Association of CX3CR1 Gene Polymorphisms with Fractalkine, Fractalkine Receptor, and C-Reactive Protein Levels in Patients with Kidney Failure
Abstract
:1. Introduction
2. Patients and Methods
2.1. Patients
2.2. Methods
2.3. Ethical Approval
2.4. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stevens, P.E.; Levin, A. Evaluation and management of chronic kidney disease: Synopsis of the kidney disease: Improving global outcomes 2012 clinical practice guideline. Ann. Intern. Med. 2013, 158, 825–830. [Google Scholar] [CrossRef] [Green Version]
- Libetta, C.; Sepe, V.; Esposito, P.; Galli, F.; Dal Canton, A. Oxidative stress and inflammation: Implications in uremia and hemodialysis. Clin. Biochem. 2011, 44, 1189–1198. [Google Scholar] [CrossRef] [PubMed]
- Stenvinkel, P. Inflammation in end-stage renal disease: The hidden enemy. Nephrology (Carlton) 2006, 11, 36–41. [Google Scholar] [CrossRef] [PubMed]
- Gansevoort, R.T.; Correa-Rotter, R.; Hemmelgarn, B.R.; Jafar, T.H.; Heerspink, H.J.L.; Mann, J.F.; Matsushita, K.; Wen, C.P. Chronic kidney disease and cardiovascular risk: Epidemiology, mechanisms, and prevention. Lancet 2013, 382, 339–352. [Google Scholar] [CrossRef]
- Vianna, H.R.; Soares, C.M.B.M.; Tavares, M.S.; Teixeira, M.M.; Silva, A.C.S. Inflammation in chronic kidney disease: The role of cytokines. Bras. J. Nephrol. 2011, 33, 351–364. (In Portugese) [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hughes, C.E.; Nibbs, R.J. A guide to chemokines and their receptors. FEBS J. 2018, 285, 2944–2971. [Google Scholar] [CrossRef]
- Owłasiuk, P.; Zajkowska, J.M.; Pietruczuk, M.; Pancewicz, S.A.; Hermanowska-Szpakowicz, T. Fractalkine—Structure, functions and biological activity. Polski Merkuriusz Lekarski 2009, 153, 253–257. (In Polish) [Google Scholar]
- Mizuno, T.; Kawanokuchi, J.; Numata, K.; Suzumura, A. Production and neuroprotective functions of fractalkine in the central nervous system. Brain Res. 2003, 979, 65–70. [Google Scholar] [CrossRef]
- Liu, H.; Jiang, D. Fractalkine/CX3CR1 and atherosclerosis. Clin. Chim. Acta 2011, 412, 1180–1186. [Google Scholar] [CrossRef]
- Kim, K.W.; Vallon-Eberhard, A.; Zigmond, E.; Farache, J.; Shezen, E.; Shakhar, G.; Ludwig, A.; Lira, S.A.; Jung, S. In vivo structure/function and expression analysis of the CX3C chemokine fractalkine. Blood 2011, 118, e156–e167. [Google Scholar] [CrossRef] [Green Version]
- Imai, T.; Hieshima, K.; Haskell, C.; Baba, M.; Nagira, M.; Nishimura, M.; Kakizaki, M.; Takagi, S.; Nomiyama, H.; Schall, T.J.; et al. Identification and molecular characterization of fractalkine receptor CX3CR1, which mediates both leukocyte migration and adhesion. Cell 1997, 91, 521–530. [Google Scholar] [CrossRef] [Green Version]
- Borkar, M.; Tripathi, G.; Sharma, R.K.; Sankhwar, S.N.; Agrawal, S. Chemokine (CCR) and fractalkine (CX3CR) receptors and end stage renal disease. Inflamm. Res. 2011, 60, 399–407. [Google Scholar] [CrossRef] [PubMed]
- Umehara, H.; Goda, S.; Imai, T.; Nagano, Y.; Minami, Y.; Tanaka, Y.; Okazaki, T.; Bloom, E.T.; Domae, N. Fractalkine, a CX3C-chemokine, functions predominantly as an adhesion molecule in monocytic cell line THP-1. Immunol. Cell Biol. 2001, 79, 298–302. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.F.; Tsao, Y.T.; Hou, C.H. Fractalkine/CX3CL1 induced intercellular adhesion molecule-1-dependent tumor metastasis through the CX3CR1/PI3K/Akt/NF-κB pathway in human osteosarcoma. Oncotarget 2016, 8, 54136–54148. [Google Scholar] [CrossRef]
