Immediate Effects of a Telerehabilitation Program Based on Aerobic Exercise in Women with Fibromyalgia
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Design
2.2. Participants
2.3. Sample Size
2.4. Randomization
2.5. Interventions
2.6. Outcome Measures
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sarzi-Puttini, P.; Atzeni, F.; Salaffi, F.; Cazzola, M.; Benucci, M.; Mease, P.J. Multidisciplinary approach to fibromyalgia: What is the teaching? Best Pract. Res. Clin. Rheumatol. 2011, 25, 311–319. [Google Scholar] [CrossRef]
- Chinn, S.; Caldwell, W.; Gritsenko, K. Fibromyalgia pathogenesis and treatment options update. Curr. Pain Headache Rep. 2016, 20, 25. [Google Scholar] [CrossRef]
- Borchers, A.T.; Gershwin, M.E. Fibromyalgia: A critical and comprehensive review. Clin. Rev. Allergy Immunol. 2015, 49, 100–151. [Google Scholar] [CrossRef]
- Cabo-Meseguer, A.; Cerdá-Olmedo, G.; Trillo-Mata, J.L. Fibromyalgia: Prevalence, epidemiologic profiles and economic costs. Med. Clín. (Engl. Ed.) 2017, 149, 441–448. [Google Scholar] [CrossRef]
- World Health Organization. WHO Director-General’s Opening Remarks at the Media Briefing on COVID-19. 2020. Available online: https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19,7-September-2020 (accessed on 31 October 2020).
- Bloch, W.; Halle, M.; Steinacker, J.M. Sport in times of corona. Dtsch Z Sportmed. 2020, 71, 83–84. [Google Scholar] [CrossRef]
- Hossain, M.M.; Sultana, A.; Purohit, N. Mental health outcomes of quarantine and isolation for infection prevention: A systematic umbrella review of the global evidence. SSRN Electron J. 2020. [Google Scholar] [CrossRef] [Green Version]
- Pope, J.E. What does the COVID-19 pandemic mean for rheumatology patients? Curr. Treat. Options Rheumatol. 2020, 6, 71–74. [Google Scholar] [CrossRef] [PubMed]
- Ping, W.; Zheng, J.; Niu, X.; Guo, C.; Zhang, J.; Yang, H.; Shi, Y. Evaluation of health-related quality of life using EQ-5D in China during the COVID-19 pandemic. PLoS ONE 2020, 15, e0234850. [Google Scholar] [CrossRef]
- Miyachi, M.; Winfree, K.; Woodbury, A.; Gavilán-Carrera, B.; Segura-Jiménez, V.; Acosta-Manzano, P.; Borges-Cosic, M.; Álvarez-Gallardo, I.C.; Delgado-Fernández, M. Patterns of sedentary time and quality of life in women with fibromyalgia: Cross-sectional study from the Al-ándalus project. JMIR mHealth uHealth 2020, 8, e14538. [Google Scholar] [CrossRef]
- Galvez-Sánchez, C.M.; Montoro, C.I.; Duschek, S.; Del Paso, G.A.R. Pain catastrophizing mediates the negative influence of pain and trait-anxiety on health-related quality of life in fibromyalgia. Qual. Life Res. 2020, 29, 1871–1881. [Google Scholar] [CrossRef]
- De Miquel, C.A.; Campayo, J.G.; Flórez, M.T.; Arguelles, J.M.G.; Tarrio, E.B.; Montoya, M.G.; Pérez, Á.M.; Martínez, A.S.; Vidal Fuentes, J.; Altarriba Alberch, E.; et al. Interdisciplinary consensus document for the treatment of fibromyalgia. Actas Esp. Psiquiatr. 2010, 38, 108–120. [Google Scholar] [PubMed]
