Mechanisms and Empirical Modeling of Evaporation from Hardened Surfaces in Urban Areas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment on Impervious Ground
2.2. Experiment on Pervious Hardened Ground
2.3. Calculation Model
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kalnay, E.; Cai, M. Impact of urbanization and land-use change on climate. Nature 2003, 423, 528–531. [Google Scholar] [CrossRef] [PubMed]
- Yao, X.; Wang, Z.; Wang, H. Impact of Urbanization and Land-Use Change on Surface Climate in Middle and Lower Reaches of the Yangtze River, 1988–2008. Adv. Meteorol. 2015, 2015. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Wang, J.; Liu, J.; Mei, C. Analysis of urban water cycle evolution and countermeasures. J. Hydraul. Eng. 2020, 51, 1–10. [Google Scholar] [CrossRef]
- Jeykumar, R.K.C.; Chandran, S. Impact of urbanization on climate change and geographical analysis of physical land use land cover variation using RS-GIS. Glob. Nest. J. 2019, 21, 141–152. [Google Scholar] [CrossRef]
- Gao, X.; Guo, M.; Yang, Z.; Zhu, Q.; Xu, Z.; Gao, K. Temperature dependence of extreme precipitation over mainland China. J. Hydrol. 2020, 583. [Google Scholar] [CrossRef]
- Ghatak, D.; Zaitchik, B.; Hain, C.; Anderson, M. The role of local heating in the 2015 Indian Heat Wave. Sci. Rep-UK 2017, 7. [Google Scholar] [CrossRef]
- Drijfhout, S. The relation between natural variations in ocean heat uptake and global mean surface temperature anomalies in CMIP5. Sci. Rep-UK 2018, 8. [Google Scholar] [CrossRef] [PubMed]
- Fitria, R.; Kim, D.; Baik, J.; Choi, M. Impact of Biophysical Mechanisms on Urban Heat Island Associated with Climate Variation and Urban Morphology. Sci. Rep-UK 2019, 9. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Chen, R.; Sun, W.; Yang, X.; Li, X. Impact of High-Density Urban Built Environment on Chronic Obstructive Pulmonary Disease: A Case Study of Jing’an District, Shanghai. Int. J. Env. Res. Pub. Health 2020, 17, 252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grazuleviciene, R.; Vencloviene, J.; Kubilius, R.; Grizas, V.; Danileviciute, A.; Dedele, A.; Andrusaityte, S.; Vitkauskiene, A.; Steponaviciute, R.; Nieuwenhuijsen, M. Tracking Restoration of Park and Urban Street Settings in Coronary Artery Disease Patients. Int. J. Env. Res. Pub. Health 2016, 13, 550. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Hong, Y.; Khan, S.I.; Huang, M.; Vieux, B.; Caliskan, S.; Grout, T. Actual evapotranspiration estimation for different land use and land cover in urban regions using Landsat 5 data. J. Appl. Remote Sens. 2010, 4. [Google Scholar] [CrossRef]
- Wang, C.; Yang, J.; Myint, S.W.; Wang, Z.; Tong, B. Empirical modeling and spatio-temporal patterns of urban evapotranspiration for the Phoenix metropolitan area, Arizona. Gisci. Remote Sens. 2016, 53, 778–792. [Google Scholar] [CrossRef]
- Xing, W.; Wang, W.; Shao, Q.; Yu, Z.; Yang, T.; Fu, J. Periodic fluctuation of reference evapotranspiration during the past five decades: Does Evaporation Paradox really exist in China? Sci. Rep-UK 2016, 6. [Google Scholar] [CrossRef]
- Gronlund, C.; O’Neill, M.; Schwartz, J.; Brown, D.; Brines, S. Heat Waves, Impervious Surfaces, and Hospital Admissions among the Elderly in US Cities. Epidemiology 2009, 20S, S145. [Google Scholar] [CrossRef]
