Bioremediation of Total Petroleum Hydrocarbons (TPH) by Bioaugmentation and Biostimulation in Water with Floating Oil Spill Containment Booms as Bioreactor Basin
Abstract
:1. Introduction
1.1. Petroleum Hydrocarbons
1.2. Sources of Petroleum Hydrocarbons Intrusion
1.3. Properties of Crude Oil
1.4. Toxicity of Petroleum Hydrocarbons
1.4.1. Effects on Marine Organisms
1.4.2. Impacts on Humans
2. Petroleum Hydrocarbon Treatments
3. Bioremediation
4. Bioremediation Methods
4.1. Bioaugmentation
4.2. Biostimulation
4.3. Bioaugmentation-Biostimulation
4.4. Natural Attenuation versus Bioaugmentation versus Biostimulation versus Bioaugmentation-Biostimulation
5. Conclusions
6. Future Scope
- Nutrients are instantly diluted in nearly background quantities which do not bind in fresh or weathered hydrocarbons/oil, if nutrients are added to flowing water. It is often difficult to collect or add nutrient substrates to oil spills, in windy and otherwise adverse weather conditions, which cause waves.
- In an oil spill pollution environment containing toxic oil, it is difficult to use additional nutrients for micro-organisms which eat hydrocarbons. From the beginning, the toxicity of oil damages and/or kills several species native to the spill area. The nutrients are typically prohibited from improving the other indigenous microbes because of the toxicity of oil.
- However, it is a major problem to supply adequate amounts of deficit nutrients i.e., nitrogen and phosphorous, in an effort to increase the population of petroleum hydrocarbons degrading bacteria without raising the concentrations of nitrogen and phosphorous to the amount that it is harmful to marine water life. The method of improving indigenous organisms using nutrients and fertilizers is uncertain and sometimes takes a long time, with the hope that there will be sufficient secretion of biosurfactants, metabolites and enzymes to catalyze the bioremediation process. The greatest challenge to the respondent is to create the right conditions for optimal biodegradation, i.e., to keep sufficient nitrogen and phosphorus concentrations in seawater always.
- Normally, after conventional mechanical clean-ups, bioremediation is used as a polishing method. It takes weeks to complete the clean-up, which is quite slow. This can be very cost-efficient if done correctly, although a detailed economic analysis has not been carried out to date.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Garrison, T. Essentials of Oceanography; Brooks/Cole, Cengage Learning: Belmont, CA, USA, 2012. [Google Scholar]
- Abeyratne, R. Aviation and Climate Change: In Search of a Global Market Based Measure; Springer International Publishing: Montreal, QC, Canada, 2014. [Google Scholar] [CrossRef] [Green Version]
- Soma, K.; Ramos, J.; Bergh, Ø.; Schulze, T.; Van Oostenbrugge, H.; Van Duijn, A.P.; Kopke, K.; Stelzenmüller, V.; Grati, F.; Mäkinen, T.; et al. The “mapping out” approach: Effectiveness of marine spatial management options in European coastal waters. ICES J. Mar. Sci. 2013, 71, 2630–2642. [Google Scholar] [CrossRef] [Green Version]
- Weis, J.S. Marine Pollution: What Everyone Needs to Know; Oxford University Press: New York, NY, USA, 2015. [Google Scholar]
- Rogers, A.; Laffoley, D.d.A. International Earth System Expert Workshop on Ocean Stresses and Impacts: Summary Workshop Report; 143798780X; DIANE Publishing, IPSO Oxford: Darby, PA, USA, 2011; p. 21. [Google Scholar]
- Bhatnagar, S.; Kumari, R. Bioremediation: A sustainable tool for environmental management—A review. Annu. Res. Rev. Biol. 2013, 3, 974–993. [Google Scholar]
- Ławniczak, Ł.; Woźniak-Karczewska, M.; Loibner, A.P.; Heipieper, H.J.; Chrzanowski, Ł. Microbial Degradation of Hydrocarbons—Basic Principles for Bioremediation: A Review. Molecules 2020, 25, 856. [Google Scholar] [CrossRef] [Green Version]
- Varjani, S.J. Microbial degradation of petroleum hydrocarbons. Bioresour. Technol. 2017, 223, 277–286. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Matchinski, E.J.; Chen, B.; Ye, X.; Jing, L.; Lee, K. Marine Oil Spills—Oil Pollution, Sources and Effects. In World Seas: An Environmental Evaluation; Sheppard, C., Ed.; Elsevier: London, UK, 2019; pp. 391–406. [Google Scholar]
- Al-Khalid, T.; El-Naas, M.H. Organic Contaminants in Refinery Wastewater: Characterization and Novel Approaches for Biotreatment. Recent Insights Pet. Sci. Eng. 2018, 371. [Google Scholar] [CrossRef] [Green Version]
- Patowary, R.; Patowary, K.; Kalita, M.C.; Deka, S. Utilization of Paneer Whey Waste for Cost-Effective Production of Rhamnolipid Biosurfactant. Appl. Biochem. Biotechnol. 2016, 180, 383–399. [Google Scholar] [CrossRef] [PubMed]