- Macfarlane, G.J.; Kronisch, C.; Dean, L.E.; Atzeni, F.; Häuser, W.; Fluß, E.; Choy, E.; Kosek, E.; Amris, K.; Branco, J.; et al. EULAR revised recommendations for the management of fibromyalgia. Ann. Rheum. Dis. 2016, 76, 318–328. [Google Scholar] [CrossRef]
- Bidonde, J.; Busch, A.J.; Schachter, C.L.; Overend, T.J.; Kim, S.Y.; Góes, S.M.; Boden, C.; Foulds, H.J. Aerobic exercise training for adults with fibromyalgia. Cochrane Database Syst. Rev. 2017, 6, CD012700. [Google Scholar] [CrossRef]
- Sosa-Reina, M.D.; Nunez-Nagy, S.; Gallego-Izquierdo, T.; Pecos-Martín, D.; Monserrat, J.; Álvarez-Mon, M. Effectiveness of therapeutic exercise in fibromyalgia syndrome: A systematic review and meta-analysis of randomized clinical trials. BioMed Res. Int. 2017, 2017, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Izquierdo-Alventosa, R.; Inglés, M.; Cortés-Amador, S.; Gimeno-Mallench, L.; Chirivella-Garrido, J.; Kropotov, J.; Serra-Añó, P. Low-intensity physical exercise improves pain catastrophizing and other psychological and physical aspects in women with fibromyalgia: A randomized controlled trial. Int. J. Environ. Res. Public Health 2020, 17, 3634. [Google Scholar] [CrossRef]
- Miyamoto, G.C.; Lin, C.-W.C.; Cabral, C.M.N.; Van Dongen, J.M.; Van Tulder, M.W. Cost-effectiveness of exercise therapy in the treatment of non-specific neck pain and low back pain: A systematic review with meta-analysis. Br. J. Sports Med. 2018, 53, 172–181. [Google Scholar] [CrossRef]
- Cohen, S.P.; Baber, Z.B.; King, L.T.C.S.; Fowler, C.D.R.I.M.; Stojanovic, M.P.; Hayek, S.M.; Phillips, C.D.R.C.R.; Buvanendran, A.; McLean, L.T.C.B.C.; Chen, Y.; et al. Pain management best practices from multispecialty organizations during the COVID-19 pandemic and public health crises. Pain Med. 2020, 21, 1331–1346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peretti, A.; Amenta, F.; Tayebati, S.K.; Nittari, G.; Mahdi, S.S. Telerehabilitation: Review of the state-of-the-art and areas of application. JMIR Rehabil. Assist. Technol. 2017, 4, e7. [Google Scholar] [CrossRef] [PubMed]
- Harden, R.N.; Song, S.; Fasen, M.J.; Saltz, D.S.L.; Nampiaparampil, D.; Vo, A.; Revivo, D.G. Home-based aerobic conditioning for management of symptoms of fibromyalgia: A pilot study. Pain Med. 2012, 13, 835–842. [Google Scholar] [CrossRef] [Green Version]
- Coultas, D.B.; Jackson, B.E.; Russo, R.; Peoples, J.; Singh, K.P.; Sloan, J.; Uhm, M.; Ashmore, J.A.; Blair, S.N.; Bae, S. Home-based physical activity coaching, physical activity, and health care utilization in chronic obstructive pulmonary disease. Chronic obstructive pulmonary disease self-management activation research trial secondary outcomes. Ann. Am. Thorac. Soc. 2018, 15, 470–478. [Google Scholar] [CrossRef]
- Preston, E.; Dean, C.M.; Ada, L.; Stanton, R.; Brauer, S.; Kuys, S.; Waddington, G. Promoting physical activity after stroke via self-management: A feasibility study. Top. Stroke Rehabil. 2017, 24, 353–360. [Google Scholar] [CrossRef]
- Wolfe, F.; Clauw, D.J.; Fitzcharles, M.-A.; Goldenberg, D.L.; Häuser, W.; Katz, R.L.; Mease, P.J.; Russell, I.J.; Russell, A.S.; Walitt, B. 2016 revisions to the 2010/2011 fibromyalgia diagnostic criteria. Semin. Arthritis. Rheum. 2016, 46, 319–329. [Google Scholar] [CrossRef] [PubMed]
