Combination of High-Pressure Processing and Freeze-Drying as the Most Effective Techniques in Maintaining Biological Values and Microbiological Safety of Donor Milk
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design and Sample Preparation
2.2. Determination of Bioactive Components
- (a)
- raw, untreated milk (Raw),
- (b)
- holder pasteurization (HoP),
- (c)
- high-pressure processing (HPP) (450 MPa, 21 °C, 15 min),
- (d)
- freeze-drying (Lyo) (Raw + Lyo),
- (e)
- holder pasteurization followed by freeze-drying (HoP + Lyo),
- (f)
- high-pressure processing followed by freeze-drying (HPP + Lyo).
2.3. Holder Pasteurization
2.4. High-Pressure Processing
2.5. Freeze-Drying
2.6. Microbiological Safety Assessment
2.7. Statistical Analysis
3. Results
3.1. Determination of Bioactive Components in Treatment Milk Samples
3.2. Microbiological Safety
3.2.1. Native Microbiota
3.2.2. Microbiological Purity after High-Pressure Processing and Freeze-Drying in Storage Milk Samples
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ballard, O.; Morrow, A.L. Human milk composition: Nutrients and bioactive factors. Pediatr. Clin. N. Am. 2013, 60, 49–74. [Google Scholar] [CrossRef] [PubMed]
- Pedriatrics, A.A.O. Breastfeeding and the Use of Human Milk. Pediatrics 2012, 129, e827–e841. [Google Scholar] [CrossRef]
- WHO. Guidelines on Optimal Feeding of Low Birth-Weight Infants in Low- and Middle-Income Countries; WHO: Geneva, Switzerland, 2011. [Google Scholar]
- Haiden, N.; Ziegler, E.E. Human Milk Banking. Ann. Nutr. Metab. 2016, 69 (Suppl. 2), 8–15. [Google Scholar] [CrossRef]
- Kantorowska, A.; Wei, J.C.; Cohen, R.S.; Lawrence, R.A.; Gould, J.B.; Lee, H.C. Impact of Donor Milk Availability on Breast Milk Use and Necrotizing Enterocolitis Rates. Pediatrics 2016, 137, e20153123. [Google Scholar] [CrossRef]
- Moro, G.E.; Billeaud, C.; Rachel, B.; Calvo, J.; Cavallarin, L.; Christen, L.; Escuder-Vieco, D.; Gaya, A.; Lembo, D.; Wesolowska, A.; et al. Processing of Donor Human Milk: Update and Recommendations From the European Milk Bank Association (EMBA). Front. Pediatr. 2019, 7, 49. [Google Scholar] [CrossRef]
- Weaver, G.; Bertino, E.; Gebauer, C.; Grovslien, A.; Mileusnic-Milenovic, R.; Arslanoglu, S.; Barnett, D.; Boquien, C.Y.; Buffin, R.; Gaya, A.; et al. Recommendations for the Establishment and Operation of Human Milk Banks in Europe: A Consensus Statement From the European Milk Bank Association (EMBA). Front. Pediatr. 2019, 7, 53. [Google Scholar] [CrossRef] [PubMed]
- Hanson, M.L.; Wendorff, W.L.; Houck, K.B. Effect of heat treatment of milk on activation of Bacillus spores. J. Food Prot. 2005, 68, 1484–1486. [Google Scholar] [CrossRef]
- Lewin, A.; Delage, G.; Bernier, F.; Germain, M. Banked Human Milk and Quantitative Risk Assessment of Bacillus cereus Infection in Premature Infants: A Simulation Study. Can. J. Infect. Dis. Med. Microbiol. 2019, 2019, 6348281. [Google Scholar] [CrossRef] [PubMed]
- Lewin, A.; Quach, C.; Rigourd, V.; Picaud, J.C.; Perreault, T.; Frange, P.; Domingo, M.C.; Lalancette, C.; Delage, G.; Germain, M. Bacillus cereus infection in neonates and the absence of evidence for the role of banked human milk: Case reports and literature review. Infect. Control. Hosp. Epidemiol. 2019, 40, 787–793. [Google Scholar] [CrossRef] [PubMed]
