Ozone Concentration Levels in Urban Environments—Upper Silesia Region Case Study
Abstract
:1. Introduction
2. Aim
3. Methodology
3.1. Measuring Stations
3.2. Health Risk
3.3. WHO Recommendations
3.4. National Policy
3.5. European Standards of the Ozone Concentration
4. Results
4.1. Measurement Station in Bielsko-Biała SL15BB
4.2. Measurement Station in Katowice SL09KA
4.3. Measurement Station in Zloty Potok SL03ZP
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Ambient Air Pollution: A Global Assessment of Exposure and Burden of Disease. 2016. Available online: https://apps.who.int/iris/handle/10665/250141 (accessed on 10 January 2021).
- World Health Organization. Ambient (Outdoor) Air Quality and Health. 2018. Available online: https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and health (accessed on 10 January 2021).
- Li, C.; Balluz, L.S.; Vaidyanathan, A.; Wen, X.J.; Hao, Y.; Qualters, J.R. Long-Term Exposure to Ozone and Life Expectancy in the United States, 2002 to 2008. Medicine 2016, 95, e2474. [Google Scholar] [CrossRef]
- Nuvolone, D.; Petri, D.; Voller, F. The effects of ozone on human health. Environ. Sci. Pollut. Res. 2018, 25, 8074–8088. [Google Scholar] [CrossRef] [PubMed]
- Vicedo-Cabrera, A.M.; Sera, F.; Liu, C.; Armstrong, B.; Milojevic, A.; Guo, Y.; Tong, S.; Lavigne, E.; Kyselý, J.; Urban, A.; et al. Short term association between ozone and mortality: Global two stage time series study in 406 locations in 20 countries. BMJ 2020, 368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chief Inspectorate for Environmental Protection. What Is Ozone and How Does It Affect Life on Earth. 2015. Available online: http://powietrze.gios.gov.pl/pjp/content/show/1000577?lang=en (accessed on 10 January 2021).
- Amman, M.; Derwent, D.; Forsberg, B.; Hanninen, O.; Hurley, F.; Krzyzanowski, M.; De Leeuw, F.; Liu, S.J.; Mandin, C.; Schneider, J.; et al. Health Risks of Ozone from Long-Range Transboundary Air Pollution; WHO Regional Office Europe: Copenhagen, Denmark, 2008. [Google Scholar]
- Chattopadhyay, G.; Midya, S.K.; Chattopadhyay, S. Information Theoretic Study of the Ground-Level Ozone and Its Precursors Over Kolkata, India, During the Summer Monsoon. Iran. J. Sci. Technol. Trans. Sci. 2020, 45, 201–207. [Google Scholar] [CrossRef]
- Chattopadhyay, G.; Chattopadhyay, S. Spectral analysis approach to study the association between total ozone concentration and surface temperature. Int. J. Environ. Sci. Technol. 2020, 17, 4353–4358. [Google Scholar] [CrossRef]
- Lu, X.; Zhang, L.; Shen, L. Meteorology and Climate Influences on Tropospheric Ozone: A Review of Natural Sources, Chemistry, and Transport Patterns. Curr. Pollut. Rep. 2019, 5, 238–260. [Google Scholar] [CrossRef] [Green Version]
- Liu, P.; Song, H.; Wang, T.; Wang, F.; Li, X.; Miao, C.; Zhao, H. Effects of meteorological conditions and anthropogenic precursors on ground-level ozone concentrations in Chinese cities. Environ. Pollut. 2020, 262, 114366. [Google Scholar] [CrossRef]
- Reid, N.; Yap, D.; Bloxam, R. The potential role of background ozone on current and emerging air issues: An overview. Air Quality. Atmos. Health 2008, 1, 19–29. [Google Scholar] [CrossRef] [Green Version]
- Gong, C.; Liao, H.; Zhang, L.; Yue, X.; Dang, R.; Yang, Y. Persistent ozone pollution episodes in North China exacerbated by regional transport. Environ. Pollut. 2020, 265 Pt A, 115056. [Google Scholar] [CrossRef]
- Zeng, P.; Lyu, X.P.; Guo, H.; Cheng, H.R.; Jiang, F.; Pan, W.Z.; Wang, Z.W.; Liang, S.W.; Hu, Y.Q. Causes of ozone pollution in summer in Wuhan, Central China. Environ. Pollut. 2018, 241, 852–861. [Google Scholar] [CrossRef]
- Ministry of Environment. The Act of 13 August 2012 on the assessment of levels of substances in the air. J. Laws 2012, 217, 1032. (In Polish) [Google Scholar]
- Cohen, A.J.; Brauer, M.; Burnett, R.; Anderson, H.R.; Frostad, J.; Estep, K.; Balakrishnan, K.; Brunekreef, B.; Dandona, L.; Dandona, R.; et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: An analysis of data from the Global Burden of Diseases Study 2015. Lancet 2017, 389, 1907–1918. [Google Scholar] [CrossRef] [Green Version]
- European Environment Agency Website. 2020. Available online: https://www.eea.europa.eu (accessed on 10 January 2021).
