Factors That Determine the Dietary Diversity Score in Rural Households: The Case of the Paute River Basin of Azuay Province, Ecuador
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location of the Study Area
2.2. Data Collection and Methods
2.3. Questionnaire
2.4. Dietary Diversity Indicator: HDDS
2.5. Poisson Regression Model
3. Results
3.1. Descriptive Statistics
3.2. Econometric Estimation Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Food Group | Description |
---|---|
1. Cereals | Rice, noodles, bread, corn, beans, others |
2. Roots and tubers | Potato, cassava, others |
3. Legumes and grains | Beans, chickpeas, broad beans, peas, others |
4. Fish and seafood | Fish, canned tuna, other shellfish |
5. Eggs | Eggs by purchase or own production |
6. Milk and dairy products | Milk, yogurt, cheese, other dairy products (excludes butter/margarine) |
7. Vegetables | Carrot, spinach, turnip, cabbage, cauliflower, broccoli, onion, tomato, cucumber, radish, others |
8. Fruits | Apple, banana, pear, peach, mango, papaya, melon, orange, lemon, mandarin orange, others |
9. Sugar/honey and other sugars | Sugar, honey, jam; panela, cakes, cookies, sodas and other sugary drinks |
10. Miscellaneous | Drinks: tea, coffee, cocoa; seasonings: salt, garlic, baking powder |
11. Meat, poultry, offal | Beef, chicken, pork, others; liver, kidney, heart, others |
12. Oils and fats | Butter, vegetable oil, palm oil, margarine, other fats |
References
- FAO; IFAD; UNICEF; WFP; WHO. The State of Food Security and Nutrition in the World 2020; FAO: Rome, Italy, 2020; ISBN 9789251329016. [Google Scholar]
- FAO; PAHO; WFP; UNICEF. Regional Overview of Food Security and Nutrition in Latin America and the Caribbean 2019; FAO: Santiago, Chile, 2019; Available online: http://www.fao.org/documents/card/en/c/ca6979en (accessed on 13 August 2020). [CrossRef]
- United Nations. Policy Brief: The Impact of COVID-19 on Latin America and the Caribbean; United Nations Sustainable Development Group: New York, NY, USA, 2020; pp. 1–25. [Google Scholar]
- World Food Programme (WFP). Hunger Map 2020 Chronic Hunger. Available online: https://www.wfp.org/publications/hunger-map-2020 (accessed on 13 August 2020).
- Chegere, M.J.; Stage, J. Agricultural production diversity, dietary diversity and nutritional status: Panel data evidence from Tanzania. World Dev. 2020, 129, 104856. [Google Scholar] [CrossRef]
- Armstrong, B.; Hepworth, A.D.; Black, M.M. Hunger in the household: Food insecurity and associations with maternal eating and toddler feeding. Pediatr. Obes. 2020, 15, e12637. [Google Scholar] [CrossRef]
- Lin, I.-H.; Van Duong, T.; Nien, S.-W.; Tseng, I.-H.; Wang, H.-H.; Chiang, Y.-J.; Chen, C.-Y.; Wong, T.-C. Dietary diversity score: Implications for obesity prevention and nutrient adequacy in renal transplant recipients. Int. J. Environ. Res. Public Health 2020, 17, 5083. [Google Scholar] [CrossRef]
- Singh, J.K.; Acharya, D.; Gautam, S.; Adhikari, M.; Park, J.-H.; Yoo, S.-J.; Lee, K. Socio-demographic and diet-related factors associated with insufficient fruit and vegetable consumption among adolescent girls in rural communities of Southern Nepal. Int. J. Environ. Res. Public Health 2019, 16, 2145. [Google Scholar] [CrossRef] [Green Version]