- Peila, C.; Moro, G.E.; Bertino, E.; Cavallarin, L.; Giribaldi, M.; Giuliani, F.; Cresi, F.; Coscia, A. The Effect of Holder Pasteurization on Nutrients and Biologically-Active Components in Donor Human Milk: A Review. Nutrients 2016, 8, 477. [Google Scholar] [CrossRef]
- Guerra, A.F.; Mellinger-Silva, C.; Rosenthal, A.; Luchese, R.H. Hot topic: Holder pasteurization of human milk affects some bioactive proteins. J. Dairy Sci. 2018, 101, 2814–2818. [Google Scholar] [CrossRef]
- Alexandre, E.M.C.; Pinto, C.A.; Moreira, S.A.; Pintado, M.; Saraiva, J.A. 5—Nonthermal food processing/preservation technologies. In Saving Food; Galanakis, C.M., Ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 141–169. [Google Scholar] [CrossRef]
- Silva, F.V.M.; Gibbs, P.A. Thermal pasteurization requirements for the inactivation of Salmonella in foods. Food Res. Int. 2012, 45, 695–699. [Google Scholar] [CrossRef]
- Huang, H.-W.; Wu, S.-J.; Lu, J.-K.; Shyu, Y.-T.; Wang, C.-Y. Current status and future trends of high-pressure processing in food industry. Food Control. 2017, 72, 1–8. [Google Scholar] [CrossRef]
- Sousa, S.G.; Delgadillo, I.; Saraiva, J.A. Human Milk Composition and Preservation: Evaluation of High-pressure Processing as a Nonthermal Pasteurization Technology. Crit. Rev. Food Sci. Nutr. 2016, 56, 1043–1060. [Google Scholar] [CrossRef] [PubMed]
- Wesolowska, A.; Sinkiewicz-Darol, E.; Barbarska, O.; Bernatowicz-Lojko, U.; Borszewska-Kornacka, M.K.; van Goudoever, J.B. Innovative Techniques of Processing Human Milk to Preserve Key Components. Nutrients 2019, 11, 1169. [Google Scholar] [CrossRef]
- Wesolowska, A.; Sinkiewicz-Darol, E.; Barbarska, O.; Strom, K.; Rutkowska, M.; Karzel, K.; Rosiak, E.; Oledzka, G.; Orczyk-Pawilowicz, M.; Rzoska, S.; et al. New Achievements in High-Pressure Processing to Preserve Human Milk Bioactivity. Front. Pediatr. 2018, 6, 323. [Google Scholar] [CrossRef] [PubMed]
- Demazeau, G.; Plumecocq, A.; Lehours, P.; Martin, P.; Couedelo, L.; Billeaud, C. A New High Hydrostatic Pressure Process to Assure the Microbial Safety of Human Milk While Preserving the Biological Activity of Its Main Components. Front. Public Health 2018, 6, 306. [Google Scholar] [CrossRef]
- Lenati, R.F.; O’Connor, D.L.; Hebert, K.C.; Farber, J.M.; Pagotto, F.J. Growth and survival of Enterobacter sakazakii in human breast milk with and without fortifiers as compared to powdered infant formula. Int. J. Food Microbiol. 2008, 122, 171–179. [Google Scholar] [CrossRef]
- Salcedo, J.; Gormaz, M.; Lopez-Mendoza, M.C.; Nogarotto, E.; Silvestre, D. Human milk bactericidal properties: Effect of lyophilization and relation to maternal factors and milk components. J. Pediatr. Gastroenterol. Nutr. 2015, 60, 527–532. [Google Scholar] [CrossRef]
- Castro Albarran, J.; Navarro Hernandez, R.E.; Solis Pacheco, J.R.; Salazar Quinones, I.C.; Macias Lopez, G.G.; Barrera de Leon, J.C.; Aguilar Uscanga, B.R. Impact of pasteurization/freeze-drying on available immunoglobulin content of the mature human milk. Use in human milk banking of hospitals. Nutr. Hosp. 2017, 34, 899–906. [Google Scholar] [CrossRef]
- Lozano, B.; Castellote, A.I.; Montes, R.; López-Sabater, M.C. Vitamins, fatty acids, and antioxidant capacity stability during storage of freeze-dried human milk. Int. J. Food Sci. Nutr. 2014, 65, 703–707. [Google Scholar] [CrossRef] [PubMed]