- Di, Q.; Dai, L.; Wang, Y.; Zanobetti, A.; Choirat, C.; Schwartz, J.D.; Dominici, F. Association of Short-term Exposure to Air Pollution with Mortality in Older Adults. JAMA 2017, 318, 2446–2456. [Google Scholar] [CrossRef]
- Lin, H.; Guo, Y.; Ruan, Z.; Yang, Y.; Chen, Y.; Zheng, Y.; Cummings-Vaughn, L.A.; Rigdon, S.E.; Vaughn, M.G.; Sun, S.; et al. Ambient PM2.5 and O3 and their combined effects on prevalence of presbyopia among the elderly: A cross-sectional study in six low- and middle-income countries. Sci. Total Environ. 2018, 655, 168–173. [Google Scholar] [CrossRef]
- Lee, H.; Kim, E.K.; Kim, H.Y.; Kim, T.I. Effects of Exposure to Ozone on the Ocular Surface in an Experimental Model of Allergic Conjunctivitis. PLoS ONE 2017, 12, e0169209. [Google Scholar] [CrossRef]
- Anenberg, S.C.; Henze, D.K.; Tinney, V.; Kinney, P.L.; Raich, W.; Fann, N.; Malley, C.S.; Roman, H.; Lamsal, L.; Duncan, B.; et al. Estimates of the Global Burden of Ambient PM2.5, Ozone, and NO2 on Asthma Incidence and Emergency Room Visits. Environ. Health Perspect. 2018, 126, 107004. [Google Scholar] [CrossRef] [Green Version]
- Tzivian, L. Outdoor Air Pollution and Asthma in Children. J. Asthma 2011, 48, 470–481. [Google Scholar] [CrossRef]
- Luong, L.M.T.; Phung, D.; Dang, T.N.; Sly, P.D.; Morawska, L.; Thai, P.K. Seasonal association between ambient ozone and hospital admission for respiratory diseases in Hanoi, Vietnam. PLoS ONE 2018, 13, e0203751. [Google Scholar] [CrossRef]
- Zhang, K.; Batterman, S. Air pollution and health risks due to vehicle traffic. Sci. Total Environ. 2013, 450–451, 307–316. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Wu, S.; Pan, L.; Xu, J.; Shan, J.; Yang, X.; Dong, W.; Deng, F.; Chen, Y.; Shima, M.; et al. Short-term effects of various ozone metrics on cardiopulmonary function in chronic obstructive pulmonary disease patients: Results from a panel study in Beijing, China. Environ. Pollut. 2018, 232, 358–366. [Google Scholar] [CrossRef]
- Lin, S.; Liu, X.; Hwang, S. Chronic exposure to ambient ozone and asthma hospital admissions among children. Environ. Health Perspect. 2008, 116, 1725–1730. [Google Scholar] [CrossRef]
- WHO Regional Office for Europe. Review of Evidence on Health Aspects of Air Pollution-REVIHAAP Project; WHO Regional Office for Europe: Copenhagen, Denmark, 2013. [Google Scholar]
- Srebot, V.; Gianicolo, E.A.; Rainaldi, G.; Trivella, M.G.; Sicari, R. Ozone and cardiovascular injury. Cardiovasc. Ultrasound 2009, 7. [Google Scholar] [CrossRef] [Green Version]
- Raza, A.; Dahlquist, M.; Lind, T.; Ljungman, P.L.S. Susceptibility to short-term ozone exposure and cardiovascular and respiratory mortality by previous hospitalizations. Environ. Health 2018, 17, 37. [Google Scholar] [CrossRef] [Green Version]
