvardsen, E.; Hem, E.; Anderssen, S.A. End Criteria for Reaching Maximal Oxygen Uptake Must Be Strict and Adjusted to Sex and Age: A Cross-Sectional Study. PLoS ONE 2014, 9, e85276. [Google Scholar] [CrossRef] [Green Version]
- Bandyopadhyay, A. Validity of Cooper’s 12-min run test for estimation of maximum oxygen uptake in male university students. Biol. Sport 2014, 32, 59–63. [Google Scholar] [CrossRef] [PubMed]
- Mahler, D.A.; Andrea, B.E.; Andresen, D.C. Comparison of 6-min “all-out” and incremental exercise tests in elite oarsmen. Med. Sci. Sports Exerc. 1984, 16, 567–571. [Google Scholar] [CrossRef] [PubMed]
- Christensen, P.M.; Shirai, Y.; Ritz, C.; Nordsborg, N.B. Caffeine and Bicarbonate for Speed. A Meta-Analysis of Legal Supplements Potential for Improving Intense Endurance Exercise Performance. Front. Physiol. 2017, 8, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshiga, C.; Higuchi, M. Heart rate is lower during ergometer rowing than during treadmill running. Graefe’s Arch. Clin. Exp. Ophthalmol. 2002, 87, 97–100. [Google Scholar] [CrossRef] [PubMed]
- Yoshiga, C.C.; Higuchi, M. Oxygen uptake and ventilation during rowing and running in females and males. Scand. J. Med. Sci. Sports 2003, 13, 359–363. [Google Scholar] [CrossRef]
- Yoshiga, C.C.; Higuchi, M.; Oka, J. Lower heart rate response to ergometry rowing than to treadmill running in older men. Clin. Physiol. Funct. Imaging 2003, 23, 58–61. [Google Scholar] [CrossRef]
- Lawton, T.W.; Cronin, J.B.; McGuigan, M.R. Strength testing and training of elite rowers. Sport. Med. 2011, 41, 413–432. [Google Scholar] [CrossRef]
- McNeely, E.; Sandler, D.; Bamel, S. Strength and Power Goals for Competitive Rowers. Strength Cond. J. 2005, 27, 10–15. [Google Scholar] [CrossRef]
Endurance ^ | Strength (Set × Repetitions) | |||||
---|---|---|---|---|---|---|
Age (Years) | Cooper’s Run Test (m) | Shuttle Run Test (Level) | Split Squats | Dips | Horizontal Pull Ups | Burpees |
<49 | 2200 | 8.3 | 3 × 15 | 3 × 15 | 3 × 5 | 1 × 15 |
50–59 | 2000 | 6.9 | 3 × 12 | 3 × 12 | 3 × 3 | 1 × 10 |
>60 | 1800 | 5.9 | 3 × 10 | 3 × 10 | 3 × 2 | 1 × 5 |
Male/female (n) | 20/11 |
Age (years) | 34.3 ± 12.0 |
Height (cm) | 177.7 ± 8.5 |
BW (kg) | 77.6 ± 12.1 |
FFM (kg) | 60.0 ± 12.6 |
VO2max (L·min−1) | 3.7 ± 1.0 |
Estimated VO2max (L·min−1) | 3.8 ± 1.0 |
CRT | 6MRT | p-Value | |
---|---|---|---|
Distance (m) | 2705 ± 356 | 1507 ± 160 * | p < 0.001 |
RPE (6–20) | 17.2 ± 1.2 | 17.7 ± 1.3 * | p < 0.05 |
HRmean (beats·min−1) § | 176 ± 10 | 166 ± 13 * | p < 0.001 |
HRmax (beats·min−1) § | 186 ± 10 | 176 ± 11 * | p < 0.001 |
MPO (watt) | N/A | 211 ± 65 | |
RERmax | N/A | 1.08 ± 0.07 |
CRT (m) | 6MRT (MPO, W) | |||
---|---|---|---|---|
r | p-Value | r | p-Value | |
BW (kg) | 0.30 § | p > 0.05 | 0.73 £ | p < 0.001 |
FFM (kg) | 0.55 § | p < 0.01 | 0.87 £ | p < 0.001 |
6MRT | Re-Test 6MRT | p-Value | |
---|---|---|---|
Characteristics | |||
Age (years) | 40.0 ± 10.5 | ||
Weight (kg) | 77.2 ± 8.6 | 77.1 ± 8.7 | 0.75 |
FFM (kg) | 59.1 ± 12.4 | 59.7 ± 12.3 | 0.27 |
Performance | |||
Distance (m) | 1498 ± 191 | 1501 ± 176 | 0.80 |
MPO (watt) | 210 ± 77 | 210 ± 72 | 1.00 |
Physiological Measures | |||
VO2max (L·min−1) | 3.9 ± 1.0 | 3.8 ± 1.0 | 0.20 |
VO2max (mL·kg−1·min−1) | 48.9 ± 9.0 | 48.3 ± 7.9 | 0.68 |
Exercise Economy (mL O2·watt−1) | 19.2 ± 2.9 | 18.4 ± 1.7 | 0.25 |
RPE (6–20) | 18.0 ± 1.6 | 18.0 ± 1.2 | 1.00 |
HRmean (beats·min−1) | 161 ± 13 | 161 ± 11 | 0.94 |
HRmax (beats·min−1) | 172 ± 9 | 173 ± 12 | 0.52 |
RERmax | 1.07 ± 0.08 | 1.08 ± 0.08 | 0.84 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Funch, O.; Hasselstrøm, H.A.; Gunnarsson, T.P. Validation and Practical Applications of Performance in a 6-Min Rowing Test in the Danish Armed Forces. Int. J. Environ. Res. Public Health 2021, 18, 1395. https://doi.org/10.3390/ijerph18041395
Funch O, Hasselstrøm HA, Gunnarsson TP. Validation and Practical Applications of Performance in a 6-Min Rowing Test in the Danish Armed Forces. International Journal of Environmental Research and Public Health. 2021; 18(4):1395. https://doi.org/10.3390/ijerph18041395
Chicago/Turabian StyleFunch, Oliver, Henriette A. Hasselstrøm, and Thomas P. Gunnarsson. 2021. "Validation and Practical Applications of Performance in a 6-Min Rowing Test in the Danish Armed Forces" International Journal of Environmental Research and Public Health 18, no. 4: 1395. https://doi.org/10.3390/ijerph18041395
APA StyleFunch, O., Hasselstrøm, H. A., & Gunnarsson, T. P. (2021). Validation and Practical Applications of Performance in a 6-Min Rowing Test in the Danish Armed Forces. International Journal of Environmental Research and Public Health, 18(4), 1395. https://doi.org/10.3390/ijerph18041395