University Students’ Self-Rated Health in Relation to Perceived Acoustic Environment during the COVID-19 Home Quarantine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Sampling
2.2. Sefl-Rated Health
2.3. Perceived Acoustic Environment
2.4. Mediator
2.5. Confounders
2.6. Analysis Strategy
3. Results
3.1. Participant Characteristics
3.2. Exploratory Factor Analysis of Sounds Pleasantness
3.3. Bivariate Associations
3.4. Multivariate Associations between Perceived Sounds Exposure and Self-Rated Health
3.5. Effect Modification of the Association between Perceived Sounds Exposure and Self-Rated Health
3.6. Structural Equation Model of the Effect of Perceived Sounds Exposure, as Mediated by “Being Away”, on Self-Rated Health
4. Discussion
4.1. General Findings
4.2. Secondary Findings
4.3. Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gostin, L.O.; Wiley, L.F. Governmental Public Health Powers During the COVID-19 Pandemic: Stay-at-home Orders, Business Closures, and Travel Restrictions. JAMA 2020, 323, 2137–2138. [Google Scholar] [CrossRef] [PubMed]
- Petersen, E.; McCloskey, B.; Hui, D.S.; Kock, R.; Ntoumi, F.; Memish, Z.A.; Kapata, N.; Azhar, E.I.; Pollack, M.; Madoff, L.C.; et al. COVID-19 travel restrictions and the International Health Regulations—Call for an open debate on easing of travel restrictions. Int. J. Infect. Dis. 2020, 94, 88–90. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, D.; Rai, M. Social Isolation in Covid-19: The Impact of Loneliness. Int. J. Soc. Psychiatry 2020, 66, 525–527. [Google Scholar] [CrossRef] [PubMed]
- Smith, B.; Lim, M. How the COVID-19 Pandemic Is Focusing Attention on Loneliness and Social Isolation. Public Health Res. Pract. 2020, 30, e3022008. [Google Scholar] [CrossRef] [PubMed]
- Hartig, T.; Bringslimark, T.; Patil, G.G. Restorative environmental design: What, when, where, and for whom? In Bringing Buildings to Life: The Theory and Practice of Biophilic Building Design; Kellert, S.R., Heerwagen, J., Mador, M., Eds.; Wiley: New York, NY, USA, 2008; pp. 133–151. [Google Scholar]
- Von Lindern, E.; Lymeus, F.; Hartig, T. The restorative environment: A complementary concept for salutogenesis studies. In The Handbook of Salutogenesis (Chapter 19); Mittelmark, M.B., Sagy, S., Eriksson, M., Bauer, G.F., Pellikan, J., Lindström, B., Espnes, G.A., Eds.; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar] [CrossRef] [Green Version]
- Mann, S.; Holdsworth, L. The Psychological Impact of Teleworking: Stress, Emotions and Health. New Technol. Work Employ. 2003, 18, 196–211. [Google Scholar] [CrossRef]
- Charalampous, M.; Grant, C.A.; Tramontano, C.; Michailidis, E. Systematically Reviewing Remote E-Workers’ Well-Being at Work: A Multidimensional Approach. Eur. J. Work Organ. Psychol. 2019, 28, 51–73. [Google Scholar] [CrossRef]
- Hartig, T.; Kylin, C.; Johansson, G. The Telework Tradeoff: Stress Mitigation vs. Constrained Restoration. Appl. Psychol. 2007, 56, 231–253. [Google Scholar] [CrossRef]
- Dzhambov, A.M.; Lercher, P.; Browning, M.H.E.M.; Stoyanov, D.; Petrova, N.; Novakov, S.; Dimitrova, D.D. Does greenery experienced indoors and outdoors provide an escape and support mental health during the COVID-19 quarantine? Environ. Res. 2020, 110420. [Google Scholar] [CrossRef]
- Tobías, A.; Carnerero, C.; Reche, C.; Massagué, J.; Via, M.; Minguillón, M.C.; Alastuey, A.; Querol, X. Changes in Air Quality during the Lockdown in Barcelona (Spain) One Month into the SARS-CoV-2 Epidemic. Sci. Total Environ. 2020, 726, 138540. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Li, S. Nonlinear Impact of COVID-19 on Pollutions from January 1 to October 30—Evidence from Wuhan, New York, Milan, Madrid, Bandra, London, Tokyo and Mexico City. Sustain. Cities Soc. 2020, 65, 102629. [Google Scholar] [CrossRef]
