The Use of Social Networking Sites and Pro-Environmental Behaviors: A Mediation and Moderation Model
Abstract
:1. Introduction
Study Area
2. Theoretical Background
2.1. Exposure to SNSs
2.2. Mediation Effect of Fear of Victimization from Climate Change
2.3. Moderation Effect of Attention Deficit and Decision-Making Self-Efficacy
2.4. Decision-Making Self-Efficacy
3. Materials and Methods
3.1. Participants and Process
3.2. Measurements
3.2.1. Exposure to SNSs
3.2.2. Attention
3.2.3. Fear of Victimization from Climate Change
3.2.4. Pro-Environmental Behaviors
3.2.5. Decision-Making Self-Efficacy
3.2.6. Control Variables
3.3. Analytical Strategy
4. Results
4.1. Reliability and Validity
4.2. Correlations, Means and Standard Deviations
4.3. Mediation Effect
4.4. Moderating Effect of Attention Deficit and Decision-Making Self-Efficacy
5. Discussion
5.1. Theoretical Implications
5.2. Practical Implications
5.3. Limitations and Future Directions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hein, W.; Wilson, C.; Lee, B.; Rajapaksa, D.; de Moel, H.; Athukorala, W.; Managi, S. Climate change and natural disasters: Government mitigation activities and public property demand response. Land Use Policy 2019, 82, 436–443. [Google Scholar] [CrossRef]
- Pielke, R.A. Misdefining “climate change”: Consequences for science and action. Environ. Sci. Policy 2005, 8, 548–561. [Google Scholar] [CrossRef]
- Döll, P. Impact of climate change and variability on irrigation requirements: A global perspective. Clim. Chang. 2002, 54, 269–293. [Google Scholar] [CrossRef]
- Jiménez-Castillo, D.; Ortega-Egea, J.M. Too positive to change? Examining optimism bias as a barrier to media effects on environmental activism. J. Environ. Psychol. 2015, 43, 216–225. [Google Scholar] [CrossRef]
- Varela, L.; Novo, I.; García, M. The importance of environmental education in the determinants of green behavior: A meta-analysis approach. J. Clean. Prod. 2018, 170, 1565–1578. [Google Scholar] [CrossRef]
- Ors, F. Environmental Education and the Role of Media in Environmental Education in Turkey. Procedia Soc. Behav. Sci. 2012, 46, 1339–1342. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, B.; Tandoc, E.C.; Duan, R.; Van Witsen, A. Revisiting Environmental Citizenship: The Role of Information Capital and Media Use. Environ. Behav. 2017, 49, 111–135. [Google Scholar] [CrossRef]
- Han, R.; Cheng, Y. The influence of norm perception on pro-environmental behavior: A comparison between the moderating roles of traditional media and social media. Int. J. Environ. Res. Public Health 2020, 17, 7164. [Google Scholar] [CrossRef]
- Trivedi, R.H.; Patel, J.D.; Acharya, N. Causality analysis of media influence on environmental attitude, intention and behaviors leading to green purchasing. J. Clean. Prod. 2018, 196, 11–22. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Ali, S.; Akbar, A.; Rasool, F. Determining the influencing factors of biogas technology adoption intention in Pakistan: The moderating role of social media. Int. J. Environ. Res. Public Health 2020, 17, 2311. [Google Scholar] [CrossRef] [Green Version]
- Steg, L.; Vlek, C. Encouraging pro-environmental behaviour: An integrative review and research agenda. J. Environ. Psychol. 2009, 29, 309–317. [Google Scholar] [CrossRef]
- Bradley, G.L.; Babutsidze, Z.; Chai, A.; Reser, J.P. The role of climate change risk perception, response efficacy, and psychological adaptation in pro-environmental behavior: A two nation study. J. Environ. Psychol. 2020, 68, 101410. [Google Scholar] [CrossRef]
- Li, X.; Tilt, B. Public engagements with smog in urban China: Knowledge, trust, and action. Environ. Sci. Policy 2019, 92, 220–227. [Google Scholar] [CrossRef]
- So, J.; Kuang, K.; Cho, H. Information Seeking Upon Exposure to Risk Messages: Predictors, outcomes and mediating role of health information seeking. Commun. Res. 2016, 46, 663–687. [Google Scholar] [CrossRef]
- Hunter, E.; Röös, E. Fear of climate change consequences and predictors of intentions to alter meat consumption. Food Policy 2016, 62, 151–160. [Google Scholar] [CrossRef]
- Stern, P.C. Psychology: Fear and hope in climate messages. Nat. Clim. Chang. 2012, 2, 572–573. [Google Scholar] [CrossRef]
