Mental Health Outreach via Supportive Text Messages during the COVID-19 Pandemic: Improved Mental Health and Reduced Suicidal Ideation after Six Weeks in Subscribers of Text4Hope Compared to a Control Population
Abstract
:1. Introduction
- When bad things happen that we can’t control, we often focus on the things we can’t change. Focus on what you can control; what can you do to help yourself (or someone else) today?
- Put yourself on a media diet. It’s important to stay informed, but only check the news and social media intermittently, rather than continuously.
- Advocate for your needs using assertiveness. Assertiveness is being respectful to you and the other person. Be direct, non-aggressive, and specific with your request.
2. Materials and Methods
3. Recruitment
4. Outcome Measures
5. Hypothesis
6. Sample Size Considerations
7. Analysis
8. Results
9. Logistic Regression
10. Discussion
11. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. WHO Director-General’s Opening Remarks at the Media Briefing on COVID-19—11 March. Available online: https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020 (accessed on 29 September 2020).
- World Health Organization. WHO Coronavirus Disease (COVID-19) Dashboard. Available online: https://covid19.who.int/ (accessed on 29 September 2020).
- Chen, J. Pathogenicity and transmissibility of 2019-nCoV—A quick overview and comparison with other emerging viruses. Microbes Infect. 2020, 22, 69–71. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Timeline of WHO’s Response to COVID-19. Available online: https://www.who.int/news-room/detail/29-06-2020-covidtimeline (accessed on 6 August 2020).
- Pappa, S.; Ntella, V.; Giannakas, T.; Giannakoulis, V.G.; Papoutsi, E.; Katsaounou, P. Prevalence of depression, anxiety, and insomnia among healthcare workers during the COVID-19 pandemic: A systematic review and meta-analysis. Brain. Behav. Immun. 2020, 88, 901–907. [Google Scholar] [CrossRef]
- Wang, C.; Pan, R.; Wan, X.; Tan, Y.; Xu, L.; Ho, C.S.; Ho, R.C. Immediate psychological responses and associated factors during the initial stage of the 2019 coronavirus disease (COVID-19) epidemic among the general population in China. Int. J. Environ. Res. Public Health 2020, 17, 1729. [Google Scholar] [CrossRef] [Green Version]
- Thomas, R.K.; Suleman, R.; Mackay, M.; Hayer, L.; Singh, M.; Correll, C.U.; Dursun, S. Adapting to the impact of COVID-19 on mental health: An international perspective. J. Psychiatry Neurosci. 2020, 45, 229–233. [Google Scholar] [CrossRef] [PubMed]
- Agyapong, V. Mobile phone text message interventions in psychiatry—What are the possibilities? Curr. Psychiatry Rev. 2011, 7, 50–56. [Google Scholar] [CrossRef]
- Government of Canada. Canadian Radio-Television and Telecommunications Commission. Communications Monitoring Report. 2018. Available online: https://crtc.gc.ca/eng/publications/reports/policymonitoring/2018/cmr1.htm#s10i (accessed on 5 August 2020).
- Agyapong, V.I.O.; Mrklas, K.; Juhás, M.; Omeje, J.; Ohinmaa, A.; Dursun, S.M.; Greenshaw, A.J. Cross-sectional survey evaluating Text4Mood: Mobile health program to reduce psychological treatment gap in mental healthcare in Alberta through daily supportive text messages. BMC Psychiatry 2016, 16, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Pearson, H. Coronavirus: New Texting Initiative Gives Albertans Mental Health Support. Global News. 2020. Available online: https://globalnews.ca/news/6722244/coronavirus-alberta-mental-health-support-texts/ (accessed on 26 December 2020).
- Agyapong, V.I.; Ahern, S.; McLoughlin, D.M.; Farren, C.K. Supportive text messaging for depression and comorbid alcohol use disorder: Single-blind randomised trial. J. Affect. Disord. 2012, 141, 168–176. [Google Scholar] [CrossRef]
- O’Reilly, H.; Hagerty, A.; O’Donnell, S.; Farrell, A.; Hartnett, D.; Murphy, E.; Kehoe, E.; Agyapong, V.; McLoughlin, D.M.; Farren, C. Alcohol use disorder and comorbid depression: A randomized controlled trial investigating the effectiveness of supportive text messages in aiding recovery. Alcohol Alcohol. 2019, 54, 551–558. [Google Scholar] [CrossRef] [PubMed]
- Agyapong, V.I.O.; Juhás, M.; Ohinmaa, A.; Omeje, J.; Mrklas, K.; Suen, V.Y.M.; Dursun, S.M.; Greenshaw, A.J. Randomized controlled pilot trial of supportive text messages for patients with depression. BMC Psychiatry 2017, 17, 286. [Google Scholar] [CrossRef] [Green Version]
- Agyapong, V.I.O.; Milnes, J.; McLoughlin, D.M.; Farren, C.K. Perception of patients with alcohol use disorder and comorbid depression about the usefulness of supportive text messages. Technol. Health Care 2013, 21, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Alberta Health Services. Text4Hope Supporting Mental Health & Wellness in a Time of Stress & Isolation. 2020. Available online: https://www.albertahealthservices.ca/topics/Page17019.aspx (accessed on 6 August 2020).
