Measuring and Assessing Fluctuating and Authentic–Durable Happiness in Italian Samples
Abstract
:1. Introduction
2. Materials and Methods–Study 1
2.1. Participants and Procedure
2.2. Measure
2.3. Data Analysis
2.4. Results
3. Participants and Procedure–Study 2
3.1. Measures
3.2. Data Analysis
3.3. Results
3.3.1. Model Estimation
3.3.2. Bifactor Model-Based Reliability
3.3.3. Convergent Validity
3.3.4. SA-DHS and SFHS and measures of well-being and happiness
3.3.5. SA-DHS and SFHS and measures of psychological constructs
3.3.6. Distinguishing the two components of the SA-DHS
3.3.7. Discriminant Validity
3.3.8. Test-Retest Reliability and Agreement
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Fluctuating dimension (SFHS) Wthin the past few months./Negli ultimi mesi, |
1 I have had satisfactions and also great disappointments Ho avuto soddisfazioni, ma anche grandi insoddisfazioni |
2 The periods of pleasure that I have known are always followed by periods of displeasure I periodi di piacere che ho conosciuto sono stati sempre seguiti da periodi di dispiacere |
3 My level of serenity is very changeable Il mio livello di serenità è molto variabile. |
4 I have often known periods of euphoria but they are almost always followed by much less exciting periods Ho conosciuto spesso periodi di euforia, che sono stati seguiti, però, quasi sempre da periodi molto meno esaltanti. |
5 I often go from euphoria to sadness. Spesso passo dall’euforia alla tristezza |
6 Periods of ill-being follow periods of well-being A periodi di benessere seguono periodi di malessere. |
7 My level of happiness is rather unstable, sometimes high, sometimes low Il mio livello di felicità è piuttosto instabile, a volte alto, a volte basso. |
8 I often go from a rather high level of pleasure to a rather low level of pleasure Spesso passo da un livello di piacere piuttosto alto ad un livello piuttosto basso. |
9 I have times when I swing from moments of total bliss to much less satisfying moments Conosco delle alternanze tra momenti di beatitudine totale a momenti molto meno soddisfacenti. |
10 In the same day, I can sometimes be happy and sometimes sad Nello stesso giorno mi può succedere di essere a volte felice e a volte infelice. |
Authentic–durable dimension (SA-DHS) In your life, what is your regular level of/Nella tua vita, indica il tuo livello generale di |
1 Overall well-being? Benessere generale |
2 Happiness? Felicità |
3 Pleasure? Piacere |
4 Bliss? Felicità che sembra completa |
5 Peace of mind? Tranquillità d’animo |
6 Satisfaction? Soddisfazione |
7 Serenity? Serenità |
9 Beatitude? (perfect happiness)? Beatitudine, Felicità perfetta |
10 Inner-peace? Pace interior |
11 Fulfillment? Appagamento |
12 Joy? Gioia |
14 Tranquility (inner-calm)? Calma interiore |
15 Plenitude (feeling of complete satisfaction, happiness and fulfillment)? Pienezza, ossia sentimento di completa soddisfazione e realizzazione |
References