- So, J. A Further Extension of the Extended Parallel Process Model (E-EPPM): Implications of Cognitive Appraisal Theory of Emotion and Dispositional Coping Style. Health Commun. 2013, 28, 72–83. [Google Scholar] [CrossRef]
- Nabi, R.L. Exploring the framing effects of emotion: Do discrete emotions differentially influence information accessibility, information seeking, and policy preference? Commun. Res. 2003, 30, 224–247. [Google Scholar] [CrossRef]
- Ditton, J.; Chadee, D.; Farrall, S.; Gilchrist, E.; Bannister, J. From imitation to intimidation A note on the curious and changing relationship between the media, crime and fear of crime. Br. J. Criminol. 2004, 44, 595–610. [Google Scholar] [CrossRef]
- Jugert, P.; Greenaway, K.H.; Barth, M.; Büchner, R.; Eisentraut, S.; Fritsche, I. Collective efficacy increases pro-environmental intentions through increasing self-efficacy. J. Environ. Psychol. 2016, 48, 12–23. [Google Scholar] [CrossRef]
- Neill, S.O.; Nicholson, S. “Fear won’t do it”: Promoting positive engagement with climate change through visual and iconic representations. Sci. Commun. 2009, 30, 355–379. [Google Scholar] [CrossRef] [Green Version]
- Bandura, A. The Explanatory and Predictive Scope of Self-Efficacy Theory. J. Soc. Clin. Psychol. 1986, 4, 359–373. [Google Scholar] [CrossRef]
- Kundzewicz, Z.W.; Matczak, P.; Otto, I.M.; Otto, P.E. From “atmosfear” to climate action. Environ. Sci. Policy 2020, 105, 75–83. [Google Scholar] [CrossRef]
- Schäfer, M.S.; Schlichting, I. Media representations of climate change: A meta-analysis of the research field. Environ. Commun. 2014, 8, 142–160. [Google Scholar] [CrossRef]
- Feng, L.; Hu, Y.; Li, B.; Stanley, H.E.; Havlin, S.; Braunstein, L.A. Competing for attention in social media under information overload conditions. PLoS ONE 2015, 10, e0126090. [Google Scholar] [CrossRef] [Green Version]
- Viegas, S.F.; Teixeira, L.A.A.; Andrade, D.F.; Silva, J.T.M. The Information Overload Due to Attention, Interruptions and Multitasks. Aust. J. Basic Appl. Sci. 2015, 9, 603–613. [Google Scholar]
- Rose, K.M.; Howell, E.L.; Su, L.Y.F.; Xenos, M.A.; Brossard, D.; Scheufele, D.A. Distinguishing scientific knowledge: The impact of different measures of knowledge on genetically modified food attitudes. Public Underst. Sci. 2019, 28, 449–467. [Google Scholar] [CrossRef] [PubMed]
- Persson, P. Attention Manipulation and Information Overload. Behav. Public Policy 2018, 2, 78–106. [Google Scholar] [CrossRef] [Green Version]
- Ho, S.S.; Yang, X. Communication, cognitive processing, and public knowledge about climate change. Asian J. Commun. 2018, 28, 449–467. [Google Scholar] [CrossRef]
- Lee, J.; Cho, M. The Effects of Consumers’ Media Exposure, Attention, and Credibility on Pro-environmental Behaviors. J. Promot. Manag. 2020, 26, 434–455. [Google Scholar] [CrossRef]
- Huang, C.; Li, N.; Zhang, Z.; Liu, Y.; Chen, X.; Wang, F. Assessment of the economic cascading effect on future climate change in China: Evidence from agricultural direct damage. J. Clean. Prod. 2020, 276, 123951. [Google Scholar] [CrossRef]
- Ren, G.; Ding, Y.; Zhao, Z.; Zheng, J.; Wu, T.; Tang, G.; Xu, Y. Recent progress in studies of climate change in China. Adv. Atmos. Sci. 2012, 29, 958–977. [Google Scholar] [CrossRef]
- Zhang, P.; Zhang, J.; Chen, M. Economic impacts of climate change on agriculture: The importance of additional climatic variables other than temperature and precipitation. J. Environ. Econ. Manag. 2017, 83, 8–31. [Google Scholar] [CrossRef]
- Fang, J.; Yu, G.; Liu, L.; Hu, S.; Stuart Chapin, F. Climate change, human impacts, and carbon sequestration in China. Proc. Natl. Acad. Sci. USA 2018, 115, 4015–4020. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Zhou, M.; Shao, J.; Chen, Z.; Wei, X.; Yang, J. Maize, wheat and rice production potential changes in China under the background of climate change. Agric. Syst. 2020, 182, 102853. [Google Scholar]
- Wu, J.Z.; Zhang, J.; Ge, Z.M.; Xing, L.W.; Han, S.Q.; Chen, S.H.; Kong, F.T. Impact of climate change on maize yield in China from 1979 to 2016. J. Integr. Agric. 2021, 20, 289–299. [Google Scholar] [CrossRef]