- Agyapong, V.I.O.; Hrabok, M.; Vuong, W.; Gusnowski, A.; Shalaby, R.; Mrklas, K.; Li, D.; Urichuck, L.; Snaterse, M.; Surood, S.; et al. Closing the psychological treatment gap during the COVID-19 pandemic with a supportive text messaging program: Protocol for implementation and evaluation. JMIR Res. Protoc. 2020, 9, e19292. [Google Scholar] [CrossRef]
- Agyapong, V.I.O. Coronavirus disease 2019 pandemic: Health system and community response to a text message (Text4Hope) program supporting mental health in Alberta. Disaster Med. Public Health Prep. 2020, 14, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Agyapong, V.I.O.; Hrabok, M.; Vuong, W.; Shalaby, R.; Noble, J.M.; Gusnowski, A.; Mrklas, K.; Li, D.; Urichuk, L.; Snaterse, M.; et al. Mental health response to the COVID-19 pandemic: Effectiveness of a daily supportive text message (Text4Hope) program at six weeks in reducing stress, anxiety, and depression in subscribers. JMIR Ment. Health 2020, 7, e2242. [Google Scholar] [CrossRef] [PubMed]
- Agyapong, V.I.O.; Hrabok, M.; Shalaby, R.; Vuong, W.; Noble, J.M.; Gusnowski, A.; Mrklas, K.; Li, D.; Urichuck, L.; Snaterse, M.; et al. Text4Hope: Receiving daily supportive text messages for three months during the COVID-19 pandemic reduces stress, anxiety, and depression. Disaster Med. Public Health Prep. 2021, 1–15. [Google Scholar] [CrossRef]
- Cohen, S.; Kamarck, T.; Mermelstein, R. A global measure of perceived stress. J. Health Soc. Behav. 1983, 24, 385–396. [Google Scholar] [CrossRef]
- Spitzer, R.L.; Kroenke, K.; Williams, J.B.; Löwe, B. A brief measure for assessing generalized anxiety disorder: The GAD-7. Arch. Intern. Med. 2006, 166, 1092–1097. [Google Scholar] [CrossRef] [Green Version]
- Kroenke, K.; Spitzer, R.L.; Williams, J.B. The PHQ-9: Validity of a brief depression severity measure. J. Gen. Intern. Med. 2001, 16, 606–613. [Google Scholar] [CrossRef]
- IBM Corp. Statistical Package for Social Sciences (SPSS), Version 26, Armonk, NY, USA. Available online: https://www.ibm.com/support/pages/release-notes-ibm%C2%AE-spss%C2%AE-statistics-260 (accessed on 25 August 2020).