- Souza, A.F.; Rodriguez, D.M.; Ribeaux, D.R.; Luna, M.A.C.; Lima e Silva, T.A.; Andrade, R.F.S.; Gusmão, N.B.; Campos-Takaki, G.M. Waste Soybean Oil and Corn Steep Liquor as Economic Substrates for Bioemulsifier and Biodiesel Production by Candida lipolytica UCP 0998. Int. J. Mol. Sci. 2016, 17, 1608. [Google Scholar] [CrossRef] [Green Version]
- El Mahdi, A.M.; Aziz, H.A.; Abu Amr, S.S.; El-Gendy, N.S.; Nassar, H.N. Isolation and characterization of Pseudomonas sp. NAF1 and its application in biodegradation of crude oil. Environ. Earth Sci. 2016, 75, 1–11. [Google Scholar] [CrossRef]
- Silva, E.J.; Rocha e Silva, N.M.; Rufino, R.D.; Luna, J.M.; Silva, R.O.; Sarubbo, L.A. Characterization of a biosurfactant produced by Pseudomonas cepacia CCT6659 in the presence of industrial wastes and its application in the biodegradation of hydrophobic compounds in soil. Coll. Surf. B Biointerfaces 2014, 117, 36–41. [Google Scholar] [CrossRef] [PubMed]
- Souza, E.C.; Vessoni-Penna, T.C.; Oliveira, R.P.D.S. Biosurfactant-enhanced hydrocarbon bioremediation: An overview. Int. Biodeterior. Biodegrad. 2014, 89, 88–94. [Google Scholar] [CrossRef]
- Nawawi, W.M.F.W.; Jamal, P.; Alam, Z. Utilization of sludge palm oil as a novel substrate for biosurfactant production. Bioresour. Technol. 2010, 101, 9241–9247. [Google Scholar] [CrossRef]
- Santos, A.C.; Bezerra, M.S.; dos Santos Pereira, H.; Dos Santos, E.S.; De Macedo, G.R. Production and recovery of rhamnolipids using sugar cane molasses as carbon source. J. Chem. Chem. Eng. 2010, 4, 27–33. [Google Scholar]
- Amenaghawon, A.N.; Osunbor, O.; Obahiagbon, K.O. Impact of Nutrients, Aeration and Agitation on the Bioremediation of Crude Oil Polluted Water Using Mixed Microbial Culture. Int. J. Sci. Res. Environ. Sci. 2014, 2, 43–48. [Google Scholar] [CrossRef]
- Suja, F.; Rahim, F.; Taha, M.R.; Hambali, N.; Razali, M.R.; Khalid, A.; Hamzah, A. Effects of local microbial bioaugmentation and biostimulation on the bioremediation of total petroleum hydrocarbons (TPH) in crude oil contaminated soil based on laboratory and field observations. Int. Biodeterior. Biodegrad. 2014, 90, 115–122. [Google Scholar] [CrossRef]
- Joo, H.-S.; Ndegwa, P.M.; Shoda, M.; Phae, C.-G. Bioremediation of oil-contaminated soil using Candida catenulata and food waste. Environ. Pollut. 2008, 156, 891–896. [Google Scholar] [CrossRef] [PubMed]
- Al-Sayegh, A.; Al-Wahaibi, Y.; Joshi, S.; Al-Bahry, S.; Elshafie, A.; Al-Bemani, A. Bioremediation of Heavy Crude Oil Contamination. Open Biotechnol. J. 2016, 10, 301–311. [Google Scholar] [CrossRef]
- El Mahdi, A.M.; Aziz, H.A.; Bhakta, J.N. Hydrocarbon Biodegradation Using Agro-Industrial Wastes as Co-Substrates. In Handbook of Research on Inventive Bioremediation Techniques; IGI Global: Hershey, PA, USA, 2017; pp. 155–185. [Google Scholar]
- Mohajeri, L.; Zahed, M.A.; Abdul Aziz, H.; Hasnain Isa, M. Assessment of Bioaugmentation and Biostimulation Efficiencies for Petroleum Contaminated Sediments. Environ. Energy Econ. Res. 2017, 1, 89–98. [Google Scholar]
- Wu, M.; Li, W.; Dick, W.A.; Ye, X.; Chen, K.; Kost, D.; Chen, L. Bioremediation of hydrocarbon degradation in a petroleum-contaminated soil and microbial population and activity determination. Chemosphere 2017, 169, 124–130. [Google Scholar] [CrossRef] [PubMed]
- Xueqing Zhu, A.D.V.; Makram, T.; Lee, S.K. Guidelines for the Bioremediation of Marine Shorelines and Freshwater Wetlands; 23; U.S. Environmental Protection Agency: Cincinnati, OH, USA, 2001.
- Cai, Y.; Wang, R.; Rao, P.; Wu, B.; Yan, L.; Hu, L.; Park, S.; Ryu, M.; Zhou, X. Bioremediation of Petroleum Hydrocarbons Using Acinetobacter sp. SCYY-5 Isolated from Contaminated Oil Sludge: Strategy and Effectiveness Study. Int. J. Environ. Res. Public Health 2021, 18, 819. [Google Scholar] [CrossRef] [PubMed]
- Al-Dhabaan, F.A. Morphological, biochemical and molecular identification of petroleum hydrocarbons biodegradation bacteria isolated from oil polluted soil in Dhahran, Saud Arabia. Saudi J. Biol. Sci. 2019, 26, 1247–1252. [Google Scholar] [CrossRef]
- De la Huz, R.; Lastra, M.; López, J. Other Environmental Health Issues: Oil Spill. In Encyclopedia of Environmental Health; Nriagu, J.O., Ed.; Elsevier: Burlington, NJ, USA, 2018; pp. 251–255. [Google Scholar]
- Nriagu, J. Encyclopedia of Environmental Health; Nriagu, J.O., Ed.; Elsevier: Burlington, NJ, USA, 2019. [Google Scholar]
- Li, P.; Cai, Q.; Lin, W.; Chen, B.; Zhang, B. Offshore oil spill response practices and emerging challenges. Mar. Pollut. Bull. 2016, 110, 6–27. [Google Scholar] [CrossRef]
- ITOPF. Oil Tanker Spill Statistics. 2020. Available online: https://www.itopf.org/knowledge-resources/data-statistics/statistics/ (accessed on 28 January 2021).
- Wikipedia. List of Oil Spills. Available online: https://en.wikipedia.org/wiki/List_of_oil_spills (accessed on 27 January 2020).