- Liu, Y.; You, M.; Zhu, J.; Wang, F.; Ran, R. Integrated risk assessment for agricultural drought and flood disasters based on entropy information diffusion theory in the middle and lower reaches of the Yangtze River, China. Int. J. Disaster Risk Reduct. 2019, 38, 101194. [Google Scholar] [CrossRef]
- Tianyu, J.; Meng, L. Does education increase pro-environmental willingness to pay? Evidence from Chinese household survey. J. Clean. Prod. 2020, 275, 122713. [Google Scholar] [CrossRef]
- Zhang, N.; Song, D.; Zhang, J.; Liao, W.; Miao, K.; Zhong, S.; Lin, S.; Hajat, S.; Yang, L.; Huang, C. The impact of the 2016 flood event in Anhui Province, China on infectious diarrhea disease: An interrupted time-series study. Environ. Int. 2019, 127, 801–809. [Google Scholar] [CrossRef]
- Bartsch, A.; Vorderer, P.; Mangold, R.; Viehoff, R. Appraisal of emotions in media use: Toward a process model of meta-emotion and emotion regulation. Media Psychol. 2008, 11, 7–27. [Google Scholar] [CrossRef] [Green Version]
- Witte, K. Extended Parallel Process Model. Int. Encycl. Commun. 2008. [Google Scholar] [CrossRef]
- Maloney, E.K.; Lapinski, M.K.; Witte, K. Fear appeals and persuasion: A review and update of the extended parallel process model. Soc. Pers. Psychol. Compass 2011, 5, 206–219. [Google Scholar] [CrossRef]
- Lael-monfared, E.; Tehrani, H.; Esmati, Z.; Ferns, G.A.; Tatari, M.; Jafari, A. Health literacy, knowledge and self-care behaviors to take care of diabetic foot in low-income individuals: Application of extended parallel process model. Diabetes Metab. Syndr. Clin. Res. Rev. 2019, 13, 1535–1541. [Google Scholar] [CrossRef]
- Liu, B.; Pennington-gray, L.; Krieger, J. Tourism crisis management: Can the Extended Parallel Process Model be used to understand crisis responses in the cruise industry? Tour. Manag. 2016, 55, 310–321. [Google Scholar] [CrossRef]
- Popova, L. The Extended Parallel Process Model: Illuminating the Gaps in Research. Health Educ. Behav. 2012, 39, 455–473. [Google Scholar] [CrossRef] [PubMed]
- Lee-Won, R.J.; Na, K.; Coduto, K.D. The effects of social media virality metrics, message framing, and perceived susceptibility on cancer screening intention: The mediating role of fear. Telemat. Inform. 2017, 34, 1387–1397. [Google Scholar] [CrossRef]
- Hullett, C.R.; Witte, K. Predicting intercultural adaptation and isolation: Using the extended parallel process model to test anxiety/uncertainty management theory. Int. J. Intercult. Relat. 2001, 25, 125–139. [Google Scholar] [CrossRef]
- Shi, J.; Smith, S.W. Effects of fear appeal message repitition on perceived threat, perceived efficacy, and behavioral intention in the extended parallel process model. Health Commun. 2016, 31, 275–286. [Google Scholar] [CrossRef]
- Weber, M.C.; Schulenberg, S.E.; Lair, E.C. University employees’ preparedness for natural hazards and incidents of mass violence: An application of the extended parallel process model. Int. J. Disaster Risk Reduct. 2018, 31, 1082–1091. [Google Scholar] [CrossRef]
- Redmond, M.L.; Dong, F.; Frazier, L.M. Does the Extended Parallel Process Model Fear Appeal Theory Explain Fears and Barriers to Prenatal Physical Activity? Women’s Health Issues 2015, 25, 149–154. [Google Scholar] [CrossRef] [PubMed]
- Witte, K. Fear as Motivator, Fear as Inhibitor: Using the Extended Parallel Process Model to Explain Fear Appeal Successes and Failures. In Handbook of Communication and Emotion; Academic Press: Cambridge, MA, USA, 1995; pp. 423–449. [Google Scholar]
- Janmaimool, P. Application of protection motivation theory to investigate sustainable waste management behaviors. Sustainability 2017, 9, 1079. [Google Scholar] [CrossRef] [Green Version]
- Marchand, J.; Diallo, M. Environmental Protection: Testing the Validity of the Extended Parallel Processing Model (EPPM) when a Threat and Proposed Solution Require Collective Action. In Proceedings of the European Marketing Academy, Budapest, Hungary, 26–29 May 2020. [Google Scholar]
- Nguyen, Q.A.; Hens, L.; Nguyen, N.; MacAlister, C.; Lebel, L. Explaining Intentions by Vietnamese Schoolchildren to Adopt Pro-Environmental Behaviors in Response to Climate Change Using Theories of Persuasive Communication. Environ. Manag. 2020, 66, 845–857. [Google Scholar] [CrossRef]
- Willis, R.L.; Provost, S.C.; Christidis, L. Influences on sustainable behavior. Ecopsychology 2017, 9, 19–25. [Google Scholar] [CrossRef]