- Suresh, K.P. An overview of randomization techniques: An unbiased assessment of outcome in clinical research. J. Hum. Reprod. Sci. 2011, 4, 8–11. [Google Scholar] [CrossRef]
- Da Costa, D.; Abrahamowicz, M.; Lowensteyn, I.; Bernatsky, S.; Dritsa, M.; Fitzcharles, M.-A.; Dobkin, P.L. A randomized clinical trial of an individualized home-based exercise programme for women with fibromyalgia. Rheumatology 2005, 44, 1422–1427. [Google Scholar] [CrossRef] [Green Version]
- Schachter, C.L.; Busch, A.J.; Peloso, P.M.; Sheppard, M.S. Effects of short versus long bouts of aerobic exercise in sedentary women with fibromyalgia: A randomized controlled trial. Phys. Ther. 2003, 83, 340–358. [Google Scholar] [CrossRef] [Green Version]
- Buckhardt, C.S.; Goldenberg, D.; Crofford, L.; Gerwin, R.; Gowens, S.; Jackson, K.; Kugel, P.; McCarberg, W.; Rudin, N.; Schanberg, L.; et al. Guideline for the management of fibromyalgia syndrome pain in adults and children. Glenview Am. Pain. Soc. 2005, 4, 109. [Google Scholar]
- Borg, A.G. Psychophysical bases of perceived exertion. Med. Sci. Sports Exerc. 1982, 14, 377–381. [Google Scholar] [CrossRef]
- Soriano-Maldonado, A.; Ruiz, J.R.; Álvarez-Gallardo, I.C.; Segura-Jiménez, V.; Santalla, A.; Munguía-Izquierdo, D. Validity and reliability of rating perceived exertion in women with fibromyalgia: Exertion-pain discrimination. J. Sports Sci. 2015, 33, 1515–1522. [Google Scholar] [CrossRef] [PubMed]
- Duruturk, N.; Tuzun, E.H.; Culhaoglu, B. Is balance exercise training as effective as aerobic exercise training in fibromyalgia syndrome? Rheumatol. Int. 2014, 35, 845–854. [Google Scholar] [CrossRef]
- Alfonsin, M.M.; Chapon, R.; de Souza, C.A.; Genro, V.K.; Mattia, M.M.; Cunha-Filho, J.S. Correlations among algometry, the visual analogue scale, and the numeric rating scale to assess chronic pelvic pain in women. Eur. J. Obstet. Gynecol. Reprod. Biol. X 2019, 3, 100037. [Google Scholar] [CrossRef] [PubMed]
- Alghadir, A.H.; Anwer, S.; Iqbal, A.; Iqbal, Z.A. Test–retest reliability, validity, and minimum detectable change of visual analog, numerical rating, and verbal rating scales for measurement of osteoarthritic knee pain. J. Pain Res. 2018, 11, 851–856. [Google Scholar] [CrossRef] [Green Version]
- Wolfe, F.; Smythe, H.A.; Yunus, M.B.; Bennett, R.M.; Bombardier, C.; Goldenberg, D.L.; Tugwell, P.; Campbell, S.M.; Abeles, M.; Clark, P.; et al. The american college of rheumatology. Criteria for the classification of fibromyalgia. Arthritis Rheum. 1990, 33, 160–172. [Google Scholar] [CrossRef]
- Mutlu, E.K.; Ozdincler, A.R. Reliability and responsiveness of algometry for measuring pressure pain threshold in patients with knee osteoarthritis. J. Phys. Ther. Sci. 2015, 27, 1961–1965. [Google Scholar] [CrossRef] [Green Version]