- Speight, J.G. Biological Transformation. In Reaction Mechanisms in Environmental Engineering: Analysis and Prediction; Butterworth-Heinemann: Waltham, MA, USA, 2018. [Google Scholar]
- Amin, S. Environmental Safety of Petroleum Refinery Operation: Malaysian Case Studies; University of Malaya: Kuala Lumpur, Malaysia, 2006. [Google Scholar]
- Varjani, S.J.; Upasani, V.N. A new look on factors affecting microbial degradation of petroleum hydrocarbon pollutants. Int. Biodeterior. Biodegrad. 2017, 120, 71–83. [Google Scholar] [CrossRef]
- Venosa, A.D.; Zhu, X. Guidance for the bioremediation of oil–contaminated wetlands, marshes and marine shorelines. In Bioremediation of Aquatic Terrestrial Ecosystems; Science Publishers: London, UK, 2002; pp. 142–171. [Google Scholar]
- Fingerman, M. Guidance for the bioremediation of oil–contaminated wetlands, marshes and marine shorelines. In Bioremediation of Aquatic and Terrestrial Ecosystems; CRC Press: Boca Raton, FL, USA, 2016; p. 141. [Google Scholar]
- Al-Hawash, A.B.; Dragh, M.A.; Li, S.; Alhujaily, A.; Abbood, H.A.; Zhang, X.; Ma, F. Principles of microbial degradation of petroleum hydrocarbons in the environment. Egypt. J. Aquat. Res. 2018, 44, 71–76. [Google Scholar] [CrossRef]
- McGenity, T.J. Hydrocarbon biodegradation in intertidal wetland sediments. Curr. Opin. Biotechnol. 2014, 27, 46–54. [Google Scholar] [CrossRef] [PubMed]
- Santos, J.M.; Vetere, A.; Wisniewski, J.A.; Eberlin, M.N.; Schrader, W. Comparing Crude Oils with Different API Gravities on a Molecular Level Using Mass Spectrometric Analysis. Part 2: Resins and Asphaltenes. Energies 2018, 11, 2767. [Google Scholar] [CrossRef] [Green Version]
- Fingas, M. Marine Oil Spills 2018. J. Mar. Sci. Eng. 2019, 7, 82. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.; Choe, Y.; Huh, C. Estimation of a Mechanical Recovery System’s Oil Recovery Capacity by Considering Boom Loss. J. Mar. Sci. Eng. 2019, 7, 458. [Google Scholar] [CrossRef] [Green Version]
- Farrington, J.W. Oil Pollution in the Marine Environment II: Fates and Effects of Oil Spills. Environ. Sci. Policy Sustain. Dev. 2014, 56, 16–31. [Google Scholar] [CrossRef]
- Altomare, T.; Tarwater, P.M.; Ferguson, A.C.; Solo-Gabriele, H.M.; Mena, K.D. Estimating Health Risks to Children Associated with Recreational Play on Oil Spill-Contaminated Beaches. Int. J. Environ. Res. Public Health 2021, 18, 126. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, A.; Solo-Gabriele, H.; Mena, K. Assessment for oil spill chemicals: Current knowledge, data gaps, and uncertainties addressing human physical health risk. Mar. Pollut. Bull. 2020, 150, 110746. [Google Scholar] [CrossRef]
- Todd, G.D.; Chessin, R.L.; Colman, J. Toxicological Profile for Total Petroleum Hydrocarbons (TPH); U.S Department of Health and Human Services: Washington, DC, USA, 1999; pp. 1–225.
- Liu, Y.-Z.; Roy-Engel, A.M.; Baddoo, M.C.; Flemington, E.K.; Wang, G.; Wang, H. The impact of oil spill to lung health—Insights from an RNA-seq study of human airway epithelial cells. Gene 2016, 578, 38–51. [Google Scholar] [CrossRef] [Green Version]
- Ramesh, S.; Bhattacharya, D.; Majrashi, M.; Morgan, M.; Clement, T.P.; Dhanasekaran, M. Evaluation of behavioral parameters, hematological markers, liver and kidney functions in rodents exposed to Deepwater Horizon crude oil and Corexit. Life Sci. 2018, 199, 34–40. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Hong, S.H.; Won, J.; Yim, U.H.; Jung, J.-H.; Ha, S.Y.; An, J.G.; Joo, C.; Kim, E.; Han, G.M.; et al. Petroleum hydrocarbon contaminations in the intertidal seawater after the Hebei Spirit oil spill—Effect of tidal cycle on the TPH concentrations and the chromatographic characterization of seawater extracts. Water Res. 2013, 47, 758–768. [Google Scholar] [CrossRef]
- Na, J.U.; Sim, M.S.; Jo, I.J.; Song, H.G. The duration of acute health problems in people involved with the cleanup operation of the Hebei Spirit oil spill. Mar. Pollut. Bull. 2012, 64, 1246–1251. [Google Scholar] [CrossRef]
- Mapelli, F.; Scoma, A.; Michoud, G.; Aulenta, F.; Boon, N.; Borin, S.; Kalogerakis, N.; Daffonchio, D. Biotechnologies for Marine Oil Spill Cleanup: Indissoluble Ties with Microorganisms. Trends Biotechnol. 2017, 35, 860–870. [Google Scholar] [CrossRef] [PubMed]
- Karlapudi, A.P.; Venkateswarulu, T.; Tammineedi, J.; Kanumuri, L.; Ravuru, B.K.; Dirisala, V.R.; Kodali, V.P. Role of biosurfactants in bioremediation of oil pollution—A review. Petroleum 2018, 4, 241–249. [Google Scholar] [CrossRef]
- Serrano, R.; Lastra, M.; Lopez, J. Oil Spills. In Encyclopedia of Environmental Health; Elsevier: Amsterdam, The Netherlands, 2011; pp. 251–255. [Google Scholar] [CrossRef]
- Mercer, K.; Trevors, J.T. Remediation of oil spills in temperate and tropical coastal marine environments. Environmentalist 2011, 31, 338–347. [Google Scholar] [CrossRef]
- Zafirakou, A.; Themeli, S.; Tsami, E.; Aretoulis, G. Multi-Criteria Analysis of Different Approaches to Protect the Marine and Coastal Environment from Oil Spills. J. Mar. Sci. Eng. 2018, 6, 125. [Google Scholar] [CrossRef] [Green Version]
- Gogoi, B.; Dutta, N.; Goswami, P.; Mohan, T.K. A case study of bioremediation of petroleum-hydrocarbon contaminated soil at a crude oil spill site. Adv. Environ. Res. 2003, 7, 767–782. [Google Scholar] [CrossRef]