- Lauro, C.; Catalano, M.; Trettel, F.; Limatola, C. Fractalkine in the nervous system: Neuroprotective or neurotoxic molecule? Ann. N. Y. Acad. Sci. 2015, 1351, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Bagci, B.; Bagci, G.; Huzmeli, C.; Sezgin, I.; Ozdemir, O. Associations of fractalkine receptor (CX3CR1) and CCR5 gene variants with hypertension, diabetes and atherosclerosis in chronic renal failure patients undergoing hemodialysis. Int. Urol. Nephrol. 2016, 48, 1163–1170. [Google Scholar] [CrossRef]
- Amdur, R.L.; Feldman, H.I.; Gupta, J.; Yang, W.; Kanetsky, P.; Shlipak, M.; Rahman, M.; Lash, J.P.; Townsend, R.R.; Ojo, A.; et al. Inflammation and progression of CKD: The CRIC study. Clin. J. Am. Soc. Nephrol. 2016, 11, 1546–1556. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.Y.; Yoo, T.H.; Hwang, Y.; Lee, G.H.; Kim, B.; Jang, J.; Yu, H.T.; Kim, M.C.; Cho, J.Y.; Lee, C.J.; et al. Indoxyl sulfate (IS)-mediated immune dysfunction provokes endothelial damage in patients with end-stage renal disease (ESRD). Sci. Rep. 2017, 7, 3057. [Google Scholar] [CrossRef] [Green Version]
- Tripepi, G.; Mallamaci, F.; Zoccali, C. Inflammation markers, adhesion molecules, and all-cause and cardiovascular mortality in patients with ESRD: Searching for the best risk marker by multivariate modeling. J. Am. Soc. Nephrol. 2005, 16 (Suppl. S1), S83–S88. [Google Scholar] [CrossRef] [Green Version]
- Zyga, S.; Christopoulou, G.; Malliarou, M. Malnutrition-inflammation-atherosclerosis syndrome in patients with end-stage renal disease. J. Ren. Care 2011, 37, 12–15. [Google Scholar] [CrossRef]
- Shlipak, M.G.; Fried, L.F.; Crump, C.; Bleyer, A.J.; Manolio, T.A.; Tracy, R.P.; Furberg, C.D.; Psaty, B.M. Elevations of inflammatory and procoagulant biomarkers in elderly persons with renal insufficiency. Circulation 2003, 107, 87–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muntner, P.; Hamm, L.L.; Kusek, J.W.; Chen, J.; Whelton, P.K.; He, J. The prevalence of nontraditional risk factors for coronary heart disease in patients with chronic kidney disease. Ann. Intern. Med. 2004, 140, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Knight, E.L.; Rimm, E.B.; Pai, J.K.; Rexrode, K.M.; Cannuscio, C.C.; Manson, J.E.; Stampfer, M.J.; Curhan, G.C. Kidney dysfunction, inflammation, and coronary events: A prospective study. J. Am. Soc. Nephrol. 2004, 15, 1897–1903. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Yin, R.X.; Lin, Q.Z.; Guo, T.; Shi, G.Y.; Sun, J.Q.; Shen, S.W.; Li, Q. Two polymorphisms in the fractalkine receptor CX3CR1 gene influence the development of atherosclerosis: A meta-analysis. Dis. Markers 2014, 2014, 913678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moatti, D.; Faure, S.; Fumeron, F.; Amara, M.E.W.; Seknadji, P.; McDermott, D.H.; Debré, P.; Aumont, M.C.; Murphy, P.M.; de Prost, D.; et al. Polymorphism in the fractalkine receptor CX3CR1 as a genetic risk factor for coronary artery disease. Blood 2001, 97, 1925–1928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yadav, A.K.; Kumar, V.; Jha, V. Association of chemokine receptor CX3CR1 V249I and T280M polymorphisms with chronic kidney disease. Indian J. Nephrol. 2016, 26, 275–279. [Google Scholar] [CrossRef]
Parameter | Patients | Controls | p-Value |
---|---|---|---|
Age (years) | 65.65 +/− 15.47 | 26.1 +/− 5.86 | <0.05 |
Weight (kg) | 71.75 +/−16.59 | 71.46 +/− 9.76 | NS |
ALT (U/L) | 10.44 +/− 6.97 | 18.76 +/− 11.19 | <0.05 |
AST (U/L) | 15.32 +/− 10.02 | 20.72 +/− 7.23 | <0.05 |
Total cholesterol (mmol/L) | 4.21 +/− 1.2 | 4.61 +/− 0.86 | 0.02 |
Creatinine (µmol/L) | 571.44 +/277.67 | 74.56 +/−13.13 | <0.05 |
Estimated glomerular filtration rate (eGFR) (mL/min/1.73m2) | 10.44 +/− 5.49 | 114 +/− 24.78 | <0.05 |
Glucose (mg/dL) | 113.8 +/− 61.67 | 85.81 +/− 8.29 | <0.05 |
Triglycerides (mmol/L) | 1.66 +/− 1.01 | 0.89 +/− 0.37 | <0.05 |