- Abbasi, A.; Araban, M.; Heidari, Z.; Alidosti, M.; Zamani-Alavijeh, F. Comparing the impact of educational messages based on an extended parallel process model on solid waste separation behaviors in female students: A four-group randomized trial. Waste Manag. 2020, 117, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Xue, W.; Hine, D.W.; Marks, A.D.G.; Phillips, W.J.; Nunn, P.; Zhao, S. Combining threat and efficacy messaging to increase public engagement with climate change in Beijing, China. Clim. Chang. 2016, 137, 43–55. [Google Scholar] [CrossRef]
- Kim, S.C.; Cooke, S.L. Using the Health Belief Model to Explore the Impact of Environmental Empathy on Behavioral Intentions to Protect Ocean Health. Environ. Behav. 2020, 1–26. [Google Scholar] [CrossRef]
- De Vreese, C.H.; Neijens, P. Measuring Media Exposure in a Changing Communications Environment. Commun. Methods Meas. 2016, 10, 69–80. [Google Scholar] [CrossRef] [Green Version]
- Slater, B.M.D. Operationalizing and Analyzing Exposure: The Foundation of Media Effects Research. Jurnalism Mass Commun. Q. 2004, 81, 168–183. [Google Scholar] [CrossRef]
- Yurtsal, E.S. Fear of crime in social networks: Facebook example. Güvenlik Bilim. Dergisi Kasım 2016, 5, 93–112. [Google Scholar] [CrossRef]
- Intravia, J.; Wolff, K.T.; Paez, R.; Gibbs, B.R. Investigating the relationship between social media consumption and fear of crime: A partial analysis of mostly young adults. Comput. Hum. Behav. 2017, 77, 158–168. [Google Scholar] [CrossRef]
- Dillard, J.P.; Yang, C.; Li, R. Self-regulation of emotional responses to Zika: Spiral of fear. PLoS ONE 2018, 13, e0199828. [Google Scholar] [CrossRef] [Green Version]
- Kohm, S.A.; Waid-Lindberg, C.A.; Weinrath, M.; Shelley, T.O.; Dobbs, R.R. The Impact of Media on Fear of Crime among University Students: A Cross-National Comparison. Can. J. Criminol. Crim. Justice 2012, 54, 67–100. [Google Scholar] [CrossRef]
- Moors, A.; Ellsworth, P.C.; Scherer, K.R.; Frijda, N.H. Appraisal theories of emotion: State of the art and future development. Emot. Rev. 2013, 5, 119–124. [Google Scholar] [CrossRef] [Green Version]
- Lee, K. The role of media exposure, social exposure and biospheric value orientation in the environmental attitude-intention-behavior model in adolescents. J. Environ. Psychol. 2011, 31, 301–308. [Google Scholar] [CrossRef]
- Kais, S.M.; Islam, M.S. Perception of climate change in shrimp-farming communities in bangladesh: A critical assessment. Int. J. Environ. Res. Public Health 2019, 16, 672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moyer-Gusé, E.; Nabi, R.L. Explaining the effects of narrative in an entertainment television program: Overcoming resistance to persuasion. Hum. Commun. Res. 2010, 36, 26–52. [Google Scholar] [CrossRef]
- Ring, W. Inspire Hope, Not Fear: Communicating Effectively About Climate Change and Health. Ann. Glob. Health 2015, 81, 410. [Google Scholar] [CrossRef]
- Wang, S.; Leviston, Z.; Hurlstone, M.; Lawrence, C.; Walker, I. Emotions predict policy support: Why it matters how people feel about climate change. Glob. Environ. Chang. 2018, 50, 25–40. [Google Scholar] [CrossRef] [Green Version]
- Nabi, R.L.; Gustafson, A.; Jensen, R. Framing Climate Change: Exploring the Role of Emotion in Generating Advocacy Behavior. Sci. Commun. 2018, 40, 442–468. [Google Scholar] [CrossRef]
- Asplund, T.; Hjerpe, M.; Wibeck, V. Framings and coverage of climate change in Swedish specialized farming magazines. Clim. Chang. 2013, 117, 197–209. [Google Scholar] [CrossRef]
- Witte, K. Putting the fear back into fear appeals_ The extended parallel process mode. Commun. Monogr. 1992, 59, 329–349. [Google Scholar] [CrossRef]
- Goltz, J.D. Status and power differentials in the generation of fear in three California earthquakes. Int. J. Disaster Risk Reduct. 2016, 16, 200–207. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.H.T. Fear in virtual reality (VR): Fear elements, coping reactions, immediate and next-day fright responses toward a survival horror zombie virtual reality game. Comput. Hum. Behav. 2017, 72, 350–361. [Google Scholar] [CrossRef]