- Darmayati, Y. Efficacy of Bioremediation Methods for oil Contaminated Sandy Beach in Cilacap, Central Java, Indonesia; Marine science major; Bogor Agricultural University: Bogor, Indonesia, 2016. [Google Scholar]
- Shany, A.; Ur, B.; Greenberg, H. Rapid-Deployment Oil Spill Containment Boom and Method of Deployment. U.S. Patent 9,739,023, 22 August 2017. [Google Scholar]
- Wang, Q.; Zhang, S.; Li, Y.; Klassen, W. Potential Approaches to Improving Biodegradation of Hydrocarbons for Bioremediation of Crude Oil Pollution. J. Environ. Prot. 2011, 2, 47–55. [Google Scholar] [CrossRef] [Green Version]
- Adeniji, A.O.; Okoh, O.O.; Okoh, A.I. Analytical Methods for the Determination of the Distribution of Total Petroleum Hydrocarbons in the Water and Sediment of Aquatic Systems: A Review. J. Chem. 2017, 2017, 1–13. [Google Scholar] [CrossRef]
- Hoang, A.T.; Pham, V.; Nguyen, D. A report of oil spill recovery technologies. Int. J. Appl. Eng. Res. 2018, 13, 4915–4928. [Google Scholar]
- Zamparas, M.; Tzivras, D.; Dracopoulos, V.; Ioannides, T. Application of Sorbents for Oil Spill Cleanup Focusing on Natural-Based Modified Materials: A Review. Molecules 2020, 25, 4522. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, S.S.; Joshi, M.V.; Jayaram, R.V. Treatment of oil spill by sorption technique using fatty acid grafted sawdust. Chemosphere 2006, 64, 1026–1031. [Google Scholar] [CrossRef]
- Bayat, A.; Aghamiri, S.F.; Moheb, A.; Vakili-Nezhaad, G.R. Oil spill cleanup from sea water by sorbent materials. Chem. Eng. Technol. Ind. Chem. Plant Equip. Process Eng. Biotechnol. 2005, 28, 1525–1528. [Google Scholar] [CrossRef]
- National Response Team. Fact Sheet: Bioremediation in Oil Spill Response, An Information Update on the use of Bioremediation; NRT Science and Technology Committee: Washington, DC, USA, 2000. [Google Scholar]
- Aurell, J.; Gullett, B.K. Aerostat Sampling of PCDD/PCDF Emissions from the Gulf Oil Spill In Situ Burns. Environ. Sci. Technol. 2010, 44, 9431–9437. [Google Scholar] [CrossRef]
- Broje, V.; Keller, A.A. Improved Mechanical Oil Spill Recovery Using an Optimized Geometry for the Skimmer Surface. Environ. Sci. Technol. 2006, 40, 7914–7918. [Google Scholar] [CrossRef] [PubMed]
- Davidson, W.F.; Lee, K.; Cogswell, A. Oil Spill Response: A Global Perspective; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Doerffer, J. Oil Spill Response in the Marine Environment; Elsevier: London, UK, 2013. [Google Scholar]
- Chapman, H.; Purnell, K.; Law, R.J.; Kirby, M.F. The use of chemical dispersants to combat oil spills at sea: A review of practice and research needs in Europe. Mar. Pollut. Bull. 2007, 54, 827–838. [Google Scholar] [CrossRef] [PubMed]
- Basak, S.; Nanda, J.; Banerjee, A. A new aromatic amino acid based organogel for oil spill recovery. J. Mater. Chem. 2012, 22, 11658–11664. [Google Scholar] [CrossRef]
- Fingas, M.; Fieldhouse, B. Review of Solidifiers. In Oil Spill Science and Technology; Elsevier: Amsterdam, The Netherlands, 2011; pp. 713–733. [Google Scholar]
- Zahed, M.A.; Aziz, H.A.; Isa, M.H.; Mohajeri, L.; Mohajeri, S. Optimal conditions for bioremediation of oily seawater. Bioresour. Technol. 2010, 101, 9455–9460. [Google Scholar] [CrossRef]
- Lawrence Anthony Earth Organization. Bioremediation System for Oil Spill Response Fact Sheet; Lawrence Anthony Earth Organization (LAEO): Glendale, CA, USA, 2014. [Google Scholar]
- Prince, R.C.; Clark, J.R. Bioremediation of marine oil spills. In Studies in Surface Science and Catalysis; Vazquez-Duhalt, R., Quintero-Ramirez, R., Eds.; Elsevier: Amsterdam, The Netherlands, 2004; Volume 151, pp. 495–512. [Google Scholar]
- Prenafeta-Boldú, F.X.; De Hoog, G.S.; Summerbell, R.C. Microbial Communities Utilizing Hydrocarbons and Lipids: Members, Metagenomics and Ecophysiology, Handbook of Hydrocarbon and Lipid Microbiology in Fungal Communities in Hydrocarbon Degradation; Springer International Publishing: Berlin/Heidelberg, Germany, 2018; pp. 1–36. [Google Scholar]
- Ron, E.Z.; Rosenberg, E. Enhanced bioremediation of oil spills in the sea. Curr. Opin. Biotechnol. 2014, 27, 191–194. [Google Scholar] [CrossRef]
- Baghour, M. Algal Degradation of Organic Pollutants. In Handbook of Ecomaterials; Martínez, L.M.T., Kharissova, O.V., Kharisov, B.I., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 565–586. [Google Scholar] [CrossRef]
- Prince, R.C.; McFarlin, K.M.; Butler, J.D.; Febbo, E.J.; Wang, F.C.; Nedwed, T.J. The primary biodegradation of dispersed crude oil in the sea. Chemosphere 2013, 90, 521–526. [Google Scholar] [CrossRef] [PubMed]
- Santos, D.K.F.; Rufino, R.D.; Luna, J.M.; Santos, V.A.; Sarubbo, L.A. Biosurfactants: Multifunctional biomolecules of the 21st century. Int. J. Mol. Sci. 2016, 17, 401. [Google Scholar] [CrossRef] [Green Version]
- Muttin, F.; Campbell, R.; Ouansafi, A.; Benelmostafa, Y. Numerical modelling and full-scale exercise of oil-spill containment boom on Galician coast. Int. J. Comput. Methods Exp. Meas. 2017, 5, 760–770. [Google Scholar] [CrossRef]
- Wilks Enterprise Inc. InfraCal® TOG/TPH Analyzer, Model HATR-T2 and CH User’s Guide; Wilks Enterprise Inc., Ed.; Wilks Enterprise Inc.: East Norwalk, CT, USA, 2009. [Google Scholar]
- USEPA. Understanding Bioremediation: A Guide Book for Citizens; USEPA: Washington, DC, USA, 1991.