- Mueller, N.; Rojas-Rueda, D.; Basagaña, X.; Cirach, M.; Cole-Hunter, T.; Dadvand, P.; Donaire-Gonzalez, D.; Foraster, M.; Gascon, M.; Martinez, D.; et al. Health impacts related to urban and transport planning: A burden of disease assessment. Environ. Int. 2017, 107, 243–257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tobollik, M.; Hintzsche, M.; Wothge, J.; Myck, T.; Plass, D. Burden of disease due to traffic noise in Germany. Int. J. Environ. Res. Public Health 2019, 16, 2304. [Google Scholar] [CrossRef] [Green Version]
- Van Kempen, E.; Casas, M.; Pershagen, G.; Foraster, M. WHO Environmental Noise Guidelines for the European Region: A Systematic Review on Environmental Noise and Cardiovascular and Metabolic Effects: A Summary. Int. J. Environ. Res. Public Health 2018, 15, 379. [Google Scholar] [CrossRef] [Green Version]
- Basner, M.; McGuire, S. WHO Environmental Noise Guidelines for the European Region: A Systematic Review on Environmental Noise and Effects on Sleep. Int. J. Environ. Res. Public Health 2018, 15, 519. [Google Scholar] [CrossRef] [Green Version]
- Clark, C.; Crumpler, C.; Notley, A.H. Evidence for Environmental Noise Effects on Health for the United Kingdom Policy Context: A Systematic Review of the Effects of Environmental Noise on Mental Health, Wellbeing, Quality of Life, Cancer, Dementia, Birth, Reproductive Outcomes, and Cognition. Int. J. Environ. Res. Public Health 2020, 17, 393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dzhambov, A.M.; Lercher, P. Road Traffic Noise Exposure and Birth Outcomes: An Updated Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2019, 16, 2522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guski, R.; Schreckenberg, D.; Schuemer, R. WHO Environmental Noise Guidelines for the European Region: A Systematic Review on Environmental Noise and Annoyance. Int. J. Environ. Res. Public Health 2017, 14, 1539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zambrano-Monserrate, M.A.; Ruanob, M.A.; Sanchez-Alcalde, L. Indirect effects of COVID-19 on the environment. Sci. Total Environ. 2020, 728, 138813. [Google Scholar] [CrossRef]
- Basu, B.; Murphy, E.; Molter, A.; Basu, A.S.; Sannigrahi, S.; Belmonte, M.; Pilla, F. Investigating Changes in Noise Pollution Due to the COVID-19 Lockdown: The Case of Dublin, Ireland. Sustain. Cities Soc. 2020, 102597. [Google Scholar] [CrossRef]
- Smith, L.M.; Wang, L.; Mazur, K.; Carchia, M.; DePalma, G.; Azimi, R.; Mravca, S.; Neitzel, R.L. Impacts of COVID-19-related social distancing measures on personal environmental sound exposures. Environ. Res. Lett. 2020, 15, 104094. [Google Scholar] [CrossRef]
- Aletta, F.; Oberman, T.; Mitchell, A.; Tong, H.; Kang, J. Assessing the changing urban sound environment during the COVID-19 lockdown period using short-term acoustic measurements. Noise Mapp. 2020, 7, 123–134. [Google Scholar] [CrossRef]
- Salomons, E.M.; Pont, M.B. Urban Traffic Noise and the Relation to Urban Density, Form, and Traffic Elasticity. Landsc. Urban Plan. 2012, 108, 2–16. [Google Scholar] [CrossRef]
- Margaritis, E.; Kang, J. Relationship between Urban Green Spaces and Other Features of Urban Morphology with Traffic Noise Distribution. Urban For. Urban Gree. 2016, 15, 174–185. [Google Scholar] [CrossRef]
- Tong, H.; Kang, J. Relationship between Urban Development Patterns and Noise Complaints in England. Environ. Plan. B Urban Anal. City Sci. 2020, 239980832093024. [Google Scholar] [CrossRef]
- Hudda, N.; Simon, M.C.; Patton, A.P.; Durant, J.L. Reductions in Traffic-Related Black Carbon and Ultrafine Particle Number Concentrations in an Urban Neighborhood during the COVID-19 Pandemic. Sci. Total Environ. 2020, 742, 140931. [Google Scholar] [CrossRef] [PubMed]
- Idler, E.; Cartwright, K. What Do We Rate When We Rate Our Health? Decomposing Age-Related Contributions to Self-Rated Health. J. Health Soc. Behav. 2018, 59, 74–93. [Google Scholar] [CrossRef] [PubMed]
- Sounds from the Global Covid-19 Lockdown. Available online: https://citiesandmemory.com/covid19-sounds/ (accessed on 13 May 2020).