- Janković, V.; Schultz, D.M. Atmosfear: Communicating the effects of climate change on extreme weather. Weather. Clim. Soc. 2017, 9, 27–37. [Google Scholar] [CrossRef]
- Akerlof, K.L.; Boules, C.; Ban Rohring, E.; Rohring, B.; Kappalman, S. Governmental Communication of Climate Change Risk and Efficacy: Moving Audiences Toward “Danger Control”. Environ. Manag. 2020, 65, 678–688. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.F. Impact of fear appeals on pro-environmental behavior and crucial determinants. Int. J. Advert. 2016, 35, 74–92. [Google Scholar] [CrossRef]
- Hartmann, P.; Apaolaza, V.; D’souza, C.; Barrutia, J.M.; Echebarria, C. Environmental threat appeals in green advertising: The role of fear arousal and coping efficacy. Int. J. Advert. 2014, 33, 741–765. [Google Scholar] [CrossRef]
- Yang, X.; Chen, L.; Wei, L.; Su, Q. Personal and media factors related to citizens’ pro-environmental behavioral intention against haze in China: A moderating analysis of TPB. Int. J. Environ. Res. Public Health 2020, 17, 2314. [Google Scholar] [CrossRef] [Green Version]
- Napper, L.E.; Harris, P.R.; Klein, W.M.P. Combining Self-Affirmation With the Extended Parallel Process Model: The Consequences for Motivation to Eat More Fruit and Vegetables. Health Commun. 2014, 29, 610–618. [Google Scholar] [CrossRef]
- Weinstein, N.; Rogerson, M.; Moreton, J.; Balmford, A.; Bradbury, R.B. Conserving nature out of fear or knowledge? Using threatening versus connecting messages to generate support for environmental causes. J. Nat. Conserv. 2015, 26, 49–55. [Google Scholar] [CrossRef] [Green Version]
- Qiu, X.; Oliveira, D.F.M.; Sahami Shirazi, A.; Flammini, A.; Menczer, F. Limited individual attention and online virality of low-quality information. Nat. Hum. Behav. 2017, 1, 1–7. [Google Scholar] [CrossRef]
- Ciampaglia, G.L.; Flammini, A.; Menczer, F. The production of information in the attention economy. Sci. Rep. 2015, 5, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Chan, P.A.; Rabinowitz, T. A cross-sectional analysis of video games and attention deficit hyperactivity disorder symptoms in adolescents. Ann. Gen. Psychiatry 2006, 5, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bridewell, W.; Bello, P. A Theory of Attention for Cognitive Systems. Adv. Cogn. Syst. 2016, 4, 1–16. [Google Scholar]
- Reeck, C.; Ames, D.R.; Ochsner, K.N. The Social Regulation of Emotion: An Integrative, Cross-Disciplinary Model. Trends Cogn. Sci. 2016, 20, 47–63. [Google Scholar] [CrossRef] [Green Version]
- Nicks, G.; Carriou, Y. Emotion, attention and memory in advertising. IPSOS Connect 2016, 1–12. [Google Scholar]
- Namkoong, K.; Fung, T.K.F.; Scheufele, D.A. The Politics of Emotion: News Media Attention, Emotional Responses, and Participation During the 2004 U.S. Presidential Election. Mass Commun. Soc. 2012, 15, 25–45. [Google Scholar] [CrossRef]
- Petty, R.E.; Cacioppo, J.T. The Elaboration Likelihood Model of Persuasion. Adv. Exp. Soc. Psychol. 1986, 19, 123–162. [Google Scholar]
- Entman, R.M. How the Media Affect What People Think: An Information Processing Approach. J. Polit. 1989, 51, 347–370. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Chen, L.; Ho, S.S. Does media exposure relate to the illusion of knowing in the public understanding of climate change? Public Underst. Sci. 2020, 29, 94–111. [Google Scholar] [CrossRef] [PubMed]
- Pan, W.; Sun, L.Y.; Chow, I.H.S. The impact of supervisory mentoring on personal learning and career outcomes: The dual moderating effect of self-efficacy. J. Vocat. Behav. 2011, 78, 264–273. [Google Scholar] [CrossRef]
- Grau, R.; Salanova, M. Moderator Effects of Self-Efficacy. Psychol. Spain 2001, 5, 63–74. [Google Scholar]
- Skarin, F.; Olsson, L.E.; Friman, M.; Wästlund, E. Importance of motives, self-efficacy, social support and satisfaction with travel for behavior change during travel intervention programs. Transp. Res. Part F Traffic Psychol. Behav. 2019, 62, 451–458. [Google Scholar] [CrossRef]
- Ye, Y. Role of Career Decision-Making Self-Efficacy and Risk of Career Options on Career Decision-Making of Chinese Graduates. Psychol. Rep. 2014, 114, 625–634. [Google Scholar] [CrossRef] [PubMed]
- Cmar, J.L.; McDonmall, M.C.; Crudden, A. Transportation self-efficacy and employment among individuals with visual impairments. J. Vocat. Rehabil. 2018, 48, 257–268. [Google Scholar] [CrossRef] [Green Version]