- Bragg, J.R.; Prince, R.C.; Harner, E.J.; Atlas, R.M. Effectiveness of bioremediation for the Exxon Valdez oil spill. Nat. Cell Biol. 1994, 368, 413–418. [Google Scholar] [CrossRef]
- Cox, H.; Houtman, J.; Doddema, H.; Harder, W. Growth of the black yeast Exophiala jeanselmei on styrene and styrene-related compounds. Appl. Microbiol. Biotechnol. 1993, 39, 372–376. [Google Scholar] [CrossRef]
- Woertz, J.R.; Kinney, K.A.; McIntosh, N.D.P.; Szaniszlo, P.J. Removal of toluene in a vapor-phase bioreactor containing a strain of the dimorphic black yeastExophiala lecanii-corni. Biotechnol. Bioeng. 2001, 75, 550–558. [Google Scholar] [CrossRef] [PubMed]
- Blasi, B.; Poyntner, C.; Rudavsky, T.; Prenafeta-Boldú, F.X.; De Hoog, S.; Tafer, H.; Sterflinger, K. Pathogenic Yet Environmentally Friendly? Black Fungal Candidates for Bioremediation of Pollutants. Geomicrobiol. J. 2016, 33, 308–317. [Google Scholar] [CrossRef]
- Yuan, X.; Zhang, X.; Chen, X.; Kong, D.; Liu, X.; Shen, S. Synergistic degradation of crude oil by indigenous bacterial consortium and exogenous fungus Scedosporium boydii. Bioresour. Technol. 2018, 264, 190–197. [Google Scholar] [CrossRef]
- Semple, K.T.; Cain, R.B.; Schmidt, S. Biodegradation of aromatic compounds by microalgae. FEMS Microbiol. Lett. 1999, 170, 291–300. [Google Scholar] [CrossRef]
- Hazen, T. Cometabolic Bioremediation. In Handbook of Hydrocarbon and Lipid Microbiology; Springer: Berlin/Heidelberg, Germany, 2010; Volume 10, pp. 978–983. [Google Scholar]
- Vidali, M. Bioremediation. An overview. Pure Appl. Chem. 2001, 73, 1163–1172. [Google Scholar] [CrossRef]
- Trögl, J.; Esuola, C.O.; Kříženecká, S.; Kuráň, P.; Seidlová, L.; Veronesi-Dáňová, P.; Popelka, J.; Babalola, O.O.; Hrabák, P.; Czinnerová, M. Biodegradation of high concentrations of aliphatic hydrocarbons in soil from a petroleum refinery: Implications for applicability of new actinobacterial strains. Appl. Sci. 2018, 8, 1855. [Google Scholar] [CrossRef] [Green Version]
- DeHaven, L.; Tirrell, R. How to list a new product on the national oil and hazardous pollution, subpart J product schedule. In Proceedings of the International Oil Spill Conference; American Petroleum Institute: Washington, DC, USA, 2008; Volume 2008, pp. 657–660. [Google Scholar]
- Perdigão, R.; Almeida, C.M.R.; Santos, F.; Carvalho, M.F.; Mucha, A.P. Optimization of an Autochthonous Bacterial Consortium Obtained from Beach Sediments for Bioremediation of Petroleum Hydrocarbons. Water 2020, 13, 66. [Google Scholar] [CrossRef]
- Sathishkumar, M.; Binupriya, A.R.; Baik, S.-H.; Yun, S.-E. Biodegradation of Crude Oil by Individual Bacterial Strains and a Mixed Bacterial Consortium Isolated from Hydrocarbon Contaminated Areas. CLEAN Soil Air Water 2008, 36, 92–96. [Google Scholar] [CrossRef]
- Tao, K.; Liu, X.; Chen, X.; Hu, X.; Cao, L.; Yuan, X. Biodegradation of crude oil by a defined co-culture of indigenous bacterial consortium and exogenous Bacillus subtilis. Bioresour. Technol. 2017, 224, 327–332. [Google Scholar] [CrossRef]
- Hassanshahian, M.; Emtiazi, G.; Cappello, S. Isolation and characterization of crude-oil-degrading bacteria from the Persian Gulf and the Caspian Sea. Mar. Pollut. Bull. 2012, 64, 7–12. [Google Scholar] [CrossRef]
- Crisafi, F.; Genovese, M.; Smedile, F.; Russo, D.; Catalfamo, M.; Yakimov, M.; Giuliano, L.; Denaro, R. Bioremediation technologies for polluted seawater sampled after an oil-spill in Taranto Gulf (Italy): A comparison of biostimulation, bioaugmentation and use of a washing agent in microcosm studies. Mar. Pollut. Bull. 2016, 106, 119–126. [Google Scholar] [CrossRef]
- Safdari, M.-S.; Kariminia, H.-R.; Nejad, Z.G.; Fletcher, T.H. Study Potential of Indigenous Pseudomonas aeruginosa and Bacillus subtilis in Bioremediation of Diesel-Contaminated Water. Water Air Soil Pollut. 2016, 228, 37. [Google Scholar] [CrossRef]
- Ghoreishi, G.; Alemzadeh, A.; Mojarrad, M.; Djavaheri, M. Bioremediation capability and characterization of bacteria isolated from petroleum contaminated soils in Iran. Sustain. Environ. Res. 2017, 27, 195–202. [Google Scholar] [CrossRef]
- Pacwa-Płociniczak, M.; Czapla, J.; Płociniczak, T.; Piotrowska-Seget, Z. The effect of bioaugmentation of petroleum-contaminated soil with Rhodococcus erythropolis strains on removal of petroleum from soil. Ecotoxicol. Environ. Saf. 2019, 169, 615–622. [Google Scholar] [CrossRef]
- Bastida, F.; Jehmlich, N.; Lima, K.; Morris, B.; Richnow, H.; Hernández, T.; von Bergen, M.; García, C. The ecological and physiological responses of the microbial community from a semiarid soil to hydrocarbon contamination and its bioremediation using compost amendment. J. Proteom. 2016, 135, 162–169. [Google Scholar] [CrossRef]