- Asensio, C.; Aumond, P.; Can, A.; Gascó, L.; Lercher, P.; Wunderli, J.-M.; Lavandier, C.; de Arcas, G.; Ribeiro, C.; Muñoz, P.; et al. A Taxonomy Proposal for the Assessment of the Changes in Soundscape Resulting from the COVID-19 Lockdown. Int. J. Environ. Res. Public Health 2020, 17, 4205. [Google Scholar] [CrossRef]
- Dümen, A.Ş.; Şaher, K. Noise annoyance during COVID-19 lockdown: A research of public opinion before and during the pandemic. J. Acoust. Soc. Am. 2020, 148, 3489. [Google Scholar] [CrossRef] [PubMed]
- Waye, K.P.; Agge, A.; Clow, A.; Hucklebridge, F. Cortisol Response and Subjective Sleep Disturbance after Low-Frequency Noise Exposure. J. Sound Vib. 2004, 277, 453–457. [Google Scholar] [CrossRef]
- Omlin, S.; Brink, M.; Bauer, G.F. Effects of Noise from Non-Traffic-Related Ambient Sources on Sleep: Review of the Literature of 1990–2010. Noise Health 2011, 13, 299–309. [Google Scholar] [CrossRef]
- Bar, H. COVID-19 lockdown: Animal life, ecosystem and atmospheric environment. Environ. Dev. Sustain. 2020. [Google Scholar] [CrossRef]
- Derryberry, E.P.; Phillips, J.N.; Derryberry, G.E.; Blum, M.J.; Luther, D. Singing in a silent spring: Birds respond to a half-century soundscape reversion during the COVID-19 shutdown. Science 2020, 370, 575–579. [Google Scholar] [CrossRef] [PubMed]
- Sakagami, K. A Note on Variation of the Acoustic Environment in a Quiet Residential Area in Kobe (Japan): Seasonal Changes in Noise Levels Including COVID-Related Variation. Urban Sci. 2020, 4, 63. [Google Scholar] [CrossRef]
- Ratcliffe, E.; Gatersleben, B.; Sowden, P.T. Bird Sounds and Their Contributions to Perceived Attention Restoration and Stress Recovery. J. Environ. Psychol. 2013, 36, 221–228. [Google Scholar] [CrossRef] [Green Version]
- Ratcliffe, E. Toward a Better Understanding of Pleasant Sounds and Soundscapes in Urban Settings. Cities Health 2019, 1–4. [Google Scholar] [CrossRef]
- Hedblom, M.; Gunnarsson, B.; Schaefer, M.; Knez, I.; Thorsson, P.; Lundström, J.N. Sounds of Nature in the City: No Evidence of Bird Song Improving Stress Recovery. Int. J. Environ. Res. Public Health 2019, 16, 1390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marselle, M.R.; Irvine, K.N.; Lorenzo-Arribas, A.; Warber, S.L. Does Perceived Restorativeness Mediate the Effects of Perceived Biodiversity and Perceived Naturalness on Emotional Well-Being Following Group Walks in Nature? J. Environ. Psychol. 2016, 46, 217–232. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, Y.L.; Kudo, Y. Effects of familiar voices on brain activity. Int. J. Nurs. Pract. 2012, 2, 38–44. [Google Scholar] [CrossRef]
- MacDonald, R.A. Music, health, and well-being: A review. Int. J. Qual. Stud. Health Well-Being 2013, 8, 20635. [Google Scholar] [CrossRef] [Green Version]
- Maschke, C.; Niemann, H. Health Effects of Annoyance Induced by Neighbour Noise. Noise Control Eng. J. 2007, 55, 348. [Google Scholar] [CrossRef]
- Park, S.H.; Lee, P.J.; Jeong, J.H. Emotions Evoked by Exposure to Footstep Noise in Residential Buildings. PLoS ONE 2018, 13, e0202058. [Google Scholar] [CrossRef] [Green Version]