- Seligman, M.; Csikszentmihalyi, M. Positive psychology: An introduction. Am. Psychol. 2000, 55, 5–14. [Google Scholar] [CrossRef]
- Boniwell, I.; David, S.A.; Ayers, A.C. (Eds.) Introduction. In The Oxford Handbook of Happiness; Oxford University Press: Oxford, UK, 2013; pp. 1–9. [Google Scholar] [CrossRef]
- Kahneman, D.; Diener, E.; Schwarz, N. Well-Being: The Foundations of Hedonic Psychology; Russell Sage Found: New York, NY, USA, 1999. [Google Scholar]
- Ryan, R.M.; Deci, E.L. On happiness and human potentials: A review of research on hedonic and eudaimonic well-being. Annu. Rev. Psychol. 2001, 52, 141–166. [Google Scholar] [CrossRef] [PubMed]
- Waterman, A.S. Two conceptions of happiness: Contrasts of personal expressiveness (eudaimonia) and hedonic enjoyment. J. Pers. Soc. Psychol. 1993, 64, 678–691. [Google Scholar] [CrossRef]
- Ryff, C.D.; Keyes, C.L.M. The structure of psychological well-being revisited. J. Pers. Soc. Psychol. 1995, 69, 719–727. [Google Scholar] [CrossRef] [Green Version]
- Peterson, C.; Park, N.; Seligman, M.E. Orientations to happiness and life satisfaction: The full life versus the empty life. J. Happiness Stud. 2005, 6, 25–41. [Google Scholar] [CrossRef]
- Delle Fave, A.; Massimini, F.; Bassi, M. (Eds.) Hedonism and Eudaimonism in Positive Psychology. In Psychological Selection and Optimal Experience Across Cultures: Social Empowerment Through Personal Growth; Springer: Berlin/Heidelberg, Germany, 2011; Volume 2, pp. 3–18. ISBN 9789048198764. [Google Scholar]
- Lyubomirsky, S.; Lepper, H. A measure of subjective happiness: Preliminary reliability and construct validation. Soc. Indic. Res. 1999, 4, 137–155. [Google Scholar] [CrossRef]
- Argyle, M.; Martin, M.; Crossland, J. Happiness as a function of personality and social encounters. In Recent Advances in Social Psychology: An International Perspective; Forgas, J.P., Innes, J.M., Eds.; Elsevier Science: Amsterdam/North Holland, The Nerherlands, 1989; pp. 189–203. [Google Scholar]
- Seligman, M.E.P.; Steen, T.A.; Park, N.; Peterson, C. Positive psychology progress: Empirical validation of interventions. Am. Psychol. 2005, 60, 410–421. [Google Scholar] [CrossRef] [Green Version]
- Peterson, C.; Park, N.; Sweeney, P. Group Well-Being: Morale from a Positive Psychology Perspective. Appl. Psychol. 2008, 57, 19–36. [Google Scholar] [CrossRef]
- Dambrun, M.; Ricard, M. Self-centeredness and selflessness: A theory of self-based psychological functioning and its consequences for happiness. Rev. Gen. Psychol. 2011, 15, 138–157. [Google Scholar] [CrossRef] [Green Version]
- Dambrun, M.; Ricard, M.; Després, G.; Drelon, E.; Gibelin, E.; Gibelin, M.; Bray, E. Measuring happiness: From fluctuating happiness to authentic–durable happiness. Front. Psychol. 2012, 3, 16. [Google Scholar] [CrossRef] [Green Version]
- Diener, E.; Emmons, R.A.; Larsen, R.J.; Griffin, S. The Satisfaction with Life Scale. J. Pers. Assess. 1985, 49, 71–75. [Google Scholar] [CrossRef]