- Kalhor, A.X.; Movafeghi, A.; Mohammadi-Nassab, A.D.; Abedi, E.; Bahrami, A. Potential of the green alga Chlorella vulgaris for biodegradation of crude oil hydrocarbons. Mar. Pollut. Bull. 2017, 123, 286–290. [Google Scholar] [CrossRef] [PubMed]
- Hassanshahian, M.; Bayat, Z.; Cappello, S.; Smedile, F.; Yakimov, M. Comparison the effects of bioaugmentation versus biostimulation on marine microbial community by PCR–DGGE: A mesocosm scale. J. Environ. Sci. 2016, 43, 136–146. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; He, L.Y.; Tao, X.Q.; Dang, Z.; Guo, C.L.; Lu, G.N.; Yi, X.Y. Construction of an artificial microalgal-bacterial consortium that efficiently degrades crude oil. J. Hazard. Mater. 2010, 181, 1158–1162. [Google Scholar] [CrossRef] [PubMed]
- Eriksson, S.; Ankner, T.; Abrahamsson, K.; Hallbeck, L. Propylphenols are metabolites in the anaerobic biodegradation of propylbenzene under iron-reducing conditions. Biodegradation 2005, 16, 253–263. [Google Scholar] [CrossRef] [PubMed]
- Roy, A.; Dutta, A.; Pal, S.; Gupta, A.; Sarkar, J.; Chatterjee, A.; Saha, A.; Sarkar, P.; Sar, P.; Kazy, S.K. Biostimulation and bioaugmentation of native microbial community accelerated bioremediation of oil refinery sludge. Bioresour. Technol. 2018, 253, 22–32. [Google Scholar] [CrossRef]
- Bodor, A.; Petrovszki, P.; Kis, Á.E.; Vincze, G.E.; Laczi, K.; Bounedjoum, N.; Szilágyi, Á.; Szalontai, B.; Feigl, G.; Kovács, K.L.; et al. Intensification of Ex Situ Bioremediation of Soils Polluted with Used Lubricant Oils: A Comparison of Biostimulation and Bioaugmentation with a Special Focus on the Type and Size of the Inoculum. Int. J. Environ. Res. Public Health 2020, 17, 4106. [Google Scholar] [CrossRef]
- Al-Dhabi, N.A.; Esmail, G.A.; Arasu, M.V. Enhanced Production of Biosurfactant from Bacillus subtilis Strain Al-Dhabi-130 under Solid-State Fermentation Using Date Molasses from Saudi Arabia for Bioremediation of Crude-Oil-Contaminated Soils. Int. J. Environ. Res. Public Health 2020, 17, 8446. [Google Scholar] [CrossRef]
- Cui, J.-Q.; He, Q.-S.; Liu, M.-H.; Chen, H.; Sun, M.-B.; Wen, J.-P. Comparative Study on Different Remediation Strategies Applied in Petroleum-Contaminated Soils. Int. J. Environ. Res. Public Health. 2020, 17, 1606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brzeszcz, J.; Kapusta, P.; Steliga, T.; Turkiewicz, A. Hydrocarbon Removal by Two Differently Developed Microbial Inoculants and Comparing Their Actions with Biostimulation Treatment. Molecules 2020, 25, 661. [Google Scholar] [CrossRef] [Green Version]
- Gentili, A.R.; Cubitto, M.A.; Ferrero, M.; Rodriguéz, M.S. Bioremediation of crude oil polluted seawater by a hydrocarbon-degrading bacterial strain immobilized on chitin and chitosan flakes. Int. Biodeterior. Biodegrad. 2006, 57, 222–228. [Google Scholar] [CrossRef]
- McKew, B.A.; Coulon, F.; Yakimov, M.M.; Denaro, R.; Genovese, M.; Smith, C.J.; Osborn, A.M.; Timmis, K.N.; McGenity, T.J. Efficacy of intervention strategies for bioremediation of crude oil in marine systems and effects on indigenous hydrocarbonoclastic bacteria. Environ. Microbiol. 2007, 9, 1562–1571. [Google Scholar] [CrossRef]
- El-Gendy, N.S.; Ali, H.R.; El-Nady, M.M.; Deriase, S.F.; Moustafa, Y.M.; Roushdy, M.I.; El-Gendy, N. Effect of different bioremediation techniques on petroleum biomarkers and asphaltene fraction in oil-polluted sea water. Desalin. Water Treat. 2013, 52, 7484–7494. [Google Scholar] [CrossRef]
- Hassanshahian, M.; Emtiazi, G.; Caruso, G.; Cappello, S. Bioremediation (bioaugmentation/biostimulation) trials of oil polluted seawater: A mesocosm simulation study. Mar. Environ. Res. 2014, 95, 28–38. [Google Scholar] [CrossRef] [PubMed]
- Staninska-Pięta, J.; Piotrowska-Cyplik, A.; Juzwa, W.; Zgoła-Grześkowiak, A.; Wolko, Ł.; Sydow, Z.; Kaczorowski, Ł.; Powierska-Czarny, J.; Cyplik, P. The impact of natural and synthetic surfactants on bacterial community during hydrocarbon biodegradation. Int. Biodeterior. Biodegrad. 2019, 142, 191–199. [Google Scholar] [CrossRef]
Sr.No. | Elements | Percentage (%) |
---|---|---|
1. | Carbon | 85–90 |
2. | Hydrogen | 10–14 |
3. | Sulfur | 0.2–3 |
4. | Nitrogen | <0.1–2 |
5. | Oxygen | 1–1.5 |
6. | Metals * | <1 |
Clean-Up Methods | Advantages | Disadvantages | Maximum Clean-up Efficiency | Application | References | |
---|---|---|---|---|---|---|