- Raza, A.; Dahlquist, M.; Jonsson, M.; Hollenberg, J.; Svensson, L.; Lind, T.; Ljungman, P.L.S. Ozone and cardiac arrest: The role of previous hospitalizations. Environ. Pollut. 2019, 245, 1–8. [Google Scholar] [CrossRef]
- Huang, J.; He, T.; Li, G.; Guo, X. How Birth Season Affects Vulnerability to the Effect of Ambient Ozone Exposure on the Disease Burden of Hypertension in the Elderly Population in a Coastal City in South China. Int. J. Environ. Res. Public Health 2020, 17, 824. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.J.; Shin, J.; Choi, J. Cancer Risk from Exposure to Particulate Matter and Ozone According to Obesity and Health-Related Behaviors: A Nationwide Population-Based Cross-Sectional Study. Cancer Epidemiol. Biomark. Prev. 2019, 28, 357–362. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Zeng, H.; Zheng, R.; Li, S.; Barnett, A.G.; Zhang, S.; Zou, X.; Huxley, R.; Chen, W.; Williams, G. The association between lung cancer incidence and ambient air pollution in China: A spatiotemporal analysis. Environ. Res. 2016, 144, 60–65. [Google Scholar] [CrossRef]
- Stieb, D.M.; Lavigne, E.; Chen, L.; Pinault, L.; Gasparrini, A.; Tjepkema, M. Air pollution in the week prior to delivery and preterm birth in 24 Canadian cities: A time to event analysis. Environ. Health 2019, 18. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Guo, Y.; Abramson, M.J.; Williams, G.; Li, S. Exposure to low concentrations of air pollutants and adverse birth outcomes in Brisbane, Australia, 2003–2013. Sci. Total Environ. 2018, 622–623, 721–726. [Google Scholar] [CrossRef]
- Belugina, I.N.; Yagovdik, N.Z.; Belugina, O.S.; Belugin, S.N. Outdoor environment, ozone, radionuclide-associated aerosols and incidences of infantile eczema in Minsk, Belarus. J. Eur. Acad. Dermatol. Venereol. 2018, 32, 1977–1985. [Google Scholar] [CrossRef]
- Cao, W.; Dong, M.; Sun, X.; Liu, X.; Xiao, J.; Feng, B.; Zeng, W.; Hu, J.; Li, X.; Guo, L.; et al. Associations of maternal ozone exposures during pregnancy with maternal blood pressure and risk of hypertensive disorders of pregnancy: A birth cohort study in Guangzhou, China. Environ. Res. 2020, 183, 109207. [Google Scholar] [CrossRef]
- World Health Organization. Air Quality Guidelines for, Particulate Matter, Ozone, Nitrogen Dioxide and Sulfur Dioxide. Global Update 2005; WHO Regional Office for Europe: Copenhagen, Denmark, 2005. [Google Scholar]
- European Commission. Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on Ambient Air Quality and Cleaner Air for Europe. 2008. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32008L0050 (accessed on 10 January 2021).