- Crudden, A.; Antonelli, K.; O’Mally, J. Transportation Self-Efficacy and Social Problem-Solving of Persons Who Are Blind or Visually Impaired. J. Soc. Work Disabil. Rehabil. 2016, 15, 52–61. [Google Scholar] [CrossRef]
- Huang, H. Media use, environmental beliefs, self-efficacy, and pro-environmental behavior. J. Bus. Res. 2016, 69, 2206–2212. [Google Scholar] [CrossRef]
- Saribas, D.; Teksoz, G.; Ertepinar, H. The Relationship between Environmental Literacy and Self-efficacy Beliefs toward Environmental Education. Procedia Soc. Behav. Sci. 2014, 116, 3664–3668. [Google Scholar] [CrossRef] [Green Version]
- Goo, J.; Huang, C.D.; Woo, M.; Yoo, C.W.; Nam, K. Improving travel decision support satisfaction with smart tourism technologies: A framework of tourist elaboration likelihood and self-efficacy. Technol. Forecast. Soc. Chang. 2016, 123, 330–341. [Google Scholar]
- Hernández, B.; Cuadrado, E.; Luque, B.; Pereira, C.R.; Tabernero, C. A multilevel perspective to explain recycling behaviour in communities. J. Environ. Manag. 2015, 159, 192–201. [Google Scholar]
- Lauren, N.; Fielding, K.S.; Smith, L.; Louis, W.R. You did, so you can and you will: Self-efficacy as a mediator of spillover from easy to more difficult pro-environmental behaviour. J. Environ. Psychol. 2016, 48, 191–199. [Google Scholar] [CrossRef] [Green Version]
- Myburgh, W.; Watson, M.B.; Foxcroft, C.D. Development and validation of a managerial decision making self-efficacy questionnaire. SA J. Ind. Psychol. 2015, 41, 1–15. [Google Scholar] [CrossRef]
- Wood, R.E.; Atkins, P.; Tabernero, C. Self-efficacy and strategy on complex tasks. Appl. Psychol. 2000, 49, 430–446. [Google Scholar] [CrossRef]
- Capezio, A.; Read, S.; Lajom, J.A.L.; Restubog, S.L.D.; Li, M.; Guan, P. The role of traditionality in the relationships among parental support, career decision-making self-efficacy and career adaptability. J. Vocat. Behav. 2016, 94, 114–123. [Google Scholar]
- Brooks, S. Does personal social media usage affect efficiency and well-being? Comput. Hum. Behav. 2015, 46, 26–37. [Google Scholar] [CrossRef]
- Chaffee, S.; Schleuder, J. Measurement and effects of attention to media news. Hum. Commun. 1986, 13, 76–107. [Google Scholar] [CrossRef]
- Williams, F.P.; McShane, M.D.; Akers, R.L. Worry about victimization: An alternative and reliable measure fro fear of crime. West. Crim. Rev. 2000, 2, 1–26. [Google Scholar]
- Reyes-Sosa, H.; Molina-Coloma, V. Análisis psicométrico de una escala para medir el miedo al delito en jóvenes ecuatorianos Psychometric analysis of a scale to measure fear of crime in Ecuadorian youths. Acta Colomb. Psicol. 2018, 21, 300–309. [Google Scholar]
- Shah, Z.; Chu, J.; Ghani, U.; Qaisar, S.; Hassan, Z. Media and altruistic behaviors: The mediating role of fear of victimization in cultivation theory perspective. Int. J. Disaster Risk Reduct. 2020, 42, 101336. [Google Scholar] [CrossRef]
- Nolan, M.T.; Hughes, M.T.; Kub, J.; Terry, P.B.; Astrow, A.; Thompson, R.E.; Clawson, L.; Texeira, K.; Sulmasy, D.P. Development and validation of the family decision-making self-efficacy scale. Palliat. Support. Care 2009, 7, 315–321. [Google Scholar] [CrossRef]
- Gong, X.; Zhang, J.; Zhang, H.; Cheng, M.; Wang, F.; Yu, N. Internet use encourages pro-environmental behavior: Evidence from China. J. Clean. Prod. 2020, 256, 120785. [Google Scholar] [CrossRef]
- Li, D.; Zhao, L.; Ma, S.; Shao, S.; Zhang, L. What influences an individual’s pro-environmental behavior? A literature review. Resour. Conserv. Recycl. 2019, 146, 28–34. [Google Scholar] [CrossRef]
- Hayes, A.F. Introduction to Mediation, Moderation and Conditional Process Analysis; Guilford Publications: New York, NY, USA, 2013; Volume 53, ISBN 9788578110796. [Google Scholar]
- Edwards, J.R.; Lambert, L.S. Methods for integrating moderation and mediation: A general analytical framework using moderated path analysis. Psychol. Methods 2007, 12, 1–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shrout, P.E.; Bolger, N. Mediation in experimental and nonexperimental studies: New procedures and recommendations. Psychol. Methods 2002, 7, 422–445. [Google Scholar] [CrossRef]