Physical | Sorbents | Recovery of oil which prevents wastage and more pollution | After the oil absorption, it is difficult to retrieve sorbent materials; Become heavier and sink, difficult to retrieve and sink to cover benthic organisms | 90% | Most effective in small oil spills or leftover traces of a larger spill | [60,61,62,63,64] |
Washing | Remove the trapped and weathered oil from machinery-inaccessible areas. | Organisms that fall into the direct spray zone are likely to be harmed by hot water (170 °C). | - | Mechanical removal methods such as booms and skimmers are inaccessible or unavailable for oil clean-up. | [25,30,54,60] | |
In-situ burning | Where it is difficult to deploy other methods | Burning sites pollute the air and can impact ecosystem both onshore and offshore; Residue from in situ burning reaches coastlines or in worse condition, sink to cover benthic organisms; Fire-resistant booms are high in cost, difficult in towing due to size and heavy weight. | 98% | Arctic or sub-Arctic environments (remoteness and sea ice formations); the oil slick thickness was also adequate for the combustion to continue; Seawater was calm and oil slick was not located in vulnerable areas, equipment or facilities | [25,30,60,65,66] | |
Skimming | Recover oil without changing its physical or chemical properties by suction and adhesion | Surface conditions: wind and waves disperse oil in the water (rough seas can stop skimmers from effective functioning); To get the equipment operating and to the site on time (as the spilled oil will quickly spread over quite a few km2) | 95% | Less movement of water | [25,30,60,64,65,66] | |
Booming | Light weight, limited storage space, non-corrosive and fast processing, highly efficient where water movement is lower | Low stability in strong winds and currents (current velocity more than 0.4 m/s, wind velocity greater than 5.5 m/s or height of waves more than 1 m) | - | Oil is at one spot; spillage is reachable within a few hours, or the spill area becomes too vast to handle. | [60,67,68,69] | |
Manual removal (Wiping) | Economically viable (unskilled personnel can be employed with minimum training) | Labour-intensive and time-consuming | 15% | Shorelines oil slick clean-up | [60,67,68] | |
Chemical | Dispersants | Break up oil slicks to avoid the coastlines and vulnerable habitats covering vast volumes of oil; Not much manpower required (cheaper than physical methods) | Poisoning fish, corals, and other marine species | 90% | If the spilled oil cannot be stopped by booms and spread over large areas; May be used in rough seas, slowing emulsion formation from oil water, speeding up natural biodegradation | [60,67,68,69,70,71] |
Solidifiers | Convert oil spill into solid or semi-solid materials; Not much manpower required (cheaper than physical methods) | Oil recovery not possible (oil recovery with high viscosity not effective) | - | May be used in rough seas | [63,68,69,72] | |
Demulsifiers | Impede the spread and pollution of oil in nearby areas; Not much manpower required (cheaper than physical methods) | The gelatine used may pose a risk of entangling or suffocating the aquatic animals | - | May be used in rough seas | [41,60,68,69] | |
Bioremediation | Natural attenuation | Most cost-effective and sustainable methods; Not much manpower required | Quite time-consuming and unreliable | Yet to be evaluated | Areas close to the shoreline | [41,43,73,74,75,76,77,78,79,80] |
Bioaugmentation | Quite time consuming | |||||
Biostimulation | Quite time consuming |
Elements | Microbial Cell Composition (%) | Crude Oil Composition (%) |
---|---|---|
Carbon | 50 | 85–90 |
Nitrogen | 14 | <0.1–2 |
Oxygen | 20 | 1–1.5 |
Hydrogen | 8 | 10–14 |
Phosphorous | 3 | - |
Sulphur | 1 | 0.2–3 |
Potassium | 1 | - |
Sodium | 1 | - |
Calcium | 0.5 | - |
Magnesium | 0.5 | - |
Chloride | 0.5 | - |
Iron | 0.2 | - |
All others | 0.3 | <1 |
Micro Nutrients | Cellular Functions |
---|---|
Cobalt | Vitamin B12; transcarboxylase (propionic acid bacteria) |
Copper | Respiration (cytochrome c oxidase); Photosynthesis (plastocyanin, some superoxide dismutases) |
Manganese | Acts as activator of various enzymes; occurs in some superoxide dismutases and in the photolytic (water-splitting) enzyme in oxygenic phototrophs(photosystem-II) |
Molybdenum | Present in some flavin containing enzymes, nitrogenase, nitrate reductase, sulphide oxidase, some formate dehydrogenases. |
Nickel | Present in most hydrogenase enzymes; coenzyme of methanogenes; carbon monoxide dehydrogenase; urease |
Selenium | Occurs in formate dehydrogenase; certain hydrogenases: amino acid selenocysteine |
Tungsten | In some formate dehydrogenases; oxotransferases of hyperthermo-philes |