- Lyubomirsky, S.; Sheldon, K.M.; Schkade, D. Pursuing happiness: The architecture of sustainable change. Rev. Gen. Psychol. 2005, 9, 111–131. [Google Scholar] [CrossRef] [Green Version]
- Tatarkiewicz, W. Analysis of Happiness; Martinus Nijhoff: The Hague, The Nerherlands, 1976. [Google Scholar]
- Scheier, M.F.; Carver, C.S.; Bridges, M.W. Optimism, pessimism, and psychology well-being. In Optimism & Pessimism: Implication for Theory, Research and Practice; Chang, E.C., Ed.; American Psychological Association: Washington, DC, USA, 2001; pp. 189–216. [Google Scholar] [CrossRef]
- Brown, K.W.; Ryan, R.M. The benefits of being present: Mindfulness and its role in psychological well-being. J. Pers. Soc. Psychol. 2003, 84, 822–848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diener, E.; Wirtz, D.; Tov, W.; Kim-Prieto, C. New well-being measures: Short scales to assess flourishing and positive and negative feelings. Soc. Indic. Res. 2010, 97, 143–156. [Google Scholar] [CrossRef]
- Ho, M.Y.; Cheung, F.M.; Cheung, S.F. The role of meaning in life and optimism in promoting well-being. Pers. Individ. Differ. 2010, 48, 658–663. [Google Scholar] [CrossRef]
- Fischer, I.C.; Secinti, E.; Cemalcilar, Z. Examining Cross-Cultural Relationships between Meaning in Life and Psychological Well-Being in Turkey and the United States. J. Happiness Stud. 2020. [Google Scholar] [CrossRef]
- Steger, M.F.; Kawabata, Y.; Shimai, S.; Otake, K. The meaningful life in Japan and the United States: Levels and correlates of meaning in life. J. Res. Pers. 2008, 42, 660–678. [Google Scholar] [CrossRef]
- Steger, M.F.; Shin, J.Y.; Fitch-Martin, A. Is meaning in life a flagship indicator of well-being? In The Best within us: Positive Psychology Perspectives on Eudaimonia; Waterman, A.S., Ed.; American Psychological Association: Washington, DC, USA, 2013; pp. 159–182. [Google Scholar] [CrossRef]
- Veenhoven, R. Progrès dans la comprehension du bonheur. Rev. Québécoise Psychol. 1997, 18, 29–73. [Google Scholar]
- Brown, T.A. Confirmatory Factor Analysis for Applied Research; Guilford: New York, NY, USA; London, UK, 2015; ISBN 9781462515363. [Google Scholar]
- Kaplan, D. Multilevel Structural Equation Modeling. Structural Equation Modeling, Sampling, 2nd ed.; Sage: Thousand Oaks, CA, USA, 2009; pp. 133–154. [Google Scholar] [CrossRef]
- Bentler, P.M.; Bonnet, D.G. Significance tests and goodness-of-fit in the analysis of covariance structures. Psychol. Bull. 1980, 88, 588–606. [Google Scholar] [CrossRef]
- Hu, L.T.; Bentler, P.M. Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Struct. Equ. Modeling 1999, 6, 1–55. [Google Scholar] [CrossRef]
- Eid, M.; Geiser, C.; Koch, T.; Heene, M. Anomalous results in G-factor models: Explanations and alternatives. Psychol. Methods 2017, 22, 541–562. [Google Scholar] [CrossRef] [PubMed]