- Ochieng, J.; Afari-Sefa, V.; Lukumay, P.J.; Dubois, T. Determinants of dietary diversity and the potential role of men in improving household nutrition in Tanzania. PLoS ONE 2017, 12, e0189022. [Google Scholar] [CrossRef] [Green Version]
- Symonds, A. Early Child Development Centers Positively Impact Food Security, Dietary Diversity, Growth, and Developmental Outcomes: An Analysis of Two Early Child Development Centers in Estancia, El Salvador. Ph.D. Thesis, Harvard Medical School, Boston, MA, USA, 2017. [Google Scholar]
- Deaconu, A.; Mercille, G.; Batal, M. The agroecological farmer’s pathways from agriculture to nutrition: A practice-based case from ecuador’s highlands. Ecol. Food Nutr. 2019, 58, 142–165. [Google Scholar] [CrossRef] [PubMed]
- Alam, A.; Chowdhury, M.; Dibley, M.J.; Raynes-Greenow, C. How can we improve the consumption of a nutritionally balanced maternal diet in rural Bangladesh? The key elements of the “Balanced Plate” Intervention. Int. J. Environ. Res. Public Health 2020, 17, 6289. [Google Scholar] [CrossRef] [PubMed]
- Abeywickrama, H.M.; Wimalasiri, K.M.S.; Koyama, Y.; Uchiyama, M.; Shimizu, U.; Chandrajith, R.; Nanayakkara, N. Assessment of nutritional status and dietary pattern of a rural adult population in Dry Zone, Sri Lanka. Int. J. Environ. Res. Public Health 2020, 17, 150. [Google Scholar] [CrossRef] [Green Version]
- Herforth, A.; Jones, A.; Andersen, P.P. Prioritizing Nutrition in Agriculture and Rural Development: Guiding Principles for Operational Investments; The International Bank for Reconstruction and Development/The World Bank: Washington, DC, USA, 2012; ISBN 2025223234. [Google Scholar]
- Fanzo, J.; Hunter, D.; Borelli, T.; Mattei, F. Diversifying Food and Diets: Using Agricultural Biodiversity to Improve Nutrition and Health; Routledge: London, UK, 2013. [Google Scholar]
- Ruel, M.T. Operationalizing dietary diversity: A review of measurement issues and research priorities. J. Nutr. 2003, 133, 3911S–3926S. [Google Scholar] [CrossRef]
- Berti, P.R.; Jones, A.D. Biodiversity’s contribution to dietary diversity: Magnitude, meaning and measurement. In Diversifying Food and Diets: Using Agricultural Biodiversity to Improve Nutrition and Health; Fanzo, J., Hunter, D., Borelli, T., Mattei, F., Eds.; Routledge: London, UK, 2013; pp. 186–206. [Google Scholar]
- Contreras Díaz, J.; Paredes, M.; Turbay, S. Agroecological short circuits of marketing in Ecuador. Idesia 2017, 35, 71–80. [Google Scholar] [CrossRef] [Green Version]
- Huluka, A.T.; Wondimagegnhu, B.A.; Yildiz, F. Determinants of household dietary diversity in the Yayo biosphere reserve of Ethiopia: An empirical analysis using sustainable livelihood framework. Cogent Food Agric. 2019, 5, 1690829. [Google Scholar] [CrossRef]
- Kennedy, G.; Ballard, T.; Dop, M. Guía Para Medir la Diversidad Alimentaria a Nivel Individual y del Hogar; FAO: Rome, Italy, 2013; ISBN 9789253067497. [Google Scholar]
- Rodríguez, A.G. Agenda 2030 para el Desarrollo Sostenible y Sistemas Alimentarios Sostenibles. Una Propuesta para la Formulación de Políticas Integradoras; CEPAL: Santiago, Chile, 2017. [Google Scholar]
- Vaitla, B.; Coates, J.; Glaeser, L.; Hillbruner, C.; Biswal, P.; Maxwell, D. The measurement of household food security: Correlation and latent variable analysis of alternative indicators in a large multi-country dataset. Food Policy 2017, 68, 193–205. [Google Scholar] [CrossRef]