- Pang, W.T.; Fok, H.S.; Iz, H.B. Mapping impervious surface areas from GIS planimetric data. Surv. Rev. 2008, 40, 108–115. [Google Scholar] [CrossRef]
- Zhao, L.; Xia, J.; Xu, C.; Wang, Z.; Sobkowiak, L.; Long, C. Evapotranspiration estimation methods in hydrological models. J. Geogr. Sci. 2013, 23, 359–369. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, J.; Yan, D.; Wang, H.; Wang, Z.; Shao, W.; Luan, Y. Dissipation of water in urban area, mechanism and modelling with the consideration of anthropogenic impacts: A case study in Xiamen. J. Hydrol. 2019, 570, 356–365. [Google Scholar] [CrossRef]
- Shields, C.; Tague, C. Ecohydrology in semiarid urban ecosystems: Modeling the relationship between connected impervious area and ecosystem productivity. Water Resour. Res. 2015, 51, 302–319. [Google Scholar] [CrossRef]
- Wouters, H.; Demuzere, M.; Ridder, K.D.; van Lipzig, N.P.M. The impact of impervious water-storage parametrization on urban climate modelling. Urban Clim. 2015, 11, 24–50. [Google Scholar] [CrossRef] [Green Version]
- Nakamichi, T.; Moroizumi, T. Applicability of three complementary relationship models for estimating actual evapotranspiration in urban area. J. Hydrol. Hydromech. 2015, 63, 117–123. [Google Scholar] [CrossRef]
- Ramamurthy, P.; Bou-Zeid, E.; Smith, J.A.; Wang, Z.; Baeck, M.L.; Saliendra, N.Z.; Hom, J.L.; Welty, C. Influence of Subfacet Heterogeneity and Material Properties on the Urban Surface Energy Budget. J. Appl. Meteorol. Clim. 2014, 53, 2114–2129. [Google Scholar] [CrossRef]
- Saganeiti, L.; Favale, A.; Pilogallo, A.; Scorza, F.; Murgante, B. Assessing Urban Fragmentation at Regional Scale Using Sprinkling Indexes. Sustainability 2018, 10, 3274. [Google Scholar] [CrossRef] [Green Version]
- Meng, C.; Zhang, W. Local and Regional Scale Evaluation of the Integrated Urban Land Model by Comparing with the Common Land Model. Adv. Meteorol. 2019, 2019, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.; Weng, Q. Estimation of hourly and daily evapotranspiration and soil moisture using downscaled LST over various urban surfaces. Gisci. Remote Sens. 2017, 54, 95–117. [Google Scholar] [CrossRef]
- Ramamurthy, P.; Bou-Zeid, E. Contribution of impervious surfaces to urban evaporation. Water Resour. Res. 2014, 50, 2889–2902. [Google Scholar] [CrossRef]
- Li, Y.; Fan, S.; Li, K.; Zhang, Y.; Dong, L. Microclimate in an urban park and its influencing factors: A case study of Tiantan Park in Beijing, China. Urban. Ecosyst. 2020. [Google Scholar] [CrossRef]
- Yu, Z.; Chen, T.; Yang, G.; Sun, R.; Xie, W.; Vejre, H. Quantifying seasonal and diurnal contributions of urban landscapes to heat energy dynamics. Appl. Energ. 2020, 264, 114724. [Google Scholar] [CrossRef]
- Mohammadinia, A.; Arulrajah, A.; Horpibulsuk, S.; Chinkulkijniwat, A. Effect of fly ash on properties of crushed brick and reclaimed asphalt in pavement base/subbase applications. J. Hazard. Mater. 2017, 321, 547–556. [Google Scholar] [CrossRef]
- Bogawski, P.; Bednorz, E. Comparison and Validation of Selected Evapotranspiration Models for Conditions in Poland (Central Europe). Water Resour. Manag. 2014, 28, 5021–5038. [Google Scholar] [CrossRef] [Green Version]
- Mobilia, M.; Longobardi, A. Evaluation of Meteorological Data-Based Models for Potential and Actual Evapotranspiration Losses Using Flux Measurements; Springer International Publishing; Cham, Switzerland, 2020; pp. 3–18. [Google Scholar]