- European Commission. The European Ozone Regulation No 1005/2009 on Substances that Deplete the Ozone Layer Constitutes the Legal Basis for the Protection of the Ozone Layer within the European Union. 2009. Available online: https://eurlex.europa.eu/LexUriServ/LexUriServ.douri=OJ:L:2009:286:0001:0030:EN:PDF (accessed on 10 January 2021).
- The Montreal Protocol on Substances That Deplete the Ozone Layer. 1987. Available online: https://www.unenvironment.org/ozonaction/who-we-are/about-montreal-protocol (accessed on 10 January 2021).
- European Commission. Commission Regulation (EU) No 537/2011 of 1 June 2011 on the Mechanism for the Allocation of Quantities of Controlled Substances Allowed for Laboratory and Analytical Uses in the Union under Regulation (EC) No 1005/2009 of the European Parliament and of the Council on Substances That Deplete the Ozone Layer. 2011. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32011R0537 (accessed on 10 January 2021).
- European Commission. Commission Regulation (EU) No 291/2011 of 24 March 2011 on Essential Uses of Controlled Substances Other Than Hydrochlorofluorocarbons for Laboratory and Analytical Purposes in the Union under Regulation (EC) No 1005/2009 of the European Parliament and of the Council on Substances That Deplete the Ozone Layer. 2011. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32011R0291 (accessed on 10 January 2021).
- European Commission. Commission Decision of 18 June 2010 on the Use of Controlled Substances as Process Agents under Article 8(4) of Regulation (EC) No 1005/2009 of the European Parliament and of the Council (Notified under Document C 2010 3847). 2010. Available online: https://publications.europa.eu/en/publication-detail/-/publication/89eee2c0-f009-4d28- 9c84a6750dbe3752/language-en (accessed on 10 January 2021).
- European Commission. Commission Directive (EU) 2015/1480 of 28 August 2015 Amending Several Annexes to Directives 2004/107/EC and 2008/50/EC of the European Parliament and of the Council Laying down the Rules Concerning Reference Methods, Data Validation and Location of Sampling Points for the Assessment of Ambient air Quality. 2015. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32015L1480 (accessed on 10 January 2021).
- European Commission. Commission Implementing Decision of 12 December 2011 Which put into Effect Directives 2004/107/EC and 2008/50/EC of the European Parliament and of the Council as Regards the Reciprocal Exchange of Information and Reporting on Ambient Air Quality (Notified under Document C2011 9068). 2011. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32011D0850 (accessed on 10 January 2021).
- The Silesian Regional Assembly. Program Ochrony Powietrza dla Terenu Województwa Śląskiego Mający na celu Osiągnięcie Poziomów Dopuszczalnych Substancji w Powietrzu Oraz Pułapu Stężenia Ekspozycji. 2017. Available online: https://www.slaskie.pl/download/content/67243 (accessed on 10 January 2021). (In Polish).
- The Silesian Regional Assembly. Program Ochrony Powietrza dla Województwa Śląskiego. 2020. Available online: https://www.dzienniki.slask.eu/WDU_S/2020/5070/akt.pdf (accessed on 10 January 2021). (In Polish).
- European Environment Agency. EMEP/CORINAIR Emission Inventory Guidebook. Available online: https://www.eea.europa.eu/publications/EMEPCORINAIR5/page002.html (accessed on 10 January 2021).