- Koppmair, S.; Kassie, M.; Qaim, M. Farm production, market access and dietary diversity in Malawi. Public Health Nutr. 2017, 20, 325–335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jebessa, G.; Sima, A.; Wondimagegnhu, B. Determinants of household dietary diversity in Bangladesh. Ethiop. J. Sci. Technol. 2019, 12, 45–68. [Google Scholar] [CrossRef] [Green Version]
- Oyarzun, P.J.; Borja, R.M.; Sherwood, S.; Parra, V. Making sense of agrobiodiversity, diet, and intensification of smallholder family farming in the Highland Andes of Ecuador. Ecol. Food Nutr. 2013, 52, 515–541. [Google Scholar] [CrossRef]
- Walrod, J.; Seccareccia, E.; Sarmiento, I.; Pimentel, J.P.; Misra, S.; Morales, J.; Doucet, A.; Andersson, N. Community factors associated with stunting, overweight and food insecurity: A community-based mixed-method study in four Andean indigenous communities in Ecuador. BMJ Open 2018, 8, e020760. [Google Scholar] [CrossRef]
- De Janvry, A.; Sadoulet, E. Progress in the modeling of rural households’ behavior under market failures. In Poverty, Inequality, and Development: Essays in Honor of Erik Thorbecke; Springer: Berlin/Heidelberg, Germany, 2006; pp. 155–181. [Google Scholar] [CrossRef]
- Penafiel, D.; Cevallos-Valdiviezo, H.; Espinel, R.; Van Damme, P. Local traditional foods contribute to diversity and species richness of rural women’s diet in Ecuador. Public Health Nutr. 2019, 22, 2962–2971. [Google Scholar] [CrossRef]
- Fanzo, J.; Hunter, D. Agricultural biodiversity, diverse diets and improving nutrition. In Diversifying Food and Diets: Using Agricultural Biodiversity to Improve Nutrition and Health; Borelli, T., Mattei, F., Eds.; Routledge: London, UK, 2013; pp. 1–13. ISBN 978-1-84971-456-3. [Google Scholar]
- INEC. Base de Datos—Censo de Población y Vivienda. Available online: https://www.ecuadorencifras.gob.ec/base-de-datos-censo-de-poblacion-y-vivienda/ (accessed on 28 December 2020).
- Swindale, A.; Bilinsky, P. Household Dietary Diversity Score (HDDS) for Measurement of Household Food Access: Indicator Guide; Version 2; FANTA FHI: Washington, DC, USA, 2006. [Google Scholar]
- Sibhatu, K.T.; Qaim, M. Farm production diversity and dietary quality: Linkages and measurement issues. Food Secur. 2018, 10, 47–59. [Google Scholar] [CrossRef] [Green Version]
- Kennedy, G.; Ballard, T.; Dop, M. Guidelines for Measuring Household and Individual Dietary Diversity; FAO: Rome, Italy, 2013. [Google Scholar]
- Headey, D.D.; Ecker, O. Rethinking the measurement of food security: From first principles to best practice. Food Secur. 2013, 5, 327–343. [Google Scholar] [CrossRef]
- Cupal, M.; Deev, O.; Linnertova, D. The poisson regression analysis for occurrence of floods. Procedia Econ. Financ. 2015, 23, 1499–1502. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, A.; Kurosawa, T. Regression correlation coefficient for a Poisson regression model. Comput. Stat. Data Anal. 2016, 98, 71–78. [Google Scholar] [CrossRef]
- Wooldridge, J.M. Limited dependent variable models and sample selection corrections. In Introductory Econometrics. A Modern Approach, 5th ed.; South-Western, Cengage Learning: Mason, OH, USA, 2013; Chapter 17; pp. 604–609. ISBN 9781111531041. [Google Scholar]
- Gujarati, D.N.; Porter, D.C. Qualitative response regression models. In Basic Econometrics, 5th ed.; McGraw-Hill/Irwin: New York, NY, USA, 2009; Chapter 15; pp. 576–579. ISBN 9780073375779. [Google Scholar]