- Knapstad, M.K.; Nordahl, S.H.G.; Naterstad, I.F.; Ask, T.; Skouen, J.S.; Goplen, F.K. Measuring pressure pain threshold in the cervical region of dizzy patients-The reliability of a pressure algometer. Physiother. Res. Int. 2018, 23, e1736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monterde, S.; Salvat, I.; Montull, S.; Fernández-Ballart, J. Validación de la versión española del Fibromyalgia Impact Questionnaire. Rev. Española Reumatol. 2004, 31, 507–513. [Google Scholar]
- García Campayo, J.; Rodero, B.; Alda, M.; Sobradiel, N.; Montero, J.; Moreno, S. Validation of the Spanish version of the Pain Catastro-phizing Scale in fibromyalgia. Med. Clin. (Barc.) 2008, 131, 487–492. [Google Scholar] [CrossRef] [PubMed]
- Michopoulos, I.; Douzenis, A.; Kalkavoura, C.; Christodoulou, C.; Michalopoulou, P.; Kalemi, G.; Fineti, K.; Patapis, P.; Protopapas, K.; Lykouras, L. Hospital anxiety and depression scale (HADS): Validation in a Greek general hospital sample. Ann. Gen. Psychiatry 2008, 7, 4. [Google Scholar] [CrossRef] [Green Version]
- Reda, A.A. Reliability and validity of the ethiopian version of the hospital anxiety and depression scale (Hads) In HIV infected patients. PLoS ONE 2011, 6, e16049. [Google Scholar] [CrossRef] [PubMed]
- Segura-Jiménez, V.; Soriano-Maldonado, A.; Estévez-López, F.; Álvarez-Gallardo, I.C.; Delgado-Fernández, M.; Ruiz, J.R.; Aparicio, V.A. Independent and joint associations of physical activity and fitness with fibromyalgia symptoms and severity: The al-Ándalus project. J. Sports Sci. 2016, 35, 1–10. [Google Scholar] [CrossRef]
- Leon-Llamas, J.L.; Villafaina, S.; Murillo-Garcia, A.; Collado-Mateo, D.; Domínguez-Muñoz, F.J.; Sánchez-Gómez, J.; Gusi, N. Strength as-sessment under dual task conditions in women with fibromyalgia: A test–retest reliability study. Int. J. Environ. Res. Public Health 2019, 16, 4971. [Google Scholar] [CrossRef] [Green Version]
- Pankoff, B.A.; Overend, T.J.; Lucy, S.D.; White, K.P. Reliability of the six-minute walk test in people with fibromyalgia. Arthritis Rheum. 2000, 13, 291–295. [Google Scholar] [CrossRef]
- Tubach, F.; Ravaud, P.; Baron, G.; Falissard, B.; Logeart, I.; Bellamy, N.; Bombardier, C.; Felson, D.; Hochberg, M.; Van Der Heijde, D.; et al. Evaluation of clinically relevant changes in patient reported outcomes in knee and hip osteoarthritis: The minimal clinically important improvement. Ann. Rheum. Dis. 2005, 64, 29–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smid, D.E.; Franssen, F.M.; Houben-Wilke, S.; Vanfleteren, L.E.; Janssen, D.J.; Wouters, E.F.; Spruit, M.A. Responsiveness and MCID estimates for cCAT, CCQ, and HADS in patients with COPD undergoing pulmonary rehabilitation: A prospective analysis. J. Am. Med. Dir. Assoc. 2017, 18, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Zigmond, A.S.; Snaith, R.P. The hospital anxiety and depression scale. Acta Psychiatr. Scand. 1983, 67, 361–370. [Google Scholar] [CrossRef] [Green Version]
- Andrade, C.P.; Zamunér, A.R.; Forti, M.; Tamburús, N.Y.; Silva, E. Effects of aquatic training and detraining on women with fibromyalgia: Controlled randomized clinical trial. Eur. J. Phys. Rehabil. Med. 2019, 55, 79–88. [Google Scholar] [CrossRef]