- Hwang, B.F.; Chen, Y.H.; Lin, Y.T.; Wu, X.T.; Leo, Y.L. Relationship between exposure to fine particulates and ozone and reduced lung function in children. Environ. Res. 2015, 137, 382–390. [Google Scholar] [CrossRef]
- Turner, M.C.; Jerrett, M.; Pope, C.A.; Krewski, D.; Gapstur, S.M.; Diver, W.; Beckerman, B.S.; Marshall, J.D.; Su, J.; Crouse, D.L.; et al. Long-Term Ozone Exposure and Mortality in a Large Prospective Study. Am. J. Respir. Crit. Care Med. 2016, 193, 1134–1142. [Google Scholar] [CrossRef] [Green Version]
- Breitner, S.; Schneider, A.; Devlin, R.B.; Ward-Caviness, C.K.; Diaz-Sanchez, D.; Neas, L.M.; Cascio, W.E.; Peters, A.; Hauser, E.R.; Shah, S.H.; et al. Associations among plasma metabolite levels and short-term exposure to PM2.5 and ozone in a cardiac catheterization cohort. Environ. Int. 2016, 97, 76–84. [Google Scholar] [CrossRef] [Green Version]
- Dionisio, K.L.; Nolte, C.G.; Spero, T.L.; Graham, S.; Caraway, N.; Foley, K.M.; Isaacs, K.K. Characterizing the impact of projected changes in climate and air quality on human exposures to ozone. J. Expo. Sci. Environ. Epidemiol. 2017, 27, 260–270. [Google Scholar] [CrossRef]
- Chen, K.; Fiore, A.M.; Chen, R.; Jiang, L.; Jones, B.; Schneider, A.; Peters, A.; Bi, J.; Kan, H.; Kinney, P.L. Future ozone-related acute excess mortality under climate and population change scenarios in China. PLoS Med. 2018, 15, e1002598. [Google Scholar] [CrossRef]
- Malig, B.J.; Pearson, D.L.; Chang, Y.B.; Broadwin, R.; Basu, R.; Green, R.S.; Ostro, B. A Time-Stratified Case-Crossover Study of Ambient Ozone Exposure and Emergency Department Visits for Specific Respiratory Diagnoses in California (2005–2008). Environ. Health Perspect. 2016, 124, 745–753. [Google Scholar] [CrossRef] [Green Version]
- Climate-Data.org. 2019. Available online: http://pl.climate-data.org/europa/polska/silesian-voivodeship/katowice-736 (accessed on 10 January 2021).
- UN Habitat. 2019. Available online: www.un.org/en/climatechange/cities-pollution.shtml (accessed on 10 January 2021).
- Sicard, P.; Serra, R.; Rossello, P. Spatiotemporal trends in ground-level ozone concentrations and metrics in France over the time period 1999–2012. Environ. Res. 2016, 149, 122–144. [Google Scholar] [CrossRef]
- Bravo, M.A.; Anthopolos, R.; Bell, M.L.; Miranda, M.L. Racial isolation and exposure to airborne particulate matter and ozone in understudied US populations: Environmental justice applications of downscaled numerical model output. Environ. Int. 2016, 92–93, 247–255. [Google Scholar] [CrossRef]
- Cakmak, S.; Hebbern, C.; Vanos, J.; Crouse, D.L.; Burnett, R. Ozone exposure and cardiovascular-related mortality in the Canadian Census Health and Environment Cohort (CANCHEC) by spatial synoptic classification zone. Environ. Pollut. 2016, 214, 589–599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alexis, N.E.; Carlsten, C. Interplay of air pollution and asthma immunopathogenesis: A focused review of diesel exhaust and ozone. Int. Immunopharmacol. 2014, 23, 347–355. [Google Scholar] [CrossRef]