- FAO. Escala Latinoamericana y Caribeña de Seguridad Alimentaria (ELCSA). Manual de Uso y Aplicación; FAO: Rome, Italy, 2012. [Google Scholar]
- Drammeh, W.; Njie, B.; Hamid, N.A.; Rohana, A.J. Determinants of dietary diversity among households in central river region south, the Gambia. Curr. Res. Nutr. Food Sci. J. 2020, 8, 656–666. [Google Scholar] [CrossRef]
- Rajendran, S.; Afari-Sefa, V.; Shee, A.; Bocher, T.; Bekunda, M.; Dominick, I.; Lukumay, P.J. Does crop diversity contribute to dietary diversity? Evidence from integration of vegetables into maize-based farming systems. Agric. Food Secur. 2017, 6, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Morseth, M.S.; Grewal, N.K.; Kaasa, I.S.; Hatloy, A.; Barikmo, I.; Henjum, S. Dietary diversity is related to socioeconomic status among adult Saharawi refugees living in Algeria. BMC Public Health 2017, 17, 621. [Google Scholar] [CrossRef] [Green Version]
- Agrawal, S.; Kim, R.; Gausman, J.; Sharma, S.; Sankar, R.; Joe, W.; Subramanian, S.V. Socio-economic patterning of food consumption and dietary diversity among Indian children: Evidence from NFHS-4. Eur. J. Clin. Nutr. 2019, 73, 1361–1372. [Google Scholar] [CrossRef] [Green Version]
- Cordero-Ahiman, O.; Santellano-Estrada, E.; Garrido, A. Dietary diversity in rural households: The case of indigenous communities in Sierra Tarahumara, Mexico. J. Food Nutr. Res. 2017, 5, 86–94. [Google Scholar] [CrossRef]
- Amugsi, D.A.; Dimbuene, Z.T.; Bakibinga, P.; Kimani-Murage, E.W.; Haregu, T.N.; Mberu, B. Dietary diversity, socioeconomic status and maternal body mass index (BMI): Quantile regression analysis of nationally representative data from Ghana, Namibia and Sao Tome and Principe. BMJ Open 2016, 6, e012615. [Google Scholar] [CrossRef] [Green Version]
- Mayén, A.-L.; Marques-Vidal, P.; Paccaud, F.; Bovet, P.; Stringhini, S. Socioeconomic determinants of dietary patterns in low- and middle-income countries: A systematic review. Am. J. Clin. Nutr. 2014, 100, 1520–1531. [Google Scholar] [CrossRef] [Green Version]
- Kiboi, W.; Kimiywe, J.; Chege, P. Determinants of dietary diversity among pregnant women in Laikipia County, Kenya: A cross-sectional study. BMC Nutr. 2017, 3, 12. [Google Scholar] [CrossRef] [Green Version]
- Melby, C.L.; Orozco, F.; Averett, J.; Muñoz, F.; Romero, M.J.; Barahona, A. Agricultural food production diversity and dietary diversity among female small holder farmers in a region of the Ecuadorian Andes experiencing nutrition transition. Nutrients 2020, 12, 2454. [Google Scholar] [CrossRef]
- Freire, W.B.; Waters, W.F.; Rivas-Mariño, G.; Belmont, P. The double burden of chronic malnutrition and overweight and obesity in Ecuadorian mothers and children, 1986–2012. Nutr. Health 2018, 24, 163–170. [Google Scholar] [CrossRef]
- Irwin, S.; Flaherty, M.S.; Carolsfeld, J. The contribution of small-scale, privately owned tropical aquaculture to food security and dietary diversity in Bolivia. Food Secur. 2020, 1–20. [Google Scholar] [CrossRef]
- Tiburcio, E. Food Insecurity in San Pedro, Ecuador: The Association of Food Insecurity with Dietary Diversity and BMI. Master’s Thesis, Yale School of Public Health, New Haven, CT, USA, 2016. [Google Scholar]
- Bernal Rivas, J.; Lorenzana Albert, P. Dietary diversity and associated factors among beneficiaries of 77 child care centers: Central Regional, Venezuela. Arch. Latinoam. Nutr. 2003, 53, 52–58. [Google Scholar]