- De Assis, M.R.; Silva, L.E.; Alves, A.M.B.; Pessanha, A.P.; Valim, V.; Feldman, D.; Neto, T.L.D.B.; Natour, J. A randomized controlled trial of deep water running: Clinical effectiveness of aquatic exercise to treat fibromyalgia. Arthritis Rheum. 2006, 55, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, G.; Jennings, F.; Cabral, M.V.N.; Buosi, A.L.P.; Natour, J. Swimming improves pain and functional capacity of patients with fibromyalgia: A randomized controlled trial. Arch. Phys. Med. Rehabil. 2016, 97, 1269–1275. [Google Scholar] [CrossRef] [PubMed]
- Gowans, S.E.; Dehueck, A.; Voss, S.; Silaj, A.; Abbey, S.E.; Reynolds, W.J. Effect of a randomized, controlled trial of exercise on mood and physical function in individuals with fibromyalgia. Arthritis Rheum. 2001, 45, 519–529. [Google Scholar] [CrossRef]
- Barclay, T.; Richards, S.; Schoffstall, J.; Magnuson, C.; McPhee, C.; Price, J.; Aita, S.; Anderson, A.; Johnson, D.; Price, J. A pilot study on the effects of exercise on depression symptoms using levels of neurotransmitters and EEG as markers. Eur. J. Psychol. Educ. Stud. 2014, 1, 30. [Google Scholar] [CrossRef] [Green Version]
- Lopresti, A.L.; Hood, S.D.; Drummond, P.D. A review of lifestyle factors that contribute to important pathways associated with major depression: Diet, sleep and exercise. J. Affect. Disord. 2013, 148, 12–27. [Google Scholar] [CrossRef] [Green Version]
- Klaperski, S.; Von Dawans, B.; Heinrichs, M.; Fuchs, R. Effects of a 12-week endurance training program on the physiological response to psychosocial stress in men: A randomized controlled trial. J. Behav. Med. 2014, 37, 1118–1133. [Google Scholar] [CrossRef] [PubMed]
- Moylan, S.; Eyre, H.; Maes, M.; Baune, B.; Jacka, F.; Berk, M. Exercising the worry away: How inflammation, oxidative and nitrogen stress mediates the beneficial effect of physical activity on anxiety disorder symptoms and behaviours. Neurosci. Biobehav. Rev. 2013, 37, 573–584. [Google Scholar] [CrossRef] [PubMed]
- Scheef, L.; Jankowski, J.; Daamen, M.; Weyer, G.; Klingenberg, M.; Renner, J.; Mueckter, S.; Schürmann, B.; Musshoff, F.; Wagner, M.; et al. An fMRI study on the acute effects of exercise on pain processing in trained athletes. Pain 2012, 153, 1702–1714. [Google Scholar] [CrossRef] [PubMed]
- Sañudo, B.; Carrasco, L.; De Hoyo, M.; McVeigh, J.G. Effects of exercise training and detraining in patients with fibromyalgia syndrome: A 3-Yr longitudinal study. Am. J. Phys. Med. Rehabil. 2012, 91, 561–573. [Google Scholar]
- Tran, S.T.; Guite, J.W.; Ounpuu, S.; Rodriguez-MacClintic, J.; Zemel, L.; Zempsky, W.; Kashikar-Zuck, S.; Pantaleao, A.; Pfeiffer, M.; Myer, G.D.; et al. Preliminary outcomes of a cross-site cognitive-behavioral and neuromuscular integrative training intervention for juvenile fibromyalgia. Arthritis Rheum. 2017, 69, 413–420. [Google Scholar] [CrossRef] [Green Version]