- Steca, P.; Monzani, D.; Greco, A.; Chiesi, F.; Primi, C. Item Response Theory Analysis of the Life Orientation Test-Revised: Age and Gender Differential Item Functioning Analyses. Assess 2015, 22, 341–350. [Google Scholar] [CrossRef]
- Negri, L.; Bassi, M.; Delle Fave, A. Italian Validation of the Meaning in Life Questionnaire: Factor Structure, Reliability, Convergent, and Discriminant Validity. Psychol. Rep. 2020, 123, 578–600. [Google Scholar] [CrossRef] [PubMed]
- Veneziani, C.A.; Voci, A. The Italian Adaptation of the Mindful Awareness Attention Scale and its Relation with Individual Differences and Quality of Life Indexes. Mindfulness 2015, 6, 373–381. [Google Scholar] [CrossRef]
- Watson, D.; Clark, L.A.; Tellegen, A. Development and validation of brief measures of positive and negative affect: The PANAS scales. J. Pers Soc. Psychol. 1988, 54, 1063–1070. [Google Scholar] [CrossRef] [PubMed]
- Meleddu, M.; Guicciardi, M.; Scalas, L.F.; Fadda, D. Validation of an Italian version of the Oxford Happiness Inventory in Adolescence. J. Pers. Assess. 2012, 94, 175–185. [Google Scholar] [CrossRef]
- Giuntoli, L.; Ceccarini, F.; Sica, C.; Caudek, C. Validation of the Italian versions of the flourishing scale and of the scale of positive and negative experience. SAGE Open 2017, 7. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, A.; Reise, S.P.; Haviland, M.G. Evaluating bifactor models: Calculating and interpreting statistical indices. Psychol. Methods 2016, 21, 137–150. [Google Scholar] [CrossRef]
- McDonald, R.P. Test. Theory: A Unified Approach; Erlbaum: Mahwah, NJ, USA, 1999. [Google Scholar]
- Rodriguez, A.; Reise, S.P.; Haviland, M.G. Applying Bifactor Statistical Indices in the Evaluation of Psychological Measures. J. Pers. Assess. 2016, 98, 223–237. [Google Scholar] [CrossRef]
- Stucky, B.D.; Edelen, M.O. Using hierarchical IRT to create unidimensional measures from multidimensional data. In Handbook of Item Response Theory Modeling: Applications to Typical Performance Assessment; Reise, S.P., Revicki, D.A., Eds.; Routledge/Taylor & Francis Group: New York, NY, USA, 2015; pp. 183–206. ISBN 9781138787858. [Google Scholar]
- Reise, S.P.; Bonifay, W.E.; Haviland, M.G. Scoring and modeling psychological measures in the presence of multidimensionality. J. Per. Assess. 2013, 95, 129–140. [Google Scholar] [CrossRef]
- Zanon, C.; Brenner, R.E.; Baptista, M.N.; Vogel, D. L Examining the dimensionality, reliability, and invariance of the Depression, Anxiety, and Stress Scale–21 (DASS-21) across eight countries. Assessment 2020. [Google Scholar] [CrossRef] [PubMed]
- Hancock, G.R.; Mueller, R.O. Rethinking construct reliability within latent variable systems. In Structural Equation Modeling: Present and Future-A Festschrift in Honor of Karl Jöreskog; Cudeck, R., du Toit, S., Sörbom, D., Eds.; Scientific Software International: Lincolnwood, IL, USA, 2001; pp. 195–216. [Google Scholar]
- Gorsuch, R. Factor Analysis, 2nd ed.; Lawrence Erlbaum Associates: Hillsdale, NJ, USA, 1983. [Google Scholar]
- Dambrun, M.; Ricard, M. La transcendance de soi et le bonheur: Une mise à l’épreuve du modèle du bonheur basé sur le soi centré-décentré. CIPS 2012, 93, 89–102. [Google Scholar] [CrossRef]
- LeFebvre, A.; Huta, V. Age and gender differences in eudaimonic, hedonic, and extrinsic motivations. J. Happiness Stud. 2020, 1–23. [Google Scholar] [CrossRef]
- Grossi, E.; Compare, A. Psychological General Well-Being Index (PGWB). In Encyclopedia of Quality of Life and Well-Being Research; Michalos, A.C., Ed.; Springer: Dordrecht, The Netherlands, 2014; pp. 224–311. [Google Scholar] [CrossRef]
SFHS | SA–DHS | Contentment | Inner-Peace | |
---|---|---|---|---|
Mean (SD) | Mean (SD) | Mean (SD) | Mean (SD) | |
Males (n = 261) | 3.89 (1.11) | 4.48(1.02) | 4.91 (1.02) | 4.72 (1.20) |
Females (n = 283) | 4.41 (1.32) | 4.49 (1.07) | 4.59 (1.03) | 4.30 (1.30) |
Adolescents (n = 258) | 4.12 (1.19) | 4.74 (1.03) | 4.86 (1.01) | 4.56 (1.27) |
Adults (n = 268) | 4.19 (1.30) | 4.56 (1.08) | 4.64 (1.05) | 4.49 (1.26) |
Males (n = 261) | ||||
Adolescents (n = 156) | 3.83 (1.06) | 4.97 (1.00) | 5.05 (0.98) | 4.85 (1.22) |
Adults (n = 105) | 3.99 (1.17) | 4.63 (1.04) | 4.71 (1.04) | 4.54 (1.14) |
Females (n = 283) | ||||
Adolescents (n = 102) | 4.57 (1.25) | 4.39 (0.99) | 4.57 (0.97) | 4.10 (1.21) |
Adults (n = 181) | 4.30 (1.36) | 4.55 (1.10) | 4.60 (1.06) | 4.46 (1.33) |
YBχ2 | df | p | RMSEA (90% C.I.) | CFI | SRMR | |
---|---|---|---|---|---|---|
Model 1 | 2092.61 | 230 | <0.001 | 0.122 (0.117–0.127) | 0.612 | 0.136 |
Model 2 | 878.380 | 229 | <0.001 | 0.072 (0.067–0.077) | 0.865 | 0.058 |
Model 3 | 774.121 | 227 | <0.001 | 0.067 (0.061–0.072) | 0.886 | 0.056 |
Model 4 | 533.788 | 207 | <0.001 | 0.054 (0.048–0.060) | 0.932 | 0.050 |
Model 5 | 663.422 | 214 | <0.001 | 0.062 (0.057–0.068) | 0.906 | 0.046 |
GRF | SRF1 | SRF2 | I-EVC | |
---|---|---|---|---|
Fluctuating dimension | ||||
Item 1 | −0.135 | 0.202 | 0.309 | |
Item 2 | −0.274 | 0.383 | 0.339 | |
Item 3 | −0.300 | 0.539 | 0.237 | |
Item 4 | −0.228 | 0.565 | 0.140 | |
Item 5 | −0.275 | 0.716 | 0.129 | |
Item 6 | −0.285 | 0.572 | 0.199 | |
Item 7 | −0.379 | 0.698 | 0.228 | |
Item 8 | −0.307 | 0.698 | 0.162 | |
Item 9 | 0.209 | 0.557 | 0.123 | |
Item 10 | 0.158 | 0.543 | 0.078 | |
Authentic–durable dimension | ||||
Item 1 | 0.687 | 1.000 | ||
Item 2 | 0.778 | 1.000 | ||
Item 3 | 0.726 | 1.000 | ||
Item 4 | 0.729 | 1.000 | ||
Item 5 | 0.59 | 0.623 | 1.000 | |
Item 6 | 0.687 | 0.473 | ||
Item 7 | 0.689 | 0.400 | 1.000 | |
Item 9 | 0.749 | 0.748 | ||
Item 10 | 0.562 | 0.618 | 1.000 | |
Item 11 | 0.675 | 0.453 | ||
Item 12 | 0.793 | 1.000 | ||
Item 14 | 0.503 | 0.601 | 1.000 | |
Item 15 | 0.753 | 0.166 | 0.412 |
Indices | GRF | SRF1 | SRF2 |
---|---|---|---|
EVC | 0.605 | 0.282 | 0.113 |
EVC New | 0.605 | 0.317 | 0.157 |
ω/ωS | 0.880 | 0.857 | 0.895 |
Hω/HωS | 0.520 | 0.308 | 0.055 |
Relative omegas | 0.589 | 0.822 | 0.357 |
H index | 0.932 | 0.844 | 0.668 |
FD | 0.960 | 0.923 | 0.868 |
α | 0.896 | 0.857 | 0.837 |
LOT-R | NEGA EMO | POS EMO | POM | SFM | MAAS | |
---|---|---|---|---|---|---|
Bivariate correlations in the total sample (N = 254) | ||||||
SFHS | −0.485 ** (−0.378 **) | 0.392 ** (0.305 **) | −0.248 ** (−0.071) | −0.292 ** (−0.136 *) | 0.292 ** (0.236 **) | −0.231 ** (−0.151*) |
SA-DHS | 0.425 ** (0.286 **) | −0.316 ** (−0.187 **) | 0.472 ** (0.419 **) | 0.447 ** (0.376 **) | −0.199 ** (−0.092) | 0.240 ** (0.165 **) |
Bivariate correlations in males (n = 115) | ||||||
SFHS | −0.486 ** (−0.398 **) | 0.387 ** (0.323 **) | −0.139 (0.018 **) | −0.310 ** (−0.177) | 0.266 ** (0.218*) | −0.151 (−0.093) |
SA-DHS | 0.434 ** (0.325 **) | −0.278 ** (−0.168) | 0.449 ** (0.432 **) | 0.476 ** (0.414 **) | −0.189 ** (−0.108) | 0.189 * (0.148) |
Bivariate correlations in females (n = 139) | ||||||
SFHS | −0.347 ** (−0.252 **) | 0.273 ** (0.193 *) | −0.209 ** (−0.058) | −0.253 ** (−0.121) | 0.136 ** (0.103 **) | −0.342 ** (−0.266 **) |
SA-DHS | 0.349 * (0.255 **) | −0.276 ** (−0.197 *) | 0.443 ** (0.403 **) | 0.411 ** (0.355 **) | −0.114 (−0.070) | 0.288 ** (0.187 *) |
Partial correlations in the total sample | ||||||
1 Factor C | 0.395 ** (0.114 **) | −0.343 ** (−0.284 **) | 0.428 **(0.079) | 0.395 **(0.027) | −0.180 ** (−0.031) | 0.242 ** (0.136 *) |
2 Factor I | 0.421 ** (0.194 **) | −0.219 ** (0.088) | 0.489 ** (0.273 **) | 0.483 ** (0.304 **) | −0.205 ** (−0.105) | 0.203 ** (0.021) |
Partial correlations in males | ||||||
1 Factor C | 0.426 ** (0.243 **) | −0.348 ** (−0.409 **) | 0.411 ** (0.145) | 0.428 ** (0.126) | −0.184 * (−0.094) | 0.185 * (0.098) |
2 Factor I | 0.372 ** (0.097) | −0.097 (−0.298 **) | 0.440 ** (0.223*) | 0.481 ** (0.273 **) | −0.165 (−0.045) | 0.163 (0.041) |
Partial correlations in females | ||||||
1 Factor C | 0.309 ** (−0.008) | −0.280 ** (−0.158) | 0.395 ** (0.007) | 0.354 ** (−0.058) | −0.089 (0.054) | 0.293 ** (0.170) |
2 Factor I | 0.385 *** (0.242 **) | −0.234 ** (−0.011) | 0.481 ** (0.299 **) | 0.471 ** (0.337 **) | −0.147 (−0.129) | 0.242 ** (0.007) |
LS | OHI | FS | SPANE POS | SPANE NEG | |
---|---|---|---|---|---|
Bivariate and partial correlations in the total sample (N = 488) | |||||
SFHS | −0.255 ** (−0.253 **) | −0.245 ** (−0.246 **) | 0.133 ** (−0.119 *) | −0.233 ** (−0.225 **) | 0.400 ** (−0.394 **) |
SA−DHS | 0.037 (0.015) | 0.000 (−0.022) | 0.194 ** (0.184 **) | 0.112 * (0.094) | −0.140 ** (−0.115 *) |
Bivariate and partial correlations in adolescents (n = 367) | |||||
SFHS | −0.294 ** (−0.302 **) | −0.266 ** (−0.267 **) | −0.139 ** (−0.156 *) | −0.239 ** (−0.248 **) | 0.431 ** (0.437 **) |
SA−DHS | 0.050 (−0.090) | −0.012 (0.021) | 0.128 * (0.147 **) | 0.054 (0.086) | −0.024 (−0.085) |
Bivariate and partial correlations in young adults (n = 121) | |||||
SFHS | −0.190 * (−0.127) | −0.235 ** (−0.181 *) | −0.067 (−0.006) | −0.229 * (−0.172) | 0.291 ** (0.252 **) |
SA−DHS | 0.552 ** (0.539 **) | 0.587 ** (0.574 **) | 0.399 ** (0.395 **) | 0.698 ** (0.689 **) | −0.451 ** (−0.430 **) |
Bivariate and partial correlations in males (n = 220) | |||||
SFHS | −0.321 ** (−0.325 **) | −0.311 ** (−0.310 **) | −0.262 ** (−0.258 **) | −0.288 ** (−0.287 **) | 0.379 ** (0.376 **) |
SA−DHS | −0.048 (−0.070) | 0.033 (0.016) | 0.121 (0.110) | 0.027 (0.011) | −0.090 (−0.074) |
Bivariate and partial correlations in females (n = 268) | |||||
SFHS | −0.183 ** (−0.156 *) | −0.157 ** (−0.141 *) | −0.053 (−0.006) | −0.176 ** (−0.134 *) | 0.403 ** (0.368 **) |
SA−DHS | 0.149 * (0.115) | 0.090 (0.059) | 0.218 ** (0.212 **) | 0.227 ** (0.197 **) | −0.256 ** (−0.190 **) |
Bivariate and partial correlations in age*gender | |||||
Bivariate and partial correlations in adolescent males (n = 203) | |||||
SFHS | −0.362 ** (−0.199 **) | −0.317 ** (−0.151 **) | −0.269 ** (−0.094) | −0.304 ** (−0.143 *) | 0.373 ** (0.318 **) |
SA−DHS | 0.705 ** (0.667 **) | 0.640 ** (0.598 **) | 0.611 ** (0.575 **) | 0.606 ** (0.564 **) | −0.255 ** (−0.153 *) |
Bivariate and partial correlations in adolescent females (n = 164) | |||||
SFHS | −0.156 * (−0.166 **) | −0.129 (−0.128) | −0.001 (−0.016) | −0.108 (−0.119) | 0.463 ** (0.478) |
SA−DHS | 0.075 (0.095) | −0.012 (0.003) | 0.136 (0.137) | 0.092 (0.105) | −0.084 (−0.155 *) |
Bivariate and partial correlations in young adult males (n = 17) | |||||
SFHS | 0.149 (0.075) | −0.206 (−0.332) | −0.075 (−0.109) | 0.016 (−0.182) | 0.463 (0.534 **) |
SA−DHS | 0.400 (0.362) | 0.428 (0.491) | 0.150 (0.170) | 0.703 ** (0.715 **) | −0.225 (−0.369) |
Bivariate and partial correlations in young adult females (n = 104) | |||||
SFHS | −0.237 * (−0.164) | 0.235 * (−0.159) | −0.067 (0.012) | −0.246 * (−0.169) | 0.273 ** (0.215) |
SA−DHS | 0.579 ** (0.382) | 0.603 ** (0.492) | 0.424 ** (0.170) | 0.698 ** (0.715 **) | −0.478 ** (−0.369) |
LS | OHI | FS | SPANE POS | SPANE NEG | |
---|---|---|---|---|---|
Bivariate and partial correlations in the total sample (N = 488) | |||||
1 Factor C | 0.613 ** (0.264 **) | 0.615 ** (0.287 **) | 0.513 ** (0.249 **) | 0.656 ** (0.391 **) | −0.338 ** (−0.231 **) |
2 Factor I | 0.628 ** (0.316 **) | 0.612 ** (0.283 **) | 0.482 ** (0.174 **) | 0.591 ** (0.190 **) | −0.257 ** (0.007) |
Bivariate and partial correlations in adolescents (n =367) | |||||
1 Factor C | 0.657 ** (0.329 **) | 0.638 ** (0.294 **) | 0.578 ** (0.328 **) | 0.649 ** (0.372 **) | −0.306 ** (−0.221 **) |
2 Factor I | 0.637 ** (0.272 **) | 0.634 ** (0.291 **) | 0.508 ** (0.129 *) | 0.588 ** (0.182 **) | −0.224 ** (0.031) |
Bivariate and partial correlations in young adults (n =121) | |||||
1 Factor C | 0.493 ** (0.098) | 0.555 ** (0.267 **) | 0.357 ** (0.072) | 0.680 ** (0.443 **) | −0.448 ** (−0.228 **) |
2 Factor I | 0.604 ** (0.411 **) | 0.553 ** (0.262 **) | 0.430 ** (0.265 **) | 0.600 ** (0.210 **) | −0.362 ** (−0.060) |
Bivariate and partial correlations in males (n =220) | |||||
1 Factor C | 0.664 ** (0.368 **) | 0.599 ** (0.279 **) | 0.588 ** (0.363 **) | 0.596 ** (0.324 **) | −0.260 ** (−0.214 **) |
2 Factor I | 0.622 ** (0.246 **) | 0.589 ** (0.263 **) | 0.488 ** (0.104) | 0.547 ** (0.185 **) | −0.176 ** (0.059) |
Bivariate and partial correlations in females (n =268) | |||||
1 Factor C | 0.575 ** (0.196 *) | 0.625 ** (0.298 **) | 0.493 ** (0.200 **) | 0.687 ** (0.431*) | −0.377 ** (−0.235 **) |
2 Factor I | 0.628 * (0.306 **) | 0.624 ** (0.297 **) | 0.502 ** (0.227 **) | 0.614 ** (0.197 **) | −0.304 ** (−0.033) |
Bivariate and partial correlations in age*gender | |||||
Bivariate and partial correlations in adolescent males (n =203) | |||||
1 Factor C | 0.691 ** (0.412 **) | 0.606 ** (0.272 **) | 0.620 ** (0.385 **) | 0.591 ** (0.314 **) | −0.264 ** (−0.209 **) |
2 Factor I | 0.629 ** (0.226 **) | 0.606 ** (0.287 **) | 0.519 ** (0.124 **) | 0.546 ** (0.190 **) | −0.187 ** (−0.048) |
Bivariate and partial correlations in adolescent females (n =164) | |||||
1 Factor C | 0.611 ** (0.239 **) | 0.671 ** (0.333 **) | 0.568 ** (0.298 **) | 0.694 ** (0.430 **) | −0.315 ** (−0.223 **) |
2 Factor I | 0.635 ** (0.321 **) | 0.659 ** (0.294 **) | 0.525 ** (0.160*) | 0.618 ** (0.172 **) | −0.228 ** (0.026) |
Bivariate and partial correlations in young adults males (n = 17) | |||||
1 Factor C | 0.302 (−0.19) | 0.454 (0.323) | 0.122 (−0.002) | 0.708 ** (0.499 **) | −0.271 (−0.271) |
2 Factor I | 0.496 * (0.427) | 0.337 (−0.004) | 0.165 (0.112) | 0.589* (0.128) | −0.124 (0.123) |
Bivariate and partial correlations in young adults females (n = 104) | |||||
1 Factor C | 0.525* (0.135) | 0.564 ** (0.248 **) | 0.380 ** (0.071) | 0.679 ** (0.436) | −0.467 ** (−0.281) |
2 Factor I | 0.621 ** (0.409 **) | 0.584 ** (0.307 **) | 0.461 ** (0.292 **) | 0.605 ** (0.220) | −0.399 ** (−0.096) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Monacis, L.; Limone, P.; Dambrun, M.; Delle Fave, A.; Sinatra, M. Measuring and Assessing Fluctuating and Authentic–Durable Happiness in Italian Samples. Int. J. Environ. Res. Public Health 2021, 18, 1602. https://doi.org/10.3390/ijerph18041602
Monacis L, Limone P, Dambrun M, Delle Fave A, Sinatra M. Measuring and Assessing Fluctuating and Authentic–Durable Happiness in Italian Samples. International Journal of Environmental Research and Public Health. 2021; 18(4):1602. https://doi.org/10.3390/ijerph18041602
Chicago/Turabian StyleMonacis, Lucia, Pierpaolo Limone, Michaël Dambrun, Antonella Delle Fave, and Maria Sinatra. 2021. "Measuring and Assessing Fluctuating and Authentic–Durable Happiness in Italian Samples" International Journal of Environmental Research and Public Health 18, no. 4: 1602. https://doi.org/10.3390/ijerph18041602
APA StyleMonacis, L., Limone, P., Dambrun, M., Delle Fave, A., & Sinatra, M. (2021). Measuring and Assessing Fluctuating and Authentic–Durable Happiness in Italian Samples. International Journal of Environmental Research and Public Health, 18(4), 1602. https://doi.org/10.3390/ijerph18041602