- Martysiak-Żurowska, D.; Rożek, P.; Puta, M. The effect of freeze-drying and storage on lysozyme activity, lactoferrin content, superoxide dismutase activity, total antioxidant capacity and fatty acid profile of freeze-dried human milk. Dry. Technol. 2020, 1–11. [Google Scholar] [CrossRef]
- Bomfim, V.S.; Jordao, A.A.J.; Alves, L.G.; Martinez, F.E.; Camelo, J.S., Jr. Human milk enriched with human milk lyophilisate for feeding very low birth weight preterm infants: A preclinical experimental study focusing on fatty acid profile. PLoS ONE 2018, 13, e0202794. [Google Scholar] [CrossRef]
- Oliveira, M.M.; Aragon, D.C.; Bomfim, V.S.; Trevilato, T.M.B.; Alves, L.G.; Heck, A.R.; Martinez, F.E.; Camelo, J.S., Jr. Development of a human milk concentrate with human milk lyophilizate for feeding very low birth weight preterm infants: A preclinical experimental study. PLoS ONE 2019, 14, e0210999. [Google Scholar] [CrossRef]
- Fernandez, L.; Langa, S.; Martin, V.; Jimenez, E.; Martin, R.; Rodriguez, J.M. The microbiota of human milk in healthy women. Cell Mol. Biol. (Noisy-le-Grand) 2013, 59, 31–42. [Google Scholar]
- Bowen, A.; Wiesenfeld, H.C.; Kloesz, J.L.; Pasculle, A.W.; Nowalk, A.J.; Brink, L.; Elliot, E.; Martin, H.; Tarr, C.L. Notes from the Field: Cronobacter sakazakii Infection Associated with Feeding Extrinsically Contaminated Expressed Human Milk to a Premature Infant—Pennsylvania, 2016. MMWR Morb. Mortal Wkly. Rep. 2017, 66, 761–762. [Google Scholar] [CrossRef]
- Adjide, C.C.; Leke, A.; Mullie, C. Bacillus cereus contamination of pasteurized human milk donations: Frequency, origin, seasonal distribution, molecular typing of strains and proposed corrective/preventive actions. J. Matern. Fetal Neonatal Med. 2020, 1–8. [Google Scholar] [CrossRef]
- Silvestre, D.; Ruiz, P.; Martinez-Costa, C.; Plaza, A.; Lopez, M.C. Effect of pasteurization on the bactericidal capacity of human milk. J. Hum. Lact. 2008, 24, 371–376. [Google Scholar] [CrossRef] [PubMed]
- Terpstra, F.G.; Rechtman, D.J.; Lee, M.L.; Hoeij, K.V.; Berg, H.; Van Engelenberg, F.A.; Van’t Wout, A.B. Antimicrobial and antiviral effect of high-temperature short-time (HTST) pasteurization applied to human milk. Breastfeed. Med. 2007, 2, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Christen, L.; Lai, C.T.; Hartmann, B.; Hartmann, P.E.; Geddes, D.T. The effect of UV-C pasteurization on bacteriostatic properties and immunological proteins of donor human milk. PLoS ONE 2013, 8, e85867. [Google Scholar] [CrossRef] [PubMed]
- Archacka, M.; Bialas, W.; Dembczynski, R.; Olejnik, A.; Sip, A.; Szymanowska, D.; Celinska, E.; Jankowski, T.; Olejnik, A.; Rogodzinska, M. Method of preservation and type of protective agent strongly influence probiotic properties of Lactococcus lactis: A complete process of probiotic preparation manufacture and use. Food Chem. 2019, 274, 733–742. [Google Scholar] [CrossRef]
- Wesolowska, A.; Brys, J.; Barbarska, O.; Strom, K.; Szymanska-Majchrzak, J.; Karzel, K.; Pawlikowska, E.; Zielinska, M.A.; Hamulka, J.; Oledzka, G. Lipid Profile, Lipase Bioactivity, and Lipophilic Antioxidant Content in High Pressure Processed Donor Human Milk. Nutrients 2019, 11, 1972. [Google Scholar] [CrossRef]