- Kobza, J.; Geremek, M.; Dul, L. Characteristics of air quality and sources affecting high levels of PM10 and PM2.5 in Poland, Upper Silesia urban area. Environ. Monit. Assess. 2018, 190, 515. [Google Scholar] [CrossRef] [Green Version]
- Liu, R.; Ma, Z.; Liu, Y.; Shao, Y.; Zhao, W.; Bi, J. Spatiotemporal distributions of surface ozone levels in China from 2005 to 2017: A machine learning approach. Environ. Int. 2020, 142, 105823. [Google Scholar] [CrossRef]
- Mohan, S.; Saranya, P. A novel bagging ensemble approach for predicting summertime ground-level ozone concentration. J. Air Waste Manag. Assoc. 2019, 69, 220–233. [Google Scholar] [CrossRef]
- Ren, X.; Mi, Z.; Georgopoulos, P.G. Comparison of Machine Learning and Land Use Regression for fine scale spatiotemporal estimation of ambient air pollution: Modeling ozone concentrations across the contiguous United States. Environ. Int. 2020, 142, 105827. [Google Scholar] [CrossRef] [PubMed]
Daily Maximum 8-h Mean | Health Effects for Selected Level Exposure | |
---|---|---|
High/alarm level | 240 µg/m3 | Acute health effects mainly affect vulnerable populations |
Interim target | 160 µg/m3 | Significant health effects; does not provide sufficient protection for the general population Exposure to this level of ozone is related to:
|
Air quality recommendation | 100 µg/m3 | Ensures sufficient protection for the general population although some health effects may occur below this level. Exposure to this level of ozone is related to:
|
Time | WHO | EPA | EU | Poland | |
---|---|---|---|---|---|
Ozone concentration admissible limits | Maximum daily 8-h mean | 100 µg/m3 | 0.070 ppm * | 120 µg/m3, 25 days averaged over 3 years | 120 µg/m3, not to be exceeded more than 25 times a calendar year |
Years | 2015 | 2016 | 2017 |
---|---|---|---|
Measuring stations and number of days with exceedances | |||
SL15BB | 32 | 8 | 15 |
SL09KA | 32 | 15 | 32 |
SL03ZP | 61 | 30 | 25 |
(a) | |||
Variable | Chebyshev Distances in Period 2015–2017 | ||
SL15BB (O3) (μg/m3)-Max 8 h | SL09KA (O3) (μg/m3)-Max 8 h | SL03ZP (O3) (μg/m3)-Max 8 h | |
SL15BB (O3) (μg/m3)-Max 8 h | 0.0 | 55.4 | 73.8 |
SL09KA (O3) (μg/m3)-Max 8 h | 55.4 | 0.0 | 78.4 |
SL03ZP (O3) (μg/m3)-Max 8 h | 73.8 | 78.4 | 0.0 |
(b) | |||
Variable | Chebyshev Distances in 2015 | ||
SL09KA (O3) (μg/m3)-Max 8 h | SL09KA (O3) (μg/m3)-Max 8 h | SL03ZP (O3) (μg/m3)-Max 8 h | |
SL15BB (O3) (μg/m3)-Max 8 h | 0.0 | 47.9 | 73.8 |
SL09KA (O3) (μg/m3)-Max 8 h | 47.9 | 0.0 | 78.4 |
SL03ZP (O3) (μg/m3)-Max 8 h | 73.8 | 78.4 | 0.0 |
Variable | Chebyshev distances in 2016 | ||
SL15BB (O3) (μg/m3)-Max 8 h | SL09KA (O3) (μg/m3)-Max 8 h | SL03ZP (O3) (μg/m3)-Max 8 h | |
SL15BB (O3) (μg/m3)-Max 8 h | 0.0 | 49.8 | 48.2 |
SL09KA (O3) (μg/m3)-Max 8 h | 49.8 | 0.0 | 41.0 |
SL03ZP (O3) (μg/m3)-Max 8 h | 48.2 | 41.0 | 0.0 |
Variable | Chebyshev distances in 2017 | ||
SL15BB (O3) (μg/m3)-Max 8 h | SL09KA (O3) (μg/m3)-Max 8 h | SL03ZP (O3) (μg/m3)-Max 8 h | |
SL15BB (O3) (μg/m3)-Max 8 h | 0.0 | 55.4 | 70.6 |
SL09KA (O3) (μg/m3)-Max 8 h | 55.4 | 0.0 | 76.2 |
SL03ZP (O3) (μg/m3)-Max 8 h | 70.6 | 76.2 | 0.0 |
(a) | ||
Cluster Number | Distance Euclidean Clusters—2015–2017 Distance under Diagonal Square Distance above Diagonal | |
No 1 | No 2 | |
No 1 | 0.0 | 313.3 |
No 2 | 17.7 | 0.0 |
Variable—2015–2017 | Elements cluster number 1 and distance from center right cluster. Cluster has 1 variable | |
Distance | ||
SL03ZP (O3) (μg/m3)-Max 8 h | 0.0 | |
Variable—2015–2017 | Elements cluster number 2 and distance from center right cluster. Cluster has 2 variables | |
Distance | ||
SL15BB (O3) (μg/m3)-Max 8 h | 7.1 | |
SL09KA (O3) (μg/m3)-Max 8 h | 7.1 | |
(b) | ||
Cluster Number | Distance Euclidean Clusters—2015 Distance under Diagonal Square Distance above Diagonal | |
No 1 | No 2 | |
No 1 | 0.0 | 491.6 |
No 2 | 22.2 | 0.0 |
Variable—2015 | Elements cluster number 1 and distance from center right cluster. Cluster has 1 variable | |
Distance | ||
SL03ZP (O3) (μg/m3)-Max 8 h | 0.0 | |
Variable-2015 | Elements cluster number 2 and distance from center right cluster. Cluster has 2 variables | |
Distance | ||
SL15BB (O3) (μg/m3)-Max 8 h | 7.6 | |
SL09KA (O3) (μg/m3)-Max 8 h | 7.6 | |
(c) | ||
Cluster Number | Distance Euclidean Clusters—2016 Distance under Diagonal Square Distance above Diagonal | |
No 1 | No 2 | |
No 1 | 0.0 | 206.5 |
No 2 | 14.4 | 0.0 |
Variable—2016 | Elements cluster number 1 and distance from center right cluster Cluster has 1 variable | |
Distance | ||
SL03ZP (O3) (μg/m3)-Max 8 h | 0.0 | |
Variable—2016 | Elements cluster number 2 and distance from center right cluster. Cluster has 2 variables | |
Distance | ||
SL15BB (O3) (μg/m3)-Max 8 h | 6.5 | |
SL09KA (O3) (μg/m3)-Max 8 h | 6.5 | |
(d) | ||
Cluster Number | Distance Euclidean Clusters-2017 Distance under Diagonal Square Distance above Diagonal | |
No 1 | No 2 | |
No 1 | 0.0 | 248.3 |
No 2 | 15.8 | 0.0 |
Variable—2017 | Elements cluster number 1 and distance from center right cluster. Cluster has 1 variable | |
Distance | ||
SL03ZP (O3) (μg/m3)-Max 8 h | 0.0 | |
Variable—2017 | Elements cluster number 2 and distance from center right cluster. Cluster has 2 variables | |
Distance | ||
SL15BB (O3) (μg/m3)-Max 8 h | 7.2 | |
SL09KA (O3) (μg/m3)-Max 8 h | 7.2 |
Type of Emission | Emissions of Ozone-Forming Gases (Ground-Level Ozone Precursors) in Tons | |||
---|---|---|---|---|
CO | SO₂ | Non-NH3 Volatile Organic Compounds | NH3 | |
Burning coal for heating of households (residential plants) | 255,499.186 | 26,308.687 | 26,448.750 | 153.928 |
Transportation | 18,579.824 | 156.445 | 2236.275 | |
Point sources | 16,351.951 | 64,336.607 | 2516.725 | 441.240 |
Agricultural activities | 988.525 | 2.151 | 3990.702 | 8389.749 |
Natural sources (forests) | 13,282.668 | 1504.178 | ||
Total | 439,419.486 | 90,803.890 | 48,475.120 | 10,489.095 |
Type of Emission | NOx |
---|---|
Burning coal for heating of households | 9145.177 |
Transportation | 7296.671 |
Point sources | 46,893.604 |
Agricultural activities | 1855.560 |
Total | 65,191.012 |
SNAP97 Groups | Sources of Emission |
---|---|
SNAP 01 | Combustion in energy and transformation industries |
SNAP 02 | Non-industrial combustion plants |
SNAP 0202 subgroup | Residential plants |
SNAP 03 | Combustion in manufacturing energy |
SNAP 04 | Production processes |
SNAP 05 | Extraction and distribution of fossil fuels and geothermal energy |
SNAP 06 | Solvent and other product use |
SNAP 07 | Road transport |
SNAP 08 | Other mobile sources and machinery |
SNAP 09 | Waste treatment and disposal |
SNAP 10 | Agriculture |
SNAP 11 | Other sources and sinks |
Source of Emission | SNAP97 Groups | Emissions of Ozone-Forming Gases (Ground-Level Ozone Precursors) in tones | |||
---|---|---|---|---|---|
CO | SO₂ | Non-NH3 Volatile Organic Compounds | NH3 | ||
Residential plants | 0202 | 264,356.59 | 22,469.00 | 28,118.42 | |
Manufacturing and energetics | 01 | 10 934.01 | 33,835.37 | 90.99 | 32.24 |
02 | 2005.06 | 627.00 | 224.79 | ||
03 | 3149.24 | 2644.53 | 41.26 | 250.01 | |
04 | 148,768.17 | 8954.02 | 1817.67 | 28.25 | |
05 | 38.75 | 76.86 | 155.08 | ||
06 | 284.34 | 3.05 | 1916.11 | 2.68 | |
09 | 86.03 | 5.54 | 12.22 | 7.86 | |
Road transport | 07 | 54,724.62 | 52.69 | 7753.86 | 446.85 |
Agricultural tractors and other agricultural machinery | 08 | 3156.58 | 6.86 | 243.06 | 0.55 |
Rail transport | 08 | 69.75 | 0.65 | 30.31 | 0.05 |
Airports | 08 | 38.60 | 10.15 | 5.17 | |
Spoil tips and excavatability | 05 | ||||
Waste storage | 09 | ||||
Agriculture | 10 | 2673.93 | 6305.08 | ||
Forestry and grounds | 11 | ||||
Total | 487,611.74 | 68,685.72 | 43,127.87 | 7073.57 |
Type of Emission | SNAP97 Groups | NOx |
---|---|---|
Residential plants | 0202 | 7167.04 |
Manufacturing and energetics | 01 | 30,325.00 |
02 | 546.42 | |
03 | 4732.41 | |
04 | 9380.07 | |
05 | 52.25 | |
06 | 93.10 | |
09 | 40.73 | |
Road transport | 07 | 28,671.47 |
Agricultural tractors and other agricultural machinery | 08 | 2364.48 |
Rail transport | 08 | 341.59 |
Airports | 08 | 127.75 |
Spoil tips and excavatability | 05 | |
Waste storage | 09 | |
Agriculture | 10 | |
Forestry and grounds | 11 | |
Total | 83,842.31 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kobza, J.; Geremek, M.; Dul, L. Ozone Concentration Levels in Urban Environments—Upper Silesia Region Case Study. Int. J. Environ. Res. Public Health 2021, 18, 1473. https://doi.org/10.3390/ijerph18041473
Kobza J, Geremek M, Dul L. Ozone Concentration Levels in Urban Environments—Upper Silesia Region Case Study. International Journal of Environmental Research and Public Health. 2021; 18(4):1473. https://doi.org/10.3390/ijerph18041473
Chicago/Turabian StyleKobza, Joanna, Mariusz Geremek, and Lechosław Dul. 2021. "Ozone Concentration Levels in Urban Environments—Upper Silesia Region Case Study" International Journal of Environmental Research and Public Health 18, no. 4: 1473. https://doi.org/10.3390/ijerph18041473
APA StyleKobza, J., Geremek, M., & Dul, L. (2021). Ozone Concentration Levels in Urban Environments—Upper Silesia Region Case Study. International Journal of Environmental Research and Public Health, 18(4), 1473. https://doi.org/10.3390/ijerph18041473