- Ang, D.C.; Kaleth, A.S.; Bigatti, S.; Mazzuca, S.; Saha, C.; Hilligoss, J.; Lengerich, M.; Bandy, R. Research to encourage exercise for fibromyalgia (REEF): Use of motivational interviewing design and method. Contemp. Clin. Trials 2011, 32, 59–68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giannotti, E.; Koutsikos, K.; Pigatto, M.; Rampudda, M.E.; Doria, A.; Masiero, S. Medium-/Long-term effects of a specific exercise protocol combined with patient education on spine mobility, chronic fatigue, pain, aerobic fitness and level of disability in fibromyalgia. BioMed Res. Int. 2014, 2014, 1–9. [Google Scholar] [CrossRef]
TP Group Mean ( ± SD) | Control Group Mean ( ± SD) | Significance | |
---|---|---|---|
Age (years) | 51.81 ± 9.05 | 55.06 ± 8.51 | 0.304 a |
Height (cm) | 158.63 ± 6.29 | 161.81 ± 5.13 | 0.191 b |
Weight (kg) | 68.19 ± 16.88 | 68.13 ± 15.10 | 0.836 b |
BMI (kg/cm2) | 27.25 ± 7.30 | 25.93 ± 5.27 | 0.598 b |
Medication n (%) | 17 (100) | 17 (100) | 0.224 c |
Anxiolytics n (%) | 9 (53) | 7 (41) | |
Antidepressants n (%) | 9 (53) | 9 (53) | |
Anti-inflammatory n (%) | 14 (82) | 8 (47) | |
Analgesic n (%) | 11 (65) | 12 (71) | |
Muscle relaxant n (%) | 4 (24) | 2 (12) |
Baseline Mean ± SD (95% CI) | Postintervention Mean ± SD (95% CI) | Within-Group Changes p-Values | Within-Group Effect Sizes (Cohen’s d) | Between-Groups p-Value | Between-Groups Effect Sizes (Cohen’s d) | |
---|---|---|---|---|---|---|
VAS (0–10) | ||||||
TP group | 7.08 ± 1.45 (6.38 to 7.78) | 4.92 ± 2.00 (3.85 to 6.00) | 2.15 (1.37, 2.94) <0.001 | −1.2 | F = 5.99 0.021 | 0.8 |
Control group | 7.29 ± 1.07 (6.62 to 7.96) | 6.46 ± 1.92 (5.42 to 7.50) | 0.82 (−0.3, 1.68) 0.058 | −0.5 | ||
Algometer score (kg/cm2) | ||||||
TP group | 45.42 ± 12.56 (37.92 to 52.92) | 56.85 ± 15.28 (48.43 to 65.28) | −11.43 (−18.38, −4.48) 0.004 | 0.8 | F = 10.67 0.003 | 0.9 |
Control group | 45.20 ± 14.68 (37.49 to 52.98) | 42.79 ± 15.32 (34.05 to 51.53) | 2.40 (−3.48, 8.29) 0.391 | −0.1 | ||
Tender points | ||||||
TP group | 16.00 ± 3.38 (14.42 to 17.57) | 14.13 ± 4.12 (12.42 to 15.84) | 1.86 (0.56, 3.17) 0.008 | −0.5 | F = 7.90 0.009 | 0.8 |
Control group | 16.50 ± 2.47 (14.86 to 18.13) | 16.78 ± 1.84 (15.01 to 18.55) | −0.28 (−1.25,0.68) 0.537 | 0.1 | ||
FIQ-R | ||||||
TP group | 59.44 ± 9.04 (52.14 to 66.74) | 44.00 ± 15.21 (34.10 to 53.91) | 15.43 (7.81, 23.05) 0.001 | −1.2 | F = 1.36 0.254 | 0.1 |
Control group | 55.36 ± 16.46 (48.06 to 62.66) | 46.90 ± 20.47 (36.99 to 56.81) | 8.45 (−1.99, 18.90) 0.104 | −0.4 | ||
PCS | ||||||
TP group | 24.8 ± 12.0 (18.27 to 29.47) | 17.6 ± 12.4 (14.19 to 28.17) | 7.00 (1.19, 12.80) 0.022 | −0.6 | F = 0.415 0.525 | 0.4 |
Control group | 24.10 ± 10.8 (15.72 to 28.40) | 23.5 ± 14.0 (13.45 to 27.70) | 1.07 (−4.54, 6.68) 0.687 | 0.0 | ||
Rumination | ||||||
TP group | 7.2 ± 3.8 (5.32 to 9.53) | 5.1 ± 4.7 (2.45 to 7.69) | 2.34 (−0.29, 5.01) 0.078 | −0.5 | F = 1.91 0.169 | 0.4 |
Control group | 7.2 ± 3.6 (5.15 to 9.09) | 6.9 ± 4.9 (4.42 to 9.32) | 0.25 (−1.65, 2.15) 0.783 | 0.0 | ||
Helplessness | ||||||
TP group | 12.1 ± 6.3 (8.80 to 14.91) | 8.9 ± 6.1 (5.19 to 12.65) | 2.92 (0.46, 5.39) 0.023 | −0.5 | F = 0.430 0.518 | 0.2 |
Control group | 12.4 ± 5.2 (9.07 to 14.79) | 10.2 ± 7.4 (6.69 to 13.67) | 1.75 (−1.13, 4.63) 0.215 | −0.3 | ||
Magnification | ||||||
TP group | 5.5 ± 2.9 (3.81 to 6.75) | 3.6 ± 2.4 (2.97 to 5.07) | 1.71 (0.38, 3.04) 0.015 | −0.7 | F = 2.05 0.163 | 0.1 |
Control group | 4.4 ± 2.5 (3.12 to 5.87) | 3.9 ± 3.0 (2.53 to 5.34) | 0.56 (−0.55, 1.67) 0.300 | −0.1 | ||
HADS | ||||||
TP group | 20.52 ± 6.83 (16.76 to 24.29) | 11.70 ± 8.74 (7.21 to 16.19) | 8.82 (3.33, 14.30) 0.004 | −1.1 | F=12.03 0.002 | 1.0 |
Control group | 20.43 ± 8.37 (16.55 to 24.32) | 21.25 ± 9.42 (16.62 to 25.88) | −0.81 (−2.50, 0.87) 0.321 | 0.0 | ||
HADS-A | ||||||
TP group | 10.88 ± 3.38 (9.02 to 12.73) | 6.29 ± 5.13 (3.86 to 8.72) | 4.58 (1.69, 7.47) 0.004 | −1.0 | F = 10.25 0.003 | 0.9 |
Control group | 10.81 ± 4.10 (8.90 to 12.72) | 11.00 ± 4.66 (8.49 to 13.05) | −0.18 (−1.27, 0.89) 0.718 | 0.0 | ||
HADS-D | ||||||
TP group | 9.64 ± 4.16 (7.49 to 11.81) | 5.41 ± 4.13 (3.09 to 7.72) | 4.23 (1.51, 6.95) 0.005 | −1.0 | F = 2.97 0.001 | 1.0 |
Control group | 9.62 ± 4.58 (7.34 to 11.85) | 10.31 ± 5.19 (7.92 to 12.69) | −0.68 (−1.65, 0.27) 0.151 | 0.1 | ||
6MWT | ||||||
TP group | 403.57 ± 107.13 (327.90 to 480.14) | 434.72 ± 73.78 (367.94 to 501.50) | −30.70 (14.13, −61.50) 0.051 | 0.3 | F = 1.54 0.225 | −0.2 |
Control group | 407.01 ± 137.09 (326.60 to 473.35) | 411.72 ± 145.83 (347.37 to 476.07) | −11.71 (−26.16, 2.73) 0.104 | 0.0 | ||
ACT | ||||||
TP group | 9.60 ± 4.31 (6.28 to 12.01) | 11.38 ± 4.27 (8.57 to 14.19) | −2.23 (−3.65, −0.81) 0.005 | 0.4 | F = 3.98 0.056 | −0.2 |
Control group | 10.06 ± 5.56 (7.39 to 12.73) | 10.33 ± 5.42 (7.72 to 12.94) | −0.26 (−1.81, 1.27) 0.717 | 0.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernando-Garijo, I.; Ceballos-Laita, L.; Mingo-Gómez, M.T.; Medrano-de-la-Fuente, R.; Estébanez-de-Miguel, E.; Martínez-Pérez, M.N.; Jiménez-del-Barrio, S. Immediate Effects of a Telerehabilitation Program Based on Aerobic Exercise in Women with Fibromyalgia. Int. J. Environ. Res. Public Health 2021, 18, 2075. https://doi.org/10.3390/ijerph18042075
Hernando-Garijo I, Ceballos-Laita L, Mingo-Gómez MT, Medrano-de-la-Fuente R, Estébanez-de-Miguel E, Martínez-Pérez MN, Jiménez-del-Barrio S. Immediate Effects of a Telerehabilitation Program Based on Aerobic Exercise in Women with Fibromyalgia. International Journal of Environmental Research and Public Health. 2021; 18(4):2075. https://doi.org/10.3390/ijerph18042075
Chicago/Turabian StyleHernando-Garijo, Ignacio, Luis Ceballos-Laita, María Teresa Mingo-Gómez, Ricardo Medrano-de-la-Fuente, Elena Estébanez-de-Miguel, María Natividad Martínez-Pérez, and Sandra Jiménez-del-Barrio. 2021. "Immediate Effects of a Telerehabilitation Program Based on Aerobic Exercise in Women with Fibromyalgia" International Journal of Environmental Research and Public Health 18, no. 4: 2075. https://doi.org/10.3390/ijerph18042075
APA StyleHernando-Garijo, I., Ceballos-Laita, L., Mingo-Gómez, M. T., Medrano-de-la-Fuente, R., Estébanez-de-Miguel, E., Martínez-Pérez, M. N., & Jiménez-del-Barrio, S. (2021). Immediate Effects of a Telerehabilitation Program Based on Aerobic Exercise in Women with Fibromyalgia. International Journal of Environmental Research and Public Health, 18(4), 2075. https://doi.org/10.3390/ijerph18042075