Genotypes of CX3CR1 Polymorphisms | Patients (n = 106) | Controls (n = 92) | p-Value | |
---|---|---|---|---|
rs3732378 | GG | 69 (65.09) | 57 (61.71) | NS |
AG | 31 (29.25) | 29 (31.91) | ||
AA | 6 (5.66) | 6 (6.38) | ||
rs3732379 | CC | 65 (61.32) | 40 (43.98) | NS |
CT | 32 (30.18) | 43 (46.74) | ||
TT | 9 (8.5) | 9 (9.78) |
Parameter | Patients (n = 106) | Controls (n = 92) | p-Value |
---|---|---|---|
CRP, mg/L | 3.89 (2.78) | 1.09 (1.39) | <0.05 |
CRP in women, mg/L | 3.55 (2.58) | 1.14 (1.42) | <0.05 |
CRP in men, mg/L | 4.15 (3.48) | 0.98 (1.08) | <0.05 |
CX3CL1, ng/L | 0.91 (0.65) | 0.77 (0.48) | NS |
CX3CL1 in women, ng/L | 1.06 (1.13) | 0.87 (0.66) | NS |
CX3CL1 in men, ng/L | 0.8 (0.54) | 0.58 (0.41) | NS |
CX3CR1, ng/L | 0.17 (0.11) | 0.11 (0.09) | <0.05 |
CX3CR1 in women, ng/L | 0.19 (0.13) | 0.11 (0.08) | <0.05 |
CX3CR1 in men, ng/L | 0.16 (0.11) | 0.09 (0.08) | <0.05 |
Genotypes of CX3CR1 Polymorphisms | Mean CRP Levels, mg/L | p-Value | ||
---|---|---|---|---|
Patients | Controls | |||
rs3732378 | AA | 3.73 (2.66) | 1.07 (1.37) | <0.05 |
AG | 3.91 (2.84) | 1.12 (1.45) | <0.05 | |
GG | 3.9 (2.82) | 1.08 (1.38) | <0.05 | |
rs3732379 | CC | 3.91 (2.83) | 1.13 (1.47) | <0.05 |
CT | 3.94 (2.86) | 1.05 (1.33) | <0.05 | |
TT | 3.5 (2.43) | 1.08 (1.37) | <0.05 |
Genotypes of CX3CR1 Polymorphisms | Mean CX3CL1 Levels, ng/L | p-Value | ||
---|---|---|---|---|
Cases | Controls | |||
rs3732378 | AA | 0.66 (0.58) | 0.59 (0.51) | NS |
AG | 0.73 (0.65) | 0.83 (0.69) | NS | |
GG | 1.01 (1.04) | 0.76 (0.78) | <0.05 | |
rs3732379 | CC | 1.03 (1.05) | 0.69 (0.74) | <0.05 |
CT | 0.77 (0.75) | 0.8 (0.79) | NS | |
TT | 0.76 (0.82) | 1.07 (1.02) | <0.05 |
Genotypes of CX3CR1 Polymorphisms | Mean CX3CR1 Levels, ng/L | p-Value | ||
---|---|---|---|---|
Cases | Controls | |||
rs3732378 | AA | 0.22 (0.19) | 0.09 (0.08) | NS |
AG | 0.15 (0.12) | 0.11 (0.09) | <0.05 | |
GG | 0.18 (0.16) | 0.11 (0.09) | <0.05 | |
rs3732379 | CC | 0.19 (0.17) | 0.11 (0.1) | <0.05 |
CT | 0.15 (0.12) | 0.16 (0.14) | NS | |
TT | 0.21(0.19) | 0.1 (0.09) | <0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Woźny, Ł.; Żywiec, J.; Gosek, K.; Kuźniewicz, R.; Górczyńska-Kosiorz, S.; Trautsolt, W.; Śnit, M.; Grzeszczak, W. Association of CX3CR1 Gene Polymorphisms with Fractalkine, Fractalkine Receptor, and C-Reactive Protein Levels in Patients with Kidney Failure. Int. J. Environ. Res. Public Health 2021, 18, 2202. https://doi.org/10.3390/ijerph18042202
Woźny Ł, Żywiec J, Gosek K, Kuźniewicz R, Górczyńska-Kosiorz S, Trautsolt W, Śnit M, Grzeszczak W. Association of CX3CR1 Gene Polymorphisms with Fractalkine, Fractalkine Receptor, and C-Reactive Protein Levels in Patients with Kidney Failure. International Journal of Environmental Research and Public Health. 2021; 18(4):2202. https://doi.org/10.3390/ijerph18042202
Chicago/Turabian StyleWoźny, Łukasz, Joanna Żywiec, Katarzyna Gosek, Roman Kuźniewicz, Sylwia Górczyńska-Kosiorz, Wanda Trautsolt, Mirosław Śnit, and Władysław Grzeszczak. 2021. "Association of CX3CR1 Gene Polymorphisms with Fractalkine, Fractalkine Receptor, and C-Reactive Protein Levels in Patients with Kidney Failure" International Journal of Environmental Research and Public Health 18, no. 4: 2202. https://doi.org/10.3390/ijerph18042202
APA StyleWoźny, Ł., Żywiec, J., Gosek, K., Kuźniewicz, R., Górczyńska-Kosiorz, S., Trautsolt, W., Śnit, M., & Grzeszczak, W. (2021). Association of CX3CR1 Gene Polymorphisms with Fractalkine, Fractalkine Receptor, and C-Reactive Protein Levels in Patients with Kidney Failure. International Journal of Environmental Research and Public Health, 18(4), 2202. https://doi.org/10.3390/ijerph18042202