- Dong, E.; Du, H.; Gardner, L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect. Dis. 2020, 20, 533–534. [Google Scholar] [CrossRef]
- Zhong, B.-L.; Luo, W.; Li, H.-M.; Zhang, Q.-Q.; Liu, X.-G.; Li, W.-T.; Li, Y. Knowledge, attitudes, and practices towards COVID-19 among Chinese residents during the rapid rise period of the COVID-19 outbreak: A quick online cross-sectional survey. Int. J. Biol. Sci. 2020, 16, 1745–1752. [Google Scholar] [CrossRef]
- Liu, S.; Yang, L.; Zhang, C.; Xiang, Y.-T.; Liu, Z.; Hu, S.; Zhang, B. Online mental health services in China during the COVID-19 outbreak. Lancet Psychiatry 2020, 7, e17–e18. [Google Scholar] [CrossRef]
- Aguilera, A.; Muñoz, R.F. Text messaging as an adjunct to CBT in low-income populations: A usability and feasibility pilot study. Prof. Psychol. Res. Pract. 2011, 42, 472–478. [Google Scholar] [CrossRef] [Green Version]
- Berrouiguet, S.; Baca-García, E.; Brandt, S.A.; Walter, M.; Courtet, P. Fundamentals for future mobile-health (mHealth): A systematic review of mobile phone and web-based text messaging in mental health. J. Med. Internet Res. 2016, 18, e135. [Google Scholar] [CrossRef]
- Agyapong, V.I.; Juhás, M.; Mrklas, K.; Hrabok, M.; Omeje, J.; Gladue, I.; Kozak, J.; Leslie, M.; Chue, P.; Greenshaw, A.J. Randomized controlled pilot trial of supportive text messaging for alcohol use disorder patients. J. Subst. Abus. Treat. 2018, 94, 74–80. [Google Scholar] [CrossRef]
- Tofighi, B.; Abrantes, A.; Stein, M.D. The role of technology-based interventions for substance use disorders in primary care: A review of the literature. Med. Clin. N. Am. 2018, 102, 715–731. [Google Scholar] [CrossRef]
- Pramana, G.; Parmanto, B.; Kendall, P.C.; Silk, J.S. The SmartCAT: An m-Health platform for ecological momentary intervention in child anxiety treatment. Telemed. e-Health 2014, 20, 419–427. [Google Scholar] [CrossRef] [Green Version]
- Howell, A.N.; Rheingold, A.A.; Uhde, T.W.; Guille, C. Web-based CBT for the prevention of anxiety symptoms among medical and health science graduate students. Cogn. Behav. Ther. 2018, 48, 385–405. [Google Scholar] [CrossRef] [PubMed]
- Brabyn, S.; Araya, R.; Barkham, M.; Bower, P.; Cooper, C.; Duarte, A.; Kessler, D.; Knowles, S.; Lovell, K.; Littlewood, E.; et al. The second randomised evaluation of the effectiveness, cost-effectiveness and acceptability of computerised therapy (REEACT-2) trial: Does the provision of telephone support enhance the effectiveness of computer-delivered cognitive behaviour therapy? A randomised controlled trial. Health Technol. Assess. 2016, 20, 1–64. [Google Scholar] [CrossRef]
- Duffy, L.; Lewis, G.; Ades, A.; Araya, R.; Bone, J.; Brabyn, S.; Button, K.; Churchill, R.; Croudace, T.; Derrick, C.; et al. Antidepressant treatment with sertraline for adults with depressive symptoms in primary care: The PANDA research programme including RCT. Program. Grants Appl. Res. 2019, 7, 1–108. [Google Scholar] [CrossRef] [PubMed]
- Shirotsuki, K.; Uehara, S.; Adachi, S.; Nakao, M. Internet-based cognitive behavior therapy for stress and anxiety among young japanese adults: A preliminary study. Psych 2019, 1, 353–363. [Google Scholar] [CrossRef] [Green Version]
- Patterson, P.D.; Moore, C.G.; Guyette, F.X.; Doman, J.M.; Weaver, M.D.; Sequeira, D.J.; Werman, H.A.; Swanson, D.; Hostler, D.; Lynch, J.; et al. Real-time fatigue mitigation with air-medical personnel: The SleepTrackTXT2 randomized trial. Prehospital Emerg. Care 2019, 23, 465–478. [Google Scholar] [CrossRef] [PubMed]