- Preacher, K.J.; Rucker, D.D.; Hayes, A.F. Addressing moderated mediation hypotheses: Theory, methods, and prescriptions. Multivariate Behav. Res. 2007, 42, 185–227. [Google Scholar] [CrossRef] [PubMed]
- Montoya, A.K.; Hayes, A.F. Two-Condition Within-Participant Statistical Mediation Analysis. Psychol. Methods 2016, 22, 6–27. [Google Scholar]
- Ghani, U.; Zhai, X.; Spector, J.M.; Chen, N.S.; Lin, L.; Ding, D.; Usman, M. Knowledge hiding in higher education: Role of interactional justice and professional commitment. High. Educ. 2020, 79, 325–344. [Google Scholar] [CrossRef]
- Kiani, A.; Liu, J.; Ghani, U.; Popelnukha, A. Impact of future time perspective on entrepreneurial career intention for individual sustainable career development: The roles of learning orientation and entrepreneurial passion. Sustainability 2020, 12, 3864. [Google Scholar] [CrossRef]
- Rogelberg, S.G.; Stanton, J.M. Introduction: Understanding and dealing with organizational survey nonresponse. Organ. Res. Methods 2007, 10, 195–209. [Google Scholar] [CrossRef]
- Fornell, C.; Larcker, D.F. Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. J. Mark. Res. 1981, 18, 39. [Google Scholar] [CrossRef]
- Wu, B.; Chen, X. Continuance intention to use MOOCs: Integrating the technology acceptance model (TAM) and task technology fit (TTF) model. Comput. Hum. Behav. 2017, 67, 221–232. [Google Scholar] [CrossRef]
- Hair, J.F.; Gabriel, M.; Patel, V.K. AMOS Covariance-Based Structural Equation Modeling (CB-SEM): Guidelines on its Application as a Marketing Research Tool. Rev. Bras. Mark. 2014, 13, 44–55. [Google Scholar]
- Anderson, J.L.; Kellogg, J.C.; Gerbing, D.W.; Brett, J.; Fornell, C.; Larcker, D.; Perreault, W.; Steiger, J. Structural Equation Modeling in Practice: A Review and Recommended Two-Step Approach. Psychol. Bull. 1988, 103, 411–423. [Google Scholar] [CrossRef]
- Hair, J.F.; Black, W.C.; Babin, B.J.; Anderson, R.E. Multivariate Data Analysis A Global Perspective, 7th ed.; Pearson-Hall International: Upper Saddle River, NJ, USA, 2010. [Google Scholar]
- Becker, T.E. Potential problems in the statistical control of variables in organizational research: A qualitative analysis with recommendations. Organ. Res. Methods 2005, 8, 274–289. [Google Scholar] [CrossRef]
- Cvetković, V.M.; Öcal, A.; Ivanov, A. Young adults’ fear of disasters: A case study of residents from Turkey, Serbia and Macedonia. Int. J. Disaster Risk Reduct. 2019, 35, 101095. [Google Scholar] [CrossRef]
- Nellis, A.M.; Savage, J. Does Watching the News Affect Fear of Terrorism? The Importance of Media Exposure on Terrorism Fear. Crime Delinq. 2012, 58, 748–768. [Google Scholar] [CrossRef]
- Liu, P.; Han, C.; Teng, M. The influence of Internet use on pro-environmental behaviors: An integrated theoretical framework. Resour. Conserv. Recycl. 2021, 164, 105162. [Google Scholar] [CrossRef]
- Coelho, F.; Pereira, M.C.; Cruz, L.; Simões, P.; Barata, E. Affect and the adoption of pro-environmental behaviour: A structural model. J. Environ. Psychol. 2017, 54, 127–138. [Google Scholar] [CrossRef]
- Fritsche, I.; Jonas, E.; Kayser, D.N.; Koranyi, N. Existential threat and compliance with pro-environmental norms. J. Environ. Psychol. 2010, 30, 67–79. [Google Scholar] [CrossRef]
- Fan, N.; Onwezen, M.; de Hooge, I.; Ingenbleek, P. The Role of Emotions in Stimulating Pro-Environmental Behaviour on Social Media. Master’s Thesis, Wageningen University and Research Centre Landbouw-Economisch Institut (LEI), Wageningen, The Netherlands, 2015; pp. 1–81. [Google Scholar]
- Ho, S.S.; Liao, Y.; Rosenthal, S. Applying the theory of planned behavior and media dependency theory: Predictors of public pro-environmental behavioral intentions in Singapore. Environ. Commun. 2015, 9, 77–99. [Google Scholar] [CrossRef]
- Salleh, H.S.; Noor, N.A.M. Moderating effect of self-efficacy on the relationship between consumer attitude and willingness to consume healthy food. J. Sustain. Sci. Manag. 2018, 4, 33–50. [Google Scholar] [CrossRef]
- Lippke, S.; Wiedemann, A.U.; Ziegelmann, J.P.; Reuter, T.; Schwarzer, R. Intentions Into Behavior via Plans. Am. J. Health Behav. 2009, 33, 521–530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.; Choi, Y. Informed public against false rumor in the social media era: Focusing on social media dependency. Telemat. Inform. 2018, 35, 1071–1081. [Google Scholar] [CrossRef]
- Wagner, M.C.; Boczkowski, P.J. The Reception of Fake News: The Interpretations and Practices That Shape the Consumption of Perceived Misinformation. Digit. J. 2019, 7, 870–885. [Google Scholar] [CrossRef] [Green Version]
- Liu, P.L.; Huang, L.V. Digital Disinformation about COVID-19 and the Third-Person Effect: Examining the Channel Differences and Negative Emotional Outcomes. Cyberpsychol. Behav. Soc. Netw. 2020, 23, 789–793. [Google Scholar] [CrossRef] [PubMed]
Variables | Classes | Frequency (%) |
---|---|---|
Gender | Male | 217 (53.4) |
Female | 189 (46.6) | |
Age | 18–21 years | 128 (31.5) |
22–25 years | 161 (39.6) | |
26–30 or above years | 117 (28.8) | |
Education | Bachelor | 123 (30.3) |
Master | 149 (36.7) | |
Ph.D. | 134 (33.0) |
Constructs | Items | FL | CA | AVE | CR |
---|---|---|---|---|---|
ESNS1 | 0.868 | ||||
Exposure to SNSs | ESNS2 | 0.843 | 0.939 | 0.736 | 0.893 |
ESNS3 | 0.863 | ||||
Fear1 | 0.708 | ||||
Fear of victimization | Fear2 | 0.839 | |||
Fear3 | 0.737 | 0.867 | 0.616 | 0.865 | |
Fear4 | 0.847 | ||||
PEB1 | 0.836 | ||||
PEB2 | 0.806 | ||||
PEB3 | 0.845 | ||||
Pro-environmental behaviors | PEB4 | 0.904 | 0.964 | 0.749 | 0.964 |
PEB5 | 0.921 | ||||
PEB6 | 0.820 | ||||
PEB7 | 0.865 | ||||
PEB8 | 0.898 | ||||
AD1 | 0.886 | ||||
AD2 | 0.870 | ||||
AD3 | 0.899 | ||||
Attention deficit | AD4 | 0.899 | 0.973 | 0.805 | 0.971 |
AD5 | 0.936 | ||||
AD6 | 0.895 | ||||
AD7 | 0.903 | ||||
AD8 | 0.889 | ||||
DSE1 | 0.820 | ||||
DSE2 | 0.780 | ||||
DSE3 | 0.886 | ||||
Decision-making self-efficacy | DSE4 | 0.886 | 0.955 | 0.739 | 0.944 |
DSE5 | 0.900 | ||||
DSE6 | 0.880 |
Mean | SD | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
---|---|---|---|---|---|---|---|---|---|---|
1.Gender | 1.15 | 0.360 | 1 | |||||||
2.Age | 2.07 | 0.843 | −0.102 * | 1 | ||||||
3.Education | 1.99 | 10.08 | 0.275 ** | 0.235 ** | 1 | |||||
4.ESNS | 3.86 | 10.03 | 0.024 | 0.026 | 0.040 | (0.85) | ||||
5.FEAR | 4.17 | 0.75 | 0.054 | −0.004 | −0.035 | 0.411 ** | (0.78) | |||
6.PEB | 4.11 | 0.62 | −0.012 | −0.016 | 0.000 | 0.246 ** | 0.403 ** | (0.86) | ||
7.AD | 2.16 | 0.88 | 0.072 | 0.028 | 0.040 | −0.491 ** | −0.271 ** | −0.186 ** | (0.90) | |
8.DSE | 4.14 | 0.76 | −0.063 | 0.022 | −0.074 | 0.324 ** | 0.411 ** | 0.465 ** | −0.170 ** | (0.86) |
Path (Direct Path) | Estimates (β) | SE | ||
---|---|---|---|---|
ESNSs → Fear | 0.299 ** | 0.033 | ||
ESNSs → PEB | 0.149 ** | 0.029 | ||
Fear → PEB | 0.301 ** | 0.041 | ||
Indirect Effect | ||||
Path (Indirect Path) | Effect | SE | LL 95% CI | UL 95% CI |
ESNSs → Fear → PEB | 0.090 | 0.016 | 0.094 | 0.202 |
Predictors | Outcomes | |||
---|---|---|---|---|
Fear of Victimization | Pro-Environmental Behaviors | |||
β | t | β | t | |
Exposure to SNSs | 0.282 | 7.074 ** | 0.139 | 3.021 |
Attention | −0.094 | −2.301 * | −0.076 | −2.004 |
ESNSs × Attention | −0.090 | −2.689 ** | ||
ESNSs × Attention | −0.090 | −2.197 * | ||
Fear of victimization | 0.265 | 5.442 ** | ||
DSE | 0.305 | 5.424 ** | ||
Fear of victimization × DSE | 0.267 | 5.720 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shah, Z.; Wei, L.; Ghani, U. The Use of Social Networking Sites and Pro-Environmental Behaviors: A Mediation and Moderation Model. Int. J. Environ. Res. Public Health 2021, 18, 1805. https://doi.org/10.3390/ijerph18041805
Shah Z, Wei L, Ghani U. The Use of Social Networking Sites and Pro-Environmental Behaviors: A Mediation and Moderation Model. International Journal of Environmental Research and Public Health. 2021; 18(4):1805. https://doi.org/10.3390/ijerph18041805
Chicago/Turabian StyleShah, Zakir, Lu Wei, and Usman Ghani. 2021. "The Use of Social Networking Sites and Pro-Environmental Behaviors: A Mediation and Moderation Model" International Journal of Environmental Research and Public Health 18, no. 4: 1805. https://doi.org/10.3390/ijerph18041805
APA StyleShah, Z., Wei, L., & Ghani, U. (2021). The Use of Social Networking Sites and Pro-Environmental Behaviors: A Mediation and Moderation Model. International Journal of Environmental Research and Public Health, 18(4), 1805. https://doi.org/10.3390/ijerph18041805