- Sunderland, T.; Powell, B.; Ickowitz, A.; Foli, S.; Pinedo-Vasquez, M.; Nasi, R.; Padoch, C. Food Security and Nutrition: The Role of Forests; Center for International Forestry Research (CIFOR): Bogor, Indonesia, 2013. [Google Scholar]
- Niragira, S.; Ndimubandi, J.; Van Orshoven, J. Income, time and labor nexus household food security in Burundi. In Encyclopedia of Food Security and Sustainability; Elsevier: Amsterdam, The Netherlands, 2019; pp. 534–539. [Google Scholar]
- Jones, A.D.; Shrinivas, A.; Bezner-Kerr, R. Farm production diversity is associated with greater household dietary diversity in Malawi: Findings from nationally representative data. Food Policy 2014, 46, 1–12. [Google Scholar] [CrossRef]
- Muthini, D.; Nzuma, J.; Qaim, M. Subsistence production, markets, and dietary diversity in the Kenyan small farm sector. Food Policy 2020, 97, 101956. [Google Scholar] [CrossRef]
- Powell, B.; Bezner Kerr, R.; Young, S.L.; Johns, T. The determinants of dietary diversity and nutrition: Ethnonutrition knowledge of local people in the East Usambara Mountains, Tanzania. J. Ethnobiol. Ethnomed. 2017, 13, 23. [Google Scholar] [CrossRef] [Green Version]
- Segovia, J.; Orellana, M.; Sarmiento, J.P.; Carchi, D. The effects of taxing sugar-sweetened beverages in Ecuador: An analysis across different income and consumption groups. PLoS ONE 2020, 15, e0240546. [Google Scholar] [CrossRef] [PubMed]
- Freire, W.B.; Ramírez, M.J.; Belmont, P.; Mendieta, M.J.; Silva, M.K.; Romero, N.; Sáenz, K.; Piñeiros, P.; Gómez, L.F.; Monge, R. RESUMEN EJECUTIVO. TOMO I. Encuesta Nacional de Salud y Nutrición del Ecuador; ENSANUT-ECU 2011-2013; Ministerio de Salud Pública/Instituto Nacional de Estadística y Censos: Quito, Ecuador, 2013. [Google Scholar]
- Cordero-Ahiman, O.V.; Vanegas, J.L.; Beltrán-Romero, P.; Quinde-Lituma, M.E. Determinants of food insecurity in rural households: The case of the Paute river basin of Azuay Province, Ecuador. Sustainability 2020, 12, 946. [Google Scholar] [CrossRef] [Green Version]
- Fiese, B.H.; Gundersen, C.; Koester, B.; Jones, B. Family chaos and lack of mealtime planning is associated with food insecurity in low income households. Econ. Hum. Biol. 2016, 21, 147–155. [Google Scholar] [CrossRef] [Green Version]
- Ritzema, R.; Douxchamps, S.; Fraval, S.; Bolliger, A.; Hok, L.; Phengsavanh, P.; Long, C.; Hammond, J.; Van Wijk, M. Household-level drivers of dietary diversity in transitioning agricultural systems: Evidence from the Greater Mekong Subregion. Agric. Syst. 2019, 176, 102657. [Google Scholar] [CrossRef]
- Vega-Macedo, M.; Shamah-Levy, T.; Peinador-Roldán, R.; Humarán, I.M.-G.; Melgar-Quiñonez, H. Inseguridad alimentaria y variedad de la alimentación en hogares mexicanos con niños menores de cinco años. Salud Pública México 2014, 56, 21–30. [Google Scholar] [CrossRef] [Green Version]
- Legwegoh, A.F.; Hovorka, A.J. Assessing food insecurity in Botswana: The case of Gaborone. Dev. Pract. 2013, 23, 346–358. [Google Scholar] [CrossRef]
- Hawkes, C. Dietary implications of supermarket development: A global perspective. Dev. Policy Rev. 2008, 26, 657–692. [Google Scholar] [CrossRef]
- Instituto Nacional de Estadísticas y Censos (INEC). Encuesta Condiciones de Vida VI Ronda 2015; Instituto Nacional de Estadísticas y Censos (INEC): Quito, Ecuador, 2015. [Google Scholar]