- Zhou, J.; Liu, J.; Wang, H.; Wang, Z.; Mei, C. Water dissipation mechanism of residential and office buildings in urban areas. Sci. China Technol. Sci. 2018, 61, 1072–1080. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Z. A study on demacation indexes between subhumid and semiarid sectors in China. Adv. Water Sci. 1999, 18, 230–237. [Google Scholar] [CrossRef]
- Andersen, C.T.; Foster, I.; Pratt, C.J. The role of urban surfaces (permeable pavements) in regulating drainage and evaporation: Development of a laboratory simulation experiment. Hydrol. Process. 1999, 13, 597–609. [Google Scholar] [CrossRef]
Cities | Rainfall in 2015 (mm) | drain (d) | NH (d) | dfrost (d) | Impervious Area Rate (%) |
---|---|---|---|---|---|
Beijing | 458.6 | 77 | 45 | 5 | 54.21% |
Tianjin | 574.2 | 79 | 44 | 5 | 67.92% |
Shijiazhuang | 481.4 | 74 | 44 | 4 | 59.81% |
Taiyuan | 403.6 | 79 | 35 | 2 | 63.93% |
Hohhot | 361.9 | 77 | 38 | 94 | 66.00% |
Shenyang | 573.2 | 93 | 56 | 89 | 61.67% |
Changchun | 530.5 | 99 | 50 | 117 | 65.88% |
Harbin | 420.1 | 105 | 49 | 126 | 67.19% |
Shanghai | 1648.8 | 152 | 96 | 0 | 66.00% |
Nanjing | 1765.6 | 124 | 75 | 0 | 60.53% |
Hangzhou | 2131.9 | 169 | 121 | 0 | 62.56% |
Hefei | 1258.2 | 128 | 72 | 0 | 61.75% |
Fuzhou | 1778.2 | 166 | 98 | 0 | 59.92% |
Nanchang | 2204.7 | 173 | 115 | 0 | 61.10% |
Jinan | 713.8 | 75 | 54 | 3 | 65.00% |
Zhengzhou | 689.1 | 86 | 46 | 1 | 64.68% |
Wuhan | 1432.8 | 138 | 79 | 0 | 65.81% |
Changsha | 1538.3 | 162 | 100 | 0 | 66.10% |
Guangzhou | 2471.9 | 248 | 101 | 0 | 63.94% |
Nanning | 1222.3 | 156 | 85 | 0 | 63.02% |
Haikou | 1673.2 | 135 | 84 | 0 | 61.90% |
Chongqing | 1416.7 | 122 | 84 | 0 | 62.62% |
Chengdu | 1388.6 | 211 | 112 | 0 | 64.43% |
Guiyang | 1430.8 | 193 | 83 | 0 | 62.83% |
Kunming | 1216.1 | 122 | 69 | 0 | 62.75% |
Lhasa | 326.1 | 64 | 32 | 2 | 64.02% |
Xi’an | 578.9 | 103 | 53 | 0 | 65.72% |
Lanzhou | 266.7 | 60 | 25 | 4 | 75.86% |
Xining | 306.2 | 111 | 43 | 15 | 62.53% |
Yinchuan | 227.1 | 53 | 21 | 15 | 59.10% |
Urumqi | 105.7 | 33 | 12 | 96 | 63.00% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, J.; Liu, J.; Chu, Q.; Wang, H.; Shao, W.; Luo, Z.; Zhang, Y. Mechanisms and Empirical Modeling of Evaporation from Hardened Surfaces in Urban Areas. Int. J. Environ. Res. Public Health 2021, 18, 1790. https://doi.org/10.3390/ijerph18041790
Zhou J, Liu J, Chu Q, Wang H, Shao W, Luo Z, Zhang Y. Mechanisms and Empirical Modeling of Evaporation from Hardened Surfaces in Urban Areas. International Journal of Environmental Research and Public Health. 2021; 18(4):1790. https://doi.org/10.3390/ijerph18041790
Chicago/Turabian StyleZhou, Jinjun, Jiahong Liu, Qi Chu, Hao Wang, Weiwei Shao, Zhuoran Luo, and Yongxiang Zhang. 2021. "Mechanisms and Empirical Modeling of Evaporation from Hardened Surfaces in Urban Areas" International Journal of Environmental Research and Public Health 18, no. 4: 1790. https://doi.org/10.3390/ijerph18041790
APA StyleZhou, J., Liu, J., Chu, Q., Wang, H., Shao, W., Luo, Z., & Zhang, Y. (2021). Mechanisms and Empirical Modeling of Evaporation from Hardened Surfaces in Urban Areas. International Journal of Environmental Research and Public Health, 18(4), 1790. https://doi.org/10.3390/ijerph18041790