Vanadium | Vanadium nitrogenase; bromoperoxidase. |
Zinc | In carbonic anhydrase; alcohol dehydrogenase; RNA and DNA polymerase; many DNA-binding proteins. |
References | Pollutant | Micro-Organisms | Degraded Efficiencies | Time |
---|---|---|---|---|
[94] | 0.5% (v/v) petroleum oil | Pseudomonas, Rhodococcus and Acinetobacter. | 66% | 15 days |
[95] | 1% (v/v) crude oil | Bacillus sp., Corynebacterium sp., Pseudomonas sp., Pseudomonas sp. | 77% | 25 days |
[96] | 1% (v/v) crude oil | Betaproteobacteria, Gammaproteobacteria, Bacillus subtilis | 85.01% | 7 days |
[97] | 1% (v/v) crude oil | Acinetobacter, Pseudomonas, Gordonia, Rhodococcus, Cobetia, Halomonas, Alcanivorax, Marinobacter, Microbacterium | 82% | 7 days |
[98] | 2% (v/v) Cargo fuel | Alcanivoraxborkumensis, Alcanivoraxdieselolei, Marinobacterhydrocarbonoclasticus, Cycloclasticus sp., Thalassolituusoleivorans | 79 ± 3.2% | 14 days |
[99] | 2% (v/v) diesel | Pseudomonas aeruginosa, Bacillus subtilis | 87% | 20 days |
[100] | 5% (v/v) kerosene | Citrobactersedlakii, Entrobacterhormeachei, Entrobacter cloacae | 69% | 7 days |
[101] | 1% (v/v) crude oil | Bacillus algicola (003-Phe1), Rhodococcus soli (102-Na5), Isoptericolachiayiensis (103-Na4), Pseudoalteromonas agar- ivorans (SDRB-Py1) | >85% | 14 days |
[102] | 1% (v/v) crude oil | Paraburkholderia sp., Alloprevotellatannerae, Paraburkholderiatropica, Ralstonia sp., Paraburkholderiafungorum, Rhodococcus sp., Brevundimonas_diminuta, Lactobacillus sp., Acidocella sp., Fungus Scedosporiumboydii | 81.45% | 7 days |
[103] | 20 (g/L) crude oil/water | Chlorella vulgaris | 94% | 14 days |
[104] | 10 mg/L crude oil polluted seawater | Alcanivoraxborkumensis SK2 | 95% | 20 days |
References | Pollutant | Micro-Organisms | Degraded (%) | Time | Stimulator |
---|---|---|---|---|---|
[112] | 0.5% (v/v) Crude oil polluted seawater | Rhodococcuscorynebacterioides | 60% | 15 days | Chitin and Chitosan flakes (shrimp wastes) |
[113] | 0.1% (v/v) weathered crude oil in seawater | Thalassolituus, Alcanivorax, Cycloclasticus | 85% | 30 days | Nutrients (20 mg/L NH4 NO3 and 10 mg/L KH2PO4) |
[114] | nC15–nC35 (TPH = 10 g/L) | Pseudomonas aeruginosa Asph2 | 80% | 30 days | Corn-steep-liquor |
[18] | 10% (v/v) Crude oil | Aspergillus niger, Pseudomonas aeruginosa | 94.4% | 8 week | NPK 15:15:15 |
[115] | 1000 ppm polluted seawater | Alcanivoraxborkumensis SK2 | 95% | 20 days | KH2PO4 0.077 g/L, NH4Cl 0.2 g/L and NaNO3 0.1 g/L |
[13] | 0.5% (w/v) crude oil | Pseudomonas | 97% | 28 days | Solid-waste-dates |
[13] | 0.5% (w/v) crude oil | Pseudomonas | 91% | 28 days | Corn-steep-liquor |
[98] | 2% (v/v) Cargo fuel oily seawater | Alcanivoraxborkumensis, Alcanivoraxdieselolei, Marinobacterhydrocarbonoclasticus, Cycloclasticus sp. 78-ME, Thalassolituusoleivorans | 73 ± 2.4% | 14 days | KH2PO4 0.077 g/L, NH4Cl 0.2 g/L and NaNO3 0.1 g/L |
[101] | 1% (v/v) Crude oil | Bacillus algicola (003-Phe1), Rhodococcus soli (102-Na5), Isoptericola chiayiensis (103-Na4), Pseudoalteromonas agar- ivorans (SDRB-Py1) | >85% | 14 days | Biosurfactant assisted |
[7,116] | 1% (v/v) Diesel oil | Proteobacteria | 20–99% | 7 days | Surfactant (Tween-80), biosurfactant (rhamnolipids) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sayed, K.; Baloo, L.; Sharma, N.K. Bioremediation of Total Petroleum Hydrocarbons (TPH) by Bioaugmentation and Biostimulation in Water with Floating Oil Spill Containment Booms as Bioreactor Basin. Int. J. Environ. Res. Public Health 2021, 18, 2226. https://doi.org/10.3390/ijerph18052226
Sayed K, Baloo L, Sharma NK. Bioremediation of Total Petroleum Hydrocarbons (TPH) by Bioaugmentation and Biostimulation in Water with Floating Oil Spill Containment Booms as Bioreactor Basin. International Journal of Environmental Research and Public Health. 2021; 18(5):2226. https://doi.org/10.3390/ijerph18052226
Chicago/Turabian StyleSayed, Khalid, Lavania Baloo, and Naresh Kumar Sharma. 2021. "Bioremediation of Total Petroleum Hydrocarbons (TPH) by Bioaugmentation and Biostimulation in Water with Floating Oil Spill Containment Booms as Bioreactor Basin" International Journal of Environmental Research and Public Health 18, no. 5: 2226. https://doi.org/10.3390/ijerph18052226
APA StyleSayed, K., Baloo, L., & Sharma, N. K. (2021). Bioremediation of Total Petroleum Hydrocarbons (TPH) by Bioaugmentation and Biostimulation in Water with Floating Oil Spill Containment Booms as Bioreactor Basin. International Journal of Environmental Research and Public Health, 18(5), 2226. https://doi.org/10.3390/ijerph18052226