- Jensen, H.A.R.; Rasmussen, B.; Ekholm, O. Neighbour Noise Annoyance Is Associated with Various Mental and Physical Health Symptoms: Results from a Nationwide Study among Individuals Living in Multi-Storey Housing. BMC Public Health 2019, 19, 1508. [Google Scholar] [CrossRef] [PubMed]
- Andargie, M.S.; Touchie, M.; O’Brien, W. Case study: A survey of perceived noise in Canadian multi-unit residential buildings to study long-term implications for widespread teleworking. Build. Acoust. 2021. [Google Scholar] [CrossRef]
- Solari, C.D.; Mare, R.D. Housing crowding effects on children’s wellbeing. Soc. Sci. Res. 2012, 41, 464–476. [Google Scholar] [CrossRef] [Green Version]
- Job, R.F.S. Noise sensitivity as a factor influencing human reaction to noise. Noise Health 1999, 1, 57–68. [Google Scholar]
- Kang, J.; Aletta, F.; Gjestland, T.T.; Brown, L.A.; Botteldooren, D.; Schulte-Fortkamp, B.; Lercher, P.; van Kamp, I.; Genuit, K.; Fiebig, A.; et al. Ten Questions on the Soundscapes of the Built Environment. Build. Environ. 2016, 108, 284–294. [Google Scholar] [CrossRef] [Green Version]
- Aletta, F.; Guattari, C.; Evangelisti, L.; Asdrubali, F.; Oberman, T.; Kang, J. Exploring the Compatibility of ‘Method A’ and ‘Method B’ Data Collection Protocols Reported in the ISO/TS 12913-2:2018 for Urban Soundscape via a Soundwalk. Appl. Acoust. 2019, 155, 190–203. [Google Scholar] [CrossRef]
- Torresin, S.; Aletta, F.; Babich, F.; Bourdeau, E.; Harvie-Clark, J.; Kang, J.; Lavia, L.; Radicchi, A.; Albatici, R. Acoustics for Supportive and Healthy Buildings: Emerging Themes on Indoor Soundscape Research. Sustainability 2020, 12, 6054. [Google Scholar] [CrossRef]
- Torresin, S.; Albatici, R.; Aletta, F.; Babich, F.; Oberman, T.; Siboni, S.; Kang, J. Indoor soundscape assessment: A principal components model of acoustic perception in residential buildings. Build. Environ. 2020, 182, 107152. [Google Scholar] [CrossRef]
- Huang, L.; Xu, F.; Liu, H. Emotional responses and coping strategies of nurses and nursing college students during COVID-19 outbreak. medRxiv 2020, 1–17. [Google Scholar] [CrossRef]
- Dzhambov, A.; Hartig, T.; Markevych, I.; Tilov, B.; Dimitrova, D. Urban residential greenspace and mental health in youth: Different approaches to testing multiple pathways yield different conclusions. Environ Res. 2018, 160, 47–59. [Google Scholar] [CrossRef]
- Miilunpalo, S.; Vuori, I.; Oja, P.; Pasanen, M.; Urponen, H. Self-rated health status as a health measure: The predictive value of self-reported health status on the use of physician services and on mortality in the working-age population. J. Clin. Epidemiol. 1997, 50, 517–528. [Google Scholar] [CrossRef]
- Bombak, A.E. Self-rated health and public health: A critical perspective. Front. Public Health 2013, 1, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Idler, E.L.; Benyamini, Y. Self-rated health and mortality: A review of twenty-seven community studies. J. Health Soc. Behav. 1997, 38, 21–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schnittker, J.; Bacak, V. The increasing predictive validity of self-rated health. PLoS ONE 2014, 9, e84933. [Google Scholar] [CrossRef]