- Czyz, E.K.; Arango, A.; Healy, N.; King, C.A.; Walton, M. Augmenting safety planning with text messaging support for adolescents at elevated suicide risk: Development and acceptability study. JMIR Ment. Health 2020, 7, e17345. [Google Scholar] [CrossRef]
- Torous, J.; Staples, P.; Shanahan, M.; Lin, C.; Peck, P.; Keshavan, M.; Onnela, J.-P. Utilizing a personal smartphone custom app to assess the patient health questionnaire-9 (PHQ-9) depressive symptoms in patients with major depressive disorder. JMIR Ment. Health 2015, 2, e8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spek, V.; Cuijpers, P.; Nyklícek, I.; Riper, H.; Keyzer, J.; Pop, V. Internet-based cognitive behaviour therapy for symptoms of depression and anxiety: A meta-analysis. Psychol. Med. 2006, 37, 319–328. [Google Scholar] [CrossRef]
- Baumel, A.; Muench, F.; Edan, S.; Kane, J.M. Objective user engagement with mental health apps: Systematic search and panel-based usage analysis. J. Med. Internet Res. 2019, 21, e14567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nwachukwu, I.; Nkire, N.; Shalaby, R.; Hrabok, M.; Vuong, W.; Gusnowski, A.; Surood, S.; Urichuk, L.; Greenshaw, A.J.; Agyapong, V.I. COVID-19 pandemic: Age-related differences in measures of stress, anxiety and depression in Canada. Int. J. Environ. Res. Public Health 2020, 17, 6366. [Google Scholar] [CrossRef]
Demographic Characteristics | Intervention Group (IG) n = 2011 * | Control Group (CG) n = 756 * | p-Value ** | Chi-Square | Degrees of Freedom (df) | Total n (%) |
---|---|---|---|---|---|---|
Gender | ||||||
Male | 214 (10.7) | 72 (10.9) | 0.96 | 0.082 | 2 | 286 (10.7) |
Female | 1767 (88.1) | 580 (87.7) | 2347 (88.0) | |||
Other Gender | 25 (1.2) | 9 (1.4) | 34 (1.3) | |||
Age (Years) | ||||||
≤25 | 173 (8.6) | 92 (14.2) | 265 (10.0) | |||
26–40 | 554 (27.6) | 191 (29.5) | <0.001 | 20.39 | 3 | 745 (28.1) |
41–60 | 1002 (49.9) | 289 (44.6) | 1291 (48.6) | |||
>60 | 278 (13.9) | 76 (11.7) | 354 (13.3) | |||
Ethnicity | ||||||
Caucasian | 1669 (83.6) | 529 (80.6) | 2198 (82.8) | |||
Indigenous | 59 (3.0) | 29 (4.4) | 0.17 | 5.09 | 3 | 88 (3.3) |
Asian | 105 (5.3) | 34 (5.2) | 139 (5.2) | |||
Other | 164 (8.2) | 64 (9.8) | 228 (8.6) | |||
Education | ||||||
Less than High School Diploma | ||||||
High School Diploma | 44 (2.6) | 43 (6.5) | 87 (3.7) | |||
Post-Secondary | 116 (6.9) | 65 (9.8) | <0.001 | 34.06 | 3 | 181 (7.7) |
Other Education | 1512 (89.9) | 542 (82.0) | 2054 (87.7) | |||
10 (0.6) | 11 (1.7) | 21 (0.9) | ||||
Relationship status | ||||||
Married/Cohabiting/Partnered | 1100 (65.4) | 453 (68.5) | 1553 (66.3) | |||
Separated/Divorced | 171 (10.2) | 52 (7.9) | 0.25 | 5.39 | 4 | 223 (9.5) |
Widowed | 41 (2.4) | 10 (1.5) | 51 (2.2) | |||
Single | 354 (21.0) | 138 (20.9) | 492 (21.0) | |||
Other | 17 (1.0) | 8 (1.2) | 25 (1.1) | |||
Employment | ||||||
Employed | 1185 (71.1) | 453 (68.5) | 1638 (70.4) | |||
Unemployed | 203 (12.2) | 52 (7.9) | <0.001 | 186.86 | 4 | 255 (11.0) |
Retired | 173 (10.4) | 10 (1.5) | 183 (7.9) | |||
Student | 80 (4.8) | 138 (20.9) | 218 (9.4) | |||
Other | 26 (1.6) | 8 (1.2) | 34 (1.5) | |||
Housing Status | ||||||
Own Home | 1160 (69.6) | 400 (61.9) | 1560 (67.5) | |||
Living with Family | 150 (9.0) | 88 (13.6) | <0.001 | 18.59 | 3 | 238 (10.3) |
Renting | 343 (20.6) | 147 (22.8) | 490 (21.2) | |||
Other | 13 (0.8) | 11 (1.7) | 24 (1.0) |
n | Mean | Std. Deviation | Std. Error | T | df | p-Value * | Mean Difference (MD) | 95% Confidence Interval of MD | ||
---|---|---|---|---|---|---|---|---|---|---|
PSS Total Score | IG | 1864 | 19.50 | 7.12 | 0.16 | 8.41 | 2472 | <0.001 | 2.82 | 2.17–3.48 |