- Viazis, S.; Farkas, B.E.; Jaykus, L.A. Inactivation of bacterial pathogens in human milk by high-pressure processing. J. Food Prot. 2008, 71, 109–118. [Google Scholar] [CrossRef]
- Permanyer, M.; Castellote, C.; Ramirez-Santana, C.; Audi, C.; Perez-Cano, F.J.; Castell, M.; Lopez-Sabater, M.C.; Franch, A. Maintenance of breast milk Immunoglobulin A after high-pressure processing. J. Dairy Sci. 2010, 93, 877–883. [Google Scholar] [CrossRef] [PubMed]
- Shenker, N.; Virtual Collaborative Network of Human Milk Banks and Associations. Maintaining safety and service provision in human milk banking: A call to action in response to the COVID-19 pandemic. Lancet Child. Adolesc. Health 2020, 4, 484–485. [Google Scholar] [CrossRef]
- Moro, G.E.; Bertino, E. Breastfeeding, Human Milk Collection and Containers, and Human Milk Banking: Hot Topics During the COVID-19 Pandemic. J. Hum. Lact. 2020, 890334420934391. [Google Scholar] [CrossRef]
- Marinelli, K.A. International Perspectives Concerning Donor Milk Banking During the SARS-CoV-2 (COVID-19) Pandemic. J. Hum. Lact. 2020. [Google Scholar] [CrossRef] [PubMed]
Genus | IC 1 | HPP | HPP + Lyo 0 | HPP + Lyo 3 | HPP + Lyo 6 | IE 2 | %RG 3 |
---|---|---|---|---|---|---|---|
Staphylococcus aureus | 6.83 ± 0.03 | 0 | 0 | 0 | 0 | 6.83 | 100% |
Escherichia coli | 7.07 ± 0.13 | 0 | 0 | 0 | 0 | 7.07 | 100% |
Listeria monocytogenes | 7.91 ± 0.04 | 0 | 0 | 0 | 0 | 7.91 | 100% |
Bacillus cereus | 5.3 ± 0.08 | 0 | 0 | 0 | 0 | 5.3 | 100% |
Cronobacter sakazakii | 5.9 ± 0.24 | 0 | 0 | 0 | 0 | 5.9 | 100% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jarzynka, S.; Strom, K.; Barbarska, O.; Pawlikowska, E.; Minkiewicz-Zochniak, A.; Rosiak, E.; Oledzka, G.; Wesolowska, A. Combination of High-Pressure Processing and Freeze-Drying as the Most Effective Techniques in Maintaining Biological Values and Microbiological Safety of Donor Milk. Int. J. Environ. Res. Public Health 2021, 18, 2147. https://doi.org/10.3390/ijerph18042147
Jarzynka S, Strom K, Barbarska O, Pawlikowska E, Minkiewicz-Zochniak A, Rosiak E, Oledzka G, Wesolowska A. Combination of High-Pressure Processing and Freeze-Drying as the Most Effective Techniques in Maintaining Biological Values and Microbiological Safety of Donor Milk. International Journal of Environmental Research and Public Health. 2021; 18(4):2147. https://doi.org/10.3390/ijerph18042147
Chicago/Turabian StyleJarzynka, Sylwia, Kamila Strom, Olga Barbarska, Emilia Pawlikowska, Anna Minkiewicz-Zochniak, Elzbieta Rosiak, Gabriela Oledzka, and Aleksandra Wesolowska. 2021. "Combination of High-Pressure Processing and Freeze-Drying as the Most Effective Techniques in Maintaining Biological Values and Microbiological Safety of Donor Milk" International Journal of Environmental Research and Public Health 18, no. 4: 2147. https://doi.org/10.3390/ijerph18042147
APA StyleJarzynka, S., Strom, K., Barbarska, O., Pawlikowska, E., Minkiewicz-Zochniak, A., Rosiak, E., Oledzka, G., & Wesolowska, A. (2021). Combination of High-Pressure Processing and Freeze-Drying as the Most Effective Techniques in Maintaining Biological Values and Microbiological Safety of Donor Milk. International Journal of Environmental Research and Public Health, 18(4), 2147. https://doi.org/10.3390/ijerph18042147