- Vie, T.L.; ve Hufthammer, K.O.; Meland, E.; Breidablik, H.J. Self-Rated Health (SRH) in Young People and Causes of Death and Mortality in Young Adulthood. A Prospective Registry-Based Norwegian HUNT-Study. SSM—Popul. Health 2019, 7, 100364. [Google Scholar] [CrossRef]
- Lindal, P.J.; Hartig, T. Architectural variation, building height, and the restorative quality of urban residential streetscapes. J. Environ. Psychol. 2013, 33, 26–36. [Google Scholar] [CrossRef]
- Lindal, P.J.; Hartig, T. Effects of urban street vegetation on judgments of restoration likelihood. Urban For. Urban Gree. 2015, 14, 200–209. [Google Scholar] [CrossRef]
- Hartig, T.; Kaiser, F.G.; Bowler, P.A. Further Development of a Measure of Perceived Environmental Restorativeness; Working Paper No. 5; Institute for Housing and Urban Research, Uppsala University: Gävle, Sweden, 1997. [Google Scholar]
- Hartig, T.; Korpela, K.; Evans, G.W.; Garling, T. A measure of restorative quality in environments. Scand. Hous. Plan. Res. 1997, 14, 175–194. [Google Scholar] [CrossRef]
- Baliatsas, C.; van Kamp, I.; Swart, W.; Hooiveld, M.; Yzermans, J. Noise sensitivity: Symptoms, health status, illness behavior and co-occurring environmental sensitivities. Environ. Res. 2016, 150, 8–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heinonen-Guzejev, M. Noise Sensitivity—Medical, Psychological and Genetic Aspects. Ph.D. Thesis, University of Helsinki, Helsinki, Finland, 2009. [Google Scholar]
- Hill, E.M. Noise Sensitivity and Diminished Health: The Role of Stress-Related Factors. Ph.D. Thesis, Auckland University of Technology, Auckland, New Zealand, 2012. [Google Scholar]
- Stansfeld, S.A. Noise, noise sensitivity and psychiatric disorder: Epidemiological and psychophysiological studies. Psychol. Med. 1992, 22, 1–44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shepherd, D.; Hautus, M.J.; Lee, S.Y.; Mulgrew, J. Electrophysiological approaches to noise sensitivity. J. Clin. Exp. Neuropsychol. 2016, 38, 900–912. [Google Scholar] [CrossRef] [PubMed]
- Dzhambov, A.M.; Tilov, B.; Makakova-Tilova, D.; Dimitrova, D.D. Pathways and contingencies linking road traffic noise to annoyance, noise sensitivity, and mental Ill-Health. Noise Health 2019, 21, 248–257. [Google Scholar] [PubMed]
- Kroenke, K.; Spitzer, R.L.; Williams, J.B. The PHQ-9: Validity of a brief depression severity measure. J. Gen. Intern. Med. 2001, 16, 606–613. [Google Scholar] [CrossRef] [PubMed]
- Spitzer, R.L.; Kroenke, K.; Williams, J.B.; Löwe, B. A brief measure for assessing generalized anxiety disorder: The GAD-7. Arch. Intern. Med. 2006, 166, 1092–1097. [Google Scholar] [CrossRef] [Green Version]
- Manea, L.; Gilbody, S.; McMillan, D. Optimal cut-off score for diagnosing depression with the Patient Health Questionnaire (PHQ-9): A meta-analysis. CMAJ 2012, 184, E191–E196. [Google Scholar] [CrossRef] [Green Version]
- Plummer, F.; Manea, L.; Trepe, D.; McMillan, D. Screening for anxiety disorders with the GAD-7 and GAD-2: A systematic review and diagnostic metaanalysis. Gen. Hosp. Psychiatry 2016, 39, 24–31. [Google Scholar] [CrossRef]
- Dempster, A.P.; Laird, N.M.; Rubin, D.B. Maximum likelihood estimation from incomplete data via the EM algorithm (with discussion). J. Royal Stat. Assoc. 1977, B39, 1–38. [Google Scholar]
- Horn, J.L. A rationale and test for the number of factors in factor analysis. Psychometrica 1965, 30, 179–185. [Google Scholar] [CrossRef]
- Humphreys, L.G.; Montanelli, R.G., Jr. An investigation of the parallel analysis criteria on for determining the number of common factors. Multivar. Behav. Res. 1975, 10, 193–205. [Google Scholar] [CrossRef]
- Lorenzo-Seva, U.; Ferrando, P.J. Robust Promin: A method for diagonally weighted factor rotation. LIBERABIT Rev. Peru. Psicol. 2019, 25, 99–106. [Google Scholar] [CrossRef]
- Brown, T.A. Confirmatory Factor Analysis for Applied Research, 2nd ed.; Guilford Press: New York, NY, USA, 2015. [Google Scholar]
- Ferrando, P.J.; Lorenzo-Seva, U. Program FACTOR at 10: Origins, development and future directions. Psicothema 2017, 29, 236–241. [Google Scholar] [CrossRef] [PubMed]
- Lorenzo-Seva, U.; Ferrando, P.J. FACTOR: A computer program to fit the exploratory factor analysis model. Behav. Res. Methods 2006, 38, 88–91. [Google Scholar] [CrossRef] [Green Version]
- Menard, S. Applied Logistic Regression Analysis: Sage University Series on Quantitative Applications in the Social Sciences; Sage: Thousand Oaks, CA, USA, 1995. [Google Scholar]
- Rogerson, P.A. Statistical Methods for Geography; Sage: London, UK, 2001. [Google Scholar]
- Dzhambov, A.M.; Dimitrova, D.D. Green Spaces and Environmental Noise Perception. Urban For. Urban Gree. 2015, 14, 1000–1008. [Google Scholar] [CrossRef]
- Chen, J.; Ma, H. A Conceptual Model of the Healthy Acoustic Environment: Elements, Framework, and Definition. Front. Psychol. 2020, 11, 554285. [Google Scholar] [CrossRef]
- Zhang, Y.; Kang, J.; Kang, J. Effects of Soundscape on the Environmental Restoration in Urban Natural Environments. Noise Health 2017, 19, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Medvedev, O.; Shepherd, D.; Hautus, M.J. The Restorative Potential of Soundscapes: A Physiological Investigation. Appl. Acoust. 2015, 96, 20–26. [Google Scholar] [CrossRef]
- Lercher, P.; van Kamp, I.; von Lindern, E.; Botteldooren, D. Perceived Soundscapes and Health-Related Quality of Life, Context, Restoration, and Personal Characteristics: Case Studies. In Soundscape and the Built Environment; Kang, J., Schulte-Fortkamp, B., Eds.; CRC Press: Boca Raton, FL, USA, 2016; pp. 89–131. [Google Scholar] [CrossRef]
- Torresin, S.; Albatici, R.; Aletta, F.; Babich, F.; Kang, J. Assessment Methods and Factors Determining Positive Indoor Soundscapes in Residential Buildings: A Systematic Review. Sustainability 2019, 11, 5290. [Google Scholar] [CrossRef] [Green Version]
- Selvin, S. Statistical Analysis of Epidemiologic Data; Oxford University Press: New York, NY, USA, 1996; pp. 213–214. [Google Scholar]
- Greenland, S.; Rothman, K.J. Chapter 18: Concepts of Interaction. In Modern Epidemiology, 2nd ed.; Rothman, K.J., Greenland, S., Eds.; Lippincott-Raven: New York, NY, USA, 1998; pp. 329–342. [Google Scholar]
- Marshall, S.W. Power for tests of interaction: Effect of raising the Type I error rate. Epidemiol. Perspect. Innov. 2007, 4, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Muthén, B.O. Goodness of fit with categorical and other nonnormal variables. In Testing Structural Equation Models; Bollen, K.A., Long, J.S., Eds.; Sage: Newbury Park, CA, USA, 1993; pp. 205–234. [Google Scholar]
- Kelley, K. The effects of nonnormal distributions on confidence intervals around the standardized mean difference: Bootstrap and parametric confidence intervals. Educ. Psychol. Meas. 2005, 65, 51–69. [Google Scholar] [CrossRef]
- Hu, L.T.; Bentler, P.M. Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Struct. Equ. Model. 1999, 6, 1–55. [Google Scholar] [CrossRef]
- Zhao, X.; Lynch, J.G.; Chen, Q. Reconsidering Baron and Kenny: Myths and truths about mediation analysis. J. Consum. Res. 2010, 37, 197–206. [Google Scholar] [CrossRef]
- Hayes, A. Introduction to Mediation, Moderation, and Conditional Process Analysis: A Regression-Based Approach; Guilford Press: New York, NY, USA, 2013. [Google Scholar]
- Rosseel, Y. lavaan: An R Package for Structural Equation Modeling. J. Stat. Softw. 2012, 48, 1–36. [Google Scholar] [CrossRef] [Green Version]
- Dubois, D.; Guastavino, C.; Raimbault, M. A Cognitive Approach to Urban Soundscapes: Using Verbal Data to Access Everyday Life Auditory Categories. Acta Acust. United Acust. 2006, 92, 865–874. [Google Scholar]
- Guastavino, C. Categorization of Environmental Sounds. Can. J. Exp. Psychol. 2007, 61, 54–63. [Google Scholar] [CrossRef] [Green Version]
- Ma, K.W.; Wong, H.M.; Mak, C.M. A Systematic Review of Human Perceptual Dimensions of Sound: Meta-Analysis of Semantic Differential Method Applications to Indoor and Outdoor Sounds. Build. Environ. 2018, 133, 123–150. [Google Scholar] [CrossRef]
- Engel, L.R.; Frum, C.; Puce, A.; Walker, N.A.; Lewis, J.W. Different categories of living and non-living sound-sources activate distinct cortical networks. Neuroimage 2009, 47, 1778–1791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bergman, P.; Västfjäll, D.; Tajadura-Jiménez, A.; Asutay, E. Auditory-Induced Emotion Mediates Perceptual Categorization of Everyday Sounds. Front. Psychol. 2016, 7, 1565. [Google Scholar] [CrossRef] [Green Version]
- Giordano, B.L.; McDonnell, J.; McAdams, S. Hearing living symbols and nonliving icons: Category specificities in the cognitive processing of environmental sounds. Brain Cogn. 2010, 73, 7–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. Environmental Noise Guidelines for the European Region; WHO: Geneva, Switzerland, 2018. [Google Scholar]
- Dratva, J.; Zemp, E.; Dietrich, D.F.; Bridevaux, P.-O.; Rochat, T.; Schindler, C.; Gerbase, M.W. Impact of Road Traffic Noise Annoyance on Health-Related Quality of Life: Results from a Population-Based Study. Qual. Life Res. 2010, 19, 37–46. [Google Scholar] [CrossRef] [Green Version]
- Welch, D.; Shepherd, D.; McBride, D.; Dirks, K.N.; Marsh, S. Road Traffic Noise and Health-Related Quality of Life: A Cross-Sectional Study. Noise Health 2013, 15, 224–230. [Google Scholar] [CrossRef]
- Roswall, N.; Høgh, V.; Envold-Bidstrup, P.; Raaschou-Nielsen, O.; Ketzel, M.; Overvad, K.; Olsen, A.; Sørensen, M. Residential Exposure to Traffic Noise and Health-Related Quality of Life—A Population-Based Study. PLoS ONE 2015, 10, e0120199. [Google Scholar] [CrossRef] [Green Version]
- Halonen, J.I.; Lanki, T.; Yli-Tuomi, T.; