12-Week Exercise Training of Knee Joint and Squat Movement Improves Gait Ability in Older Women
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Exercise Training Program
2.4. Body Composition
2.5. Health-Related and Gait Ability-Related Physical Fitness
2.6. Ambulatory Competence
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Nutt, J.G. Higher-level gait disorders: An open frontier. Mov. Disord. 2013, 28, 1560–1565. [Google Scholar] [CrossRef]
- Evans, W.J. What is sarcopenia? J. Gerontol. Ser. A 1995, 50A, 5–8. [Google Scholar] [CrossRef]
- Kearney, F.C.; Harwood, R.H.; Gladman, J.R.; Lincoln, N.; Masud, T. The relationship between executive function and falls and gait abnormalities in older adults: A systematic review. Dement. Geriatr. Cogn. Disord. 2013, 36, 20–35. [Google Scholar] [CrossRef]
- Park, J.; Ahn, N.; Kim, K. The relationship between changes of physical fitness and metabolic syndrome index after the exercise program in elderly women. J. Coach. Dev. 2017, 19, 67–74. [Google Scholar]
- Ahn, N.; Kim, K. Effects of elastic band resistance exercise on sexual hormone, dehydroepiandosterone-sulfate concentration and walking ability in elderly women. J. Coach. Dev. 2018, 20, 83–89. [Google Scholar] [CrossRef]
- Jerome, G.J.; Ko, S.U.; Kauffman, D.; Studenski, S.A.; Ferrucci, L.; Simonsick, E.M. Gait characteristics associated with walking speed decline in older adults: Results from the Baltimore Longitudinal Study of Aging. Arch. Gerontol. Geriatr. 2015, 60, 239–243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vieira, A.I.; Nogueira, D.; Reis, E.; Rosado, M.; Nunes, M.V.; Castro-Caldas, A. Hand tactile discrimination, social touch and frailty criteria in elderly people: A cross sectional observational study. Arch. Gerontol. Geriatr. 2016, 66, 73–81. [Google Scholar] [CrossRef]
- Wu, T.Y.; Chie, W.C.; Yang, R.S.; Kuo, K.L.; Wong, W.K.; Liaw, C.K. Risk factors for single and recurrent falls: A prospective study of falls in community dwelling seniors without cognitive impairment. Prev. Med. 2013, 57, 511–517. [Google Scholar] [CrossRef]
- Kopec, J.A.; Russell, L.; Sayre, E.C.; Rahman, M.M. Self-reported ability to walk, run, and lift objects among older Canadians rehabilitation research and practice. Arch. Phys. Med. Rehabil. 2017, 98, 1962–1968. [Google Scholar]
- Ramalho, F.; Santos-Rocha, R.; Branco, M.; Moniz-Pereira, V.; André, H.-I.; Veloso, A.P.; Carnide, F. Effect of 6-month community-based exercise interventions on gait and functional fitness of an older population: A quasi-experimental study. Clin. Interv. Aging 2018, 13, 595–606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ju, Y.; Lee, G.; Kim, S.; Choi, M.; Park, J.; Ahn, N.; Kim, K. Evidence for leg-link and squat exercise training equipment development for gait ability in elderly subjects. J. Coach. Dev. 2018, 22, 89–97. [Google Scholar] [CrossRef]
- American College of Sports Medicine. ACSM’s Guidelines for Exercise Testing and Exercise Prescription, 10th ed.; Wolters Kluwer/Lippincott, Williams and Wilkins: Philadelphia, PA, USA, 2017. [Google Scholar]
- Jackson, A.S.; Pollock, M.L.; Ward, A. Generalized equations for predicting body density of women. Med. Sci. Sports Exerc. 1980, 12, 175–181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siri, W.E. Body composition from Fluid spaces and Density: Analysis of Methods. In Techniques for Measuring Body Composition; Brozek, J., Henschel, A., Eds.; National Academy of Sciences National Research Council: Washington, DC, USA, 1961; pp. 223–244. [Google Scholar]
- WHO. The Asia-Pacific Perspective: Redefining Obesity and Its Treatment. International Diabetes Institute, Health Communicatins Australia Pty Limited 2000. Available online: www.obesityasiapacific.com (accessed on 15 August 2020).
- Moniz-Pereira, V.; Carnide, F.; Machado, M.; André, H.I.; Veloso, A.P. Falls in Portuguese older people: Procedures and preliminary results of the study biomechanics of locomotion in the elderly. Acta Reumatol. Port. 2012, 37, 324–332. [Google Scholar] [PubMed]
- Webster, K.E.; Witter, J.E.; Jeller, J.A. Validity of the GaitRite® walkway system for the measurement of averaged and individual step parameters of gait. Gait Posture 2005, 22, 317–321. [Google Scholar] [CrossRef]
- Menz, H.B. Biomechanics of the ageing foot and ankle: A mini-review. Gerontology 2015, 61, 381–388. [Google Scholar] [CrossRef]
- Rose, D.J. Fall Proof: A Comprehensive Balance and Mobility Program; Human Kinetic: Champaign, IL, USA, 2003. [Google Scholar]
- Lble, R.J.; Thomas, S.S.; Higgins, C.; Colliver, J. Stride-dependent changes in gait of older people. J. Neurol. 1991, 238, 1–5. [Google Scholar]
- Prince, F.; Corriveau, H.; Hebert, R.; Winter, D.A. Gait in the elderly. Gait Posture 1997, 5, 128–135. [Google Scholar] [CrossRef]
- Yeo, S.S. Changes of gait variability by the attention demanding task in elderly adults. J. Korean Phys. Therapy 2017, 29, 303–306. [Google Scholar] [CrossRef] [Green Version]
- Hausdorff, J.M.; Rios, D.A.; Edelberg, H.K. Gait variability and fall risk in community-living older adults: A 1-year prospective study. Arch. Phys. Med. Rehabil. 2001, 82, 1050–1056. [Google Scholar] [CrossRef]
- Toulotte, C.; Thevenon, A.; Fabre, C. Effects of training and detraining on the static and dynamic balance in elderly fallers and non-fallers: A pilot study. Disabil. Rehabil. 2006, 28, 125–133. [Google Scholar] [CrossRef]
- Singh, N.B.; Konig, N.; Arampatzis, A.; Heller, M.O.; Taylor, W.R. Extreme levels of noise constitute a key neuromuscular deficit in the elderly. PLoS ONE 2012, 7, e48449. [Google Scholar] [CrossRef]
- Elble, R.J.; Cousins, R.; Leffler, K.; Hughes, L. Gait initiation by patients with lower-half parkinsonism. Brain 1996, 119, 1705–1716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buckley, T.A.; Oldham, J.R.; Munkasy, B.A.; Evans, K.E. Decreased anticipatory postural adjustments during gait initiation acutely post-concussion. Arch. Phys. Med. Rehabil. 2017, 98, 1962–1968. [Google Scholar] [CrossRef] [PubMed]
- Hamacher, D.; Hamacher, D.; Müller, R.; Schega, L.; Zech, A. Exploring phase dependent functional gait variability. Hum. Mov. Sci. 2017, 52, 191–196. [Google Scholar] [CrossRef]
- Iwamoto, J.; Otaka, Y.; Kudo, K.; Takeda, T.; Uzawa, M.; Hirabayahi, K. Efficacy of training program for ambulatory competence in elderly women. Keio J. Med. 2004, 53, 85–89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, R.Y.; Wang, Y.L.; Cheng, F.Y.; Chao, Y.H.; Chen, C.L.; Yang, Y.R. Effects of combined exercise on gait variability in community-dwelling older adults. Age 2015, 37, 9780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wonneberger, M.; Schmidt, S. Changes of gait parameters following long-term aerobic endurance exercise in mildly disabled MS patients: An exploratory study. Eur. J. Phys. Rehabil. Med. 2015, 51, 755–762. [Google Scholar]
- Burton, E.; Cavalheri, V.; Adams, R.; Browne, C.O.; Bovery-Spencer, P.; Fenton, A.M.; Campbell, B.W.; Hill, K.D. Effectiveness of exercise pro\-grams to reduce falls in older people with dementia living in the com\-munity: A systematic review and meta-analysis. Clin. Interv. Aging 2015, 10, 421–434. [Google Scholar] [CrossRef] [Green Version]
- Osoba, M.Y.; Rao, A.K.; Agrawal, S.K.; Lalwani, A.K. Balance and gait in the elderly: A contemporary review. Laryngosc. Investig. Otolaryngol. 2019, 4, 143–153. [Google Scholar] [CrossRef] [Green Version]
- Sherrington, C.; Fairhall, N.; Wallbank, G.; Tiedemann, A.; Michaleff, Z.; Howard, K.; Clemson, L.; Hopewell, S.; Lamb, S.E. Exercise for preventing falls in older people living in the community (Review). Cochr. Database Syst. Rev. 2019, 1, CD012424. [Google Scholar] [CrossRef]
- Reimann, H.; Ramadan, R.; Fettrow, T.; Hafer, J.F.; Geyer, H.; Jeka, J.J. Interactions between different age-related factors affecting balance control in walking. Front. Sport Act. Living 2020, 2, 94. [Google Scholar] [CrossRef] [PubMed]
- Ahn, N.; Park, J.; Choi, M.; Ju, Y.; Lee, G.; Kim, S.; Kim, K. Changes of body composition and gait ability-related physical fitness after exercise training of leg-link and squat movement in 70-aged women. J. Coach. Dev. 2018, 20, 80–87. [Google Scholar]
Stage | Time (min) | Exercise Program | Set | Frequency | Intensity |
---|---|---|---|---|---|
Warming-up | 5 | Lower back Gluteus stretch (single leg) | |||
Lower back Gluteus stretch (double leg) | |||||
Piriformis Gluteus (Medius stretch) | |||||
Hamstring stretch | |||||
Quadratus femoris stretch | |||||
Resistance exercise | 30 | Squat | 3 | 15 | 60~70%/1RM |
Wide Squat | 3 | 15 | |||
Tubing band Squat | 3 | 15 | |||
Tubing band Wide Squat | 3 | 15 | |||
Single Leg-link exercise | 3 | 15 | |||
Double Leg-link exercise | 3 | 15 | |||
Tubing band Leg-link exercise | 3 | 15 | |||
Aerobic exercise | 20 | Walking & Jogging | 60~70%/HRmax | ||
Cool-down | 5 | Lumbar rotation stretch | |||
Lumbar extension Abdominals stretch | |||||
Cat pose stretch(extension) | |||||
Cat pose stretch(flexion) |
Group | Age (year) | Height (cm) | Body Weight (kg) | Body Mass Index (kg/m2) | Body Fat (%) |
---|---|---|---|---|---|
Control | 73.45 2.17 | 169.03 4.24 | 68.57 3.33 | 24.84 2.71 | 24.65 3.97 |
Aerobic Training | 73.11 2.11 | 168.94 1.99 | 69.55 2.96 | 25.12 2.11 | 24.55 2.99 |
Combined Training | 73.19 2.17 | 168.95 3.95 | 70.87 4.11 | 25.11 3.65 | 23.93 2.81 |
Item | Control | Aerobic Training | Combined Training | 2-Way Repeated ANOVA (F-Value) | |||||
---|---|---|---|---|---|---|---|---|---|
Pre | Post | Pre | Post | Pre | Post | Group | Time | G × T | |
Step time (left) (s) | 0.54 0.01 | 0.53 0.01 | 0.52 0.01 | 0.52 0.02 | 0.55 0.01 | 0.51 * 0.01 | 2.911 | 3.561 | 5.761 (p < 0.05) |
Step time (right) (s) | 0.54 0.01 | 0.53 0.01 | 0.56 0.02 | 0.54 0.02 | 0.55 0.01 | 0.51 * 0.01 | 2.897 | 3.119 | 6.717 (p < 0.05) |
Gait cycle time (left) (s) | 1.15 0.05 | 1.14 0.03 | 1.44 0.03 | 1.43 0.04 | 1.09 0.03 | 1.02 * 0.03 | 2.861 | 4.512 | 5.019 (p < 0.05) |
Gait cycle time (right) | 1.14 0.06 | 1.13 0.07 | 1.12 0.05 | 1.11 0.03 | 1.08 0.04 | 1.01 * 0.02 | 2.916 | 3.144 | 6.719 (p < 0.05) |
Single support time (left) (%) | 34.55 1.36 | 34.68 1.56 | 33.44 2.35 | 33.11 2.11 | 35.04 1.15 | 38.17 * 1.21 | 2.865 | 3.412 | 5.910 (p < 0.05) |
Single support time (right) (%) | 35.34 1.01 | 35.98 1.08 | 35.44 2.35 | 36.79 1.20 | 35.78 1.01 | 38.81 * 0.96 | 2.862 | 3.991 | 6.123 (p < 0.05) |
Double support time (left) (%) | 28.78 0.95 | 28.61 1.01 | 28.76 1.34 | 27.56 1.23 | 27.45 0.95 | 24.54 * 0.01 | 2.597 | 3.412 | 6.002 (p < 0.05) |
Double support itme (right) (%) | 27.99 0.87 | 28.75 1.01 | 27.65 1.23 | 28.75 1.29 | 27.89 1.17 | 23.98 * 1.65 | 2.515 | 3.412 | 5.791 (p < 0.05) |
Ambulation time (s) | 3.21 0.33 | 3.18 0.45 | 3.11 0.56 | 3.00 0.23 | 3.01 0.23 | 2.54 * 0.37 | 2.990 | 3.445 | 6.100 (p < 0.05) |
Mean Normalized time | 1.05 0.02 | 1.06 0.03 | 1.21 0.04 | 1.29 0.06 | 1.19 0.02 | 1.39 * 0.01 | 2.561 | 2.991 | 5.678 (p < 0.05) |
Item | Control | Aerobic Training | Combined Training | 2-Way Repeated ANOVA (F-Value) | |||||
---|---|---|---|---|---|---|---|---|---|
Pre | Post | Pre | Post | Pre | Post | Group | Time | G × T | |
Stride width (left) (cm) | 48.55 3.21 | 49.21 3.82 | 49.87 3.45 | 50.65 3.12 | 49.15 3.11 | 55.62 * 2.95 | 2.321 | 2.155 | 8.512 (p < 0.05) |
Stride width (right) (cm) | 49.44 4.34 | 49.98 4.01 | 49.87 3.22 | 50.12 3.21 | 48.99 2.82 | 55.15 * 3.55 | 2.851 | 1.456 | 6.791 (p < 0.05) |
Stride length (left) (cm) | 100.12 5.81 | 101.45 6.01 | 100.12 5.89 | 101.12 5.43 | 100.32 4.95 | 110.39 * 6.67 | 2.442 | 2.812 | 6.671 (p < 0.05) |
Stride length (right) (cm) | 101.35 5.76 | 102.67 5.43 | 101.23 4.34 | 103.45 4.12 | 101.41 5.56 | 111.34 * 5.90 | 2.317 | 3.172 | 8.231 (p < 0.05) |
Step/Extremity ratio (left) | 0.65 0.02 | 0.66 0.01 | 0.65 0.01 | 0.67 0.01 | 0.64 0.03 | 0.74 * 0.02 | 2.111 | 3.002 | 7.099 (p < 0.05) |
Step/Extremity ratio (right) | 0.66 0.03 | 0.67 0.02 | 0.66 0.03 | 0.67 0.03 | 0.65 0.01 | 0.72 * 0.08 | 2.213 | 2.656 | 8.919 (p < 0.05) |
H-H base of support (left) | 8.85 0.01 | 8.31 0.01 | 8.84 0.03 | 8.76 0.04 | 8.34 0.19 | 7.21 0.25 | 2.442 | 3.111 | 3.101 |
H-H base of support (right) | 8.78 0.01 | 8.28 0.01 | 8.75 0.78 | 8.65 0.89 | 8.29 0.18 | 7.15 0.27 | 2.333 | 2.561 | 2.431 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, M.; Ahn, N.; Park, J.; Kim, K. 12-Week Exercise Training of Knee Joint and Squat Movement Improves Gait Ability in Older Women. Int. J. Environ. Res. Public Health 2021, 18, 1515. https://doi.org/10.3390/ijerph18041515
Choi M, Ahn N, Park J, Kim K. 12-Week Exercise Training of Knee Joint and Squat Movement Improves Gait Ability in Older Women. International Journal of Environmental Research and Public Health. 2021; 18(4):1515. https://doi.org/10.3390/ijerph18041515
Chicago/Turabian StyleChoi, Myungsoo, Nayoung Ahn, Jusik Park, and Kijin Kim. 2021. "12-Week Exercise Training of Knee Joint and Squat Movement Improves Gait Ability in Older Women" International Journal of Environmental Research and Public Health 18, no. 4: 1515. https://doi.org/10.3390/ijerph18041515
APA StyleChoi, M., Ahn, N., Park, J., & Kim, K. (2021). 12-Week Exercise Training of Knee Joint and Squat Movement Improves Gait Ability in Older Women. International Journal of Environmental Research and Public Health, 18(4), 1515. https://doi.org/10.3390/ijerph18041515