- Isabirye, N.; Bukenya, J.N.; Nakafeero, M.; Ssekamatte, T.; Guwatudde, D.; Fawzi, W. Dietary diversity and associated factors among adolescents in eastern Uganda: A cross-sectional study. BMC Public Health 2020, 20, 534. [Google Scholar] [CrossRef]
- Heim, A.; Paksi, A. Low dietary diversity and its influencing factors among a San group in Namibia. BMC Res. Notes 2019, 12, 365. [Google Scholar] [CrossRef] [PubMed]
- Parappurathu, S.; Kumar, A.; Bantilan, M.C.S.; Joshi, P.K. Food consumption patterns and dietary diversity in eastern India: Evidence from village level studies (VLS). Food Secur. 2015, 7, 1031–1042. [Google Scholar] [CrossRef]
- International Monetary Fund. World Economic Outlook: The Great Lockdown; International Monetary Fund: Washington, DC, USA, 2020; ISBN 1557757402. [Google Scholar]
- Christian, A.K.; Marquis, G.S.; Colecraft, E.K.; Lartey, A.; Soueida, R. Household food insecurity but not dietary diversity is associated with children’s mean micronutrient density adequacy in rural communities across Ghana. Nutrition 2019, 65, 97–102. [Google Scholar] [CrossRef]
- Torheim, L.E.; Ouattara, F.; Diarra, M.M.; Thiam, F.D.; Barikmo, I.; Hatløy, A.; Oshaug, A. Nutrient adequacy and dietary diversity in rural Mali: Association and determinants. Eur. J. Clin. Nutr. 2004, 58, 594–604. [Google Scholar] [CrossRef] [Green Version]
- Mbwana, H.A.; Kinabo, J.; Lambert, C.; Biesalski, H.K. Determinants of household dietary practices in rural Tanzania: Implications for nutrition interventions. Cogent Food Agric. 2016, 2, 2. [Google Scholar] [CrossRef]
- Carletto, C.; Zezza, A.; Banerjee, R. Towards better measurement of household food security: Harmonizing indicators and the role of household surveys. Glob. Food Secur. 2013, 2, 30–40. [Google Scholar] [CrossRef]
Variables | Observations | Mean/Percentage (%) | Standard Deviation | Min. | Max. |
---|---|---|---|---|---|
n = 383 | |||||
Housing and Household Size | |||||
Housing size (number of rooms) | 382 | 4.90 | 1.59 | 1 | 10 |
Household size (number of household members) | 383 | 3.84 | 1.65 | 1 | 10 |
Family size | |||||
≤5 members | 324 | 84.60% | |||
6–8 members | 55 | 14.36% | |||
≥8 | 4 | 1.04% | |||
General Expenditures | |||||
Total expenditure per capita (weekly) | 348 | 16.76 | 14.03 | 0.86 | 116.67 |
Food expenditure per capita (weekly) | 359 | 12.10 | 8.87 | 1 | 60 |
Food Security (Constructed from the questions on the Latin American and Caribbean Food Security Scale (ELCSA) questionnaire) [39] | |||||
Indicator of food security in rural households | 383 | 28.46% | |||
Agriculture | |||||
Area of cultivated land (ha) | 383 | 0.11 | 1.11 | 0 | 20 |
Sown crops | 323 | 85.00% | |||
Unsown crops | 57 | 15.00% | |||
Total crops | 383.00 | 3.19 | 2.183 | 0 | 12 |
Sex of the Head of Household | |||||
Female | 152 | 39.69% | |||
Male | 231 | 60.31% | |||
Age of the Head of Household | 383 | 47.20 | 16.25 | 18 | 86 |
Age categories (years) | |||||
18–47 | 198 | 51.70% | |||
48–60 | 97 | 25.33% | |||
≥61 | 88 | 22.98% | |||
Educational Level of the Head of Household | |||||
Uneducated | 30 | 7.83% | |||
Primary | 258 | 67.36% | |||
Secondary or higher | 95 | 24.80% | |||
Marital Status of the Head of Household | |||||
Single | 50 | 13.05% | |||
Married | 237 | 61.88% | |||
Widowed | 36 | 9.40% | |||
Divorced | 9 | 2.35% | |||
Consensual union | 28 | 7.31% | |||
Separated | 9 | 2.35% | |||
Single mother | 14 | 3.66% | |||
Dietary Diversity | |||||
Household Dietary Diversity Score (HDDS) | 383 | 10.89 | 1.28 | 4 | 12 |
HDDS | Coefficients | Robust Standard Error | p-Value | Confidence Interval (95%) | |
---|---|---|---|---|---|
Lower | Upper | ||||
Housing size (number of rooms) | 0.007 | 0.003 | 0.057 * | 0.000 | 0.013 |
Household size (number of members) | 0.005 | 0.005 | 0.013 ** | 0.003 | 0.022 |
Age of the head of household (years) | −0.001 | 0.000 | 0.206 | −0.001 | 0.000 |
Sex of the head of household (male = 0, female = 1) | |||||
Female | 0.001 | 0.015 | 0.959 | −0.029 | 0.031 |
Level of education of the head of household (uneducated = 0, primary = 1, secondary or higher = 2) | |||||
Primary | 0.030 | 0.033 | 0.362 | −0.035 | 0.095 |
Secondary or higher | 0.062 | 0.034 | 0.072 * | −0.005 | 0.129 |
Marital status of the head of household (single = 0, married = 1, widow(er) = 2, divorced = 3, consensual union = 4, separated = 5, single mother = 6) | |||||
Married | 0.003 | 0.020 | 0.867 | −0.035 | 0.042 |
Widow(er) | −0.039 | 0.029 | 0.173 | −0.095 | 0.017 |
Divorced | 0.077 | 0.026 | 0.003 *** | 0.026 | 0.127 |
Consensual union | 0.051 | 0.023 | 0.022 ** | 0.007 | 0.096 |
Separated | 0.057 | 0.026 | 0.029 ** | 0.006 | 0.109 |
Single mother | −0.004 | 0.035 | 0.906 | −0.073 | 0.065 |
Area of cultivated land (ha) | 0.006 | 0.002 | 0.001 *** | 0.003 | 0.010 |
Total expenditure per capita (USD weekly) | 0.001 | 0.001 | 0.302 | −0.001 | 0.002 |
Food expenditure per capita (USD weekly) | 0.003 | 0.001 | 0.001 *** | 0.001 | 0.006 |
_cons | 2.235 | 0.041 | 0.000 | 2.155 | 2.315 |
Log pseudolikelihood= | −756.2957 | ||||
Number of obs.= | 347.0000 | ||||
Wald chi2 (15)= | 110.7300 | ||||
Prob > chi2= | 0.0000 | ||||
Pseudo R2= | 0.0076 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cordero-Ahiman, O.V.; Vanegas, J.L.; Franco-Crespo, C.; Beltrán-Romero, P.; Quinde-Lituma, M.E. Factors That Determine the Dietary Diversity Score in Rural Households: The Case of the Paute River Basin of Azuay Province, Ecuador. Int. J. Environ. Res. Public Health 2021, 18, 2059. https://doi.org/10.3390/ijerph18042059
Cordero-Ahiman OV, Vanegas JL, Franco-Crespo C, Beltrán-Romero P, Quinde-Lituma ME. Factors That Determine the Dietary Diversity Score in Rural Households: The Case of the Paute River Basin of Azuay Province, Ecuador. International Journal of Environmental Research and Public Health. 2021; 18(4):2059. https://doi.org/10.3390/ijerph18042059
Chicago/Turabian StyleCordero-Ahiman, Otilia Vanessa, Jorge Leonardo Vanegas, Christian Franco-Crespo, Pablo Beltrán-Romero, and María Elena Quinde-Lituma. 2021. "Factors That Determine the Dietary Diversity Score in Rural Households: The Case of the Paute River Basin of Azuay Province, Ecuador" International Journal of Environmental Research and Public Health 18, no. 4: 2059. https://doi.org/10.3390/ijerph18042059
APA StyleCordero-Ahiman, O. V., Vanegas, J. L., Franco-Crespo, C., Beltrán-Romero, P., & Quinde-Lituma, M. E. (2021). Factors That Determine the Dietary Diversity Score in Rural Households: The Case of the Paute River Basin of Azuay Province, Ecuador. International Journal of Environmental Research and Public Health, 18(4), 2059. https://doi.org/10.3390/ijerph18042059