CG | 610 | 22.32 | 7.41 | 0.30 | ||||||
GAD-7 Total Score | IG | 1704 | 7.55 | 5.31 | 0.13 | 7.70 | 2308 | <0.001 | 2.07 | 1.54–2.60 |
CG | 557 | 9.62 | 6.08 | 0.26 | ||||||
PHQ-9 Total Score | IG | 1738 | 8.60 | 5.98 | 0.14 | 8.33 | 2259 | <0.001 | 2.48 | 1.86–3.10 |
CG | 572 | 11.08 | 6.73 | 0.28 | ||||||
CMH Score | IG | 1700 | 35.64 | 16.94 | 0.41 | 8.77 | 2253 | <0.001 | 7.44 | 5.78–9.12 |
CG | 555 | 43.08 | 18.55 | 0.78 |
Study Arm | ||
---|---|---|
IG n (%) | CG n (%) | |
Perceived Stress | ||
Moderate/High Stress a | 1468 (78.8%) | 537 (88.0%) |
p-value | <0.001 * | |
Effect Size (Phi) | −0.102 | |
Generalized Anxiety Disorder (GAD) | ||
GAD likely b | 535 (31.4%) | 265 (46.5%) |
p-value | <0.001 * | |
Effect Size (Phi) | −0.146 | |
Major Depressive Disorder (MDD) | ||
MDD likely c | 639 (36.8%) | 298 (52.1%) |
p-value | <0.001 * | |
Effect Size (Phi) | −0.135 | |
Suicidal Ideation/Thoughts of Self Harm d | ||
Experienced Suicidal Ideation/Self Harm Thoughts | 293 (16.9%) | 152 (26.6%) |
p-value | <0.001 * | |
Effect Size (Phi) | −0.106 | |
Sleep Disturbances e | ||
Experienced Sleep Disturbances | 1336 (76.9%) | 466 (85.1%) |
p-value | 0.020 | |
Effect Size (Phi) | −0.047 |
Clinical Variables of Interest | p-Value | Odds Ratio | 95% CI for OR | |
---|---|---|---|---|
Lower | Upper | |||
Moderate/High Stressa | <0.001 | 0.56 | 0.41 | 0.75 |
GAD likely b | <0.001 | 0.55 | 0.44 | 0.68 |
MDD likely c | <0.001 | 0.50 | 0.47 | 0.73 |
Experienced Suicidal Ideation/Self Harm Thoughts | <0.001 | 0.59 | 0.45 | 0.77 |
Experienced Sleep Disturbances | 0.150 | 0.77 | 0.60 | 1.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agyapong, V.I.O.; Shalaby, R.; Hrabok, M.; Vuong, W.; Noble, J.M.; Gusnowski, A.; Mrklas, K.; Li, D.; Snaterse, M.; Surood, S.; et al. Mental Health Outreach via Supportive Text Messages during the COVID-19 Pandemic: Improved Mental Health and Reduced Suicidal Ideation after Six Weeks in Subscribers of Text4Hope Compared to a Control Population. Int. J. Environ. Res. Public Health 2021, 18, 2157. https://doi.org/10.3390/ijerph18042157
Agyapong VIO, Shalaby R, Hrabok M, Vuong W, Noble JM, Gusnowski A, Mrklas K, Li D, Snaterse M, Surood S, et al. Mental Health Outreach via Supportive Text Messages during the COVID-19 Pandemic: Improved Mental Health and Reduced Suicidal Ideation after Six Weeks in Subscribers of Text4Hope Compared to a Control Population. International Journal of Environmental Research and Public Health. 2021; 18(4):2157. https://doi.org/10.3390/ijerph18042157
Chicago/Turabian StyleAgyapong, Vincent I. O., Reham Shalaby, Marianne Hrabok, Wesley Vuong, Jasmine M. Noble, April Gusnowski, Kelly Mrklas, Daniel Li, Mark Snaterse, Shireen Surood, and et al. 2021. "Mental Health Outreach via Supportive Text Messages during the COVID-19 Pandemic: Improved Mental Health and Reduced Suicidal Ideation after Six Weeks in Subscribers of Text4Hope Compared to a Control Population" International Journal of Environmental Research and Public Health 18, no. 4: 2157. https://doi.org/10.3390/ijerph18042157
APA StyleAgyapong, V. I. O., Shalaby, R., Hrabok, M., Vuong, W., Noble, J. M., Gusnowski, A., Mrklas, K., Li, D., Snaterse, M., Surood, S., Cao, B., Li, X. -M., Greiner, R., & Greenshaw, A. J. (2021). Mental Health Outreach via Supportive Text Messages during the COVID-19 Pandemic: Improved Mental Health and Reduced Suicidal Ideation after Six Weeks in Subscribers of Text4Hope Compared to a Control Population. International Journal of Environmental Research and Public Health, 18(4), 2157. https://doi.org/10.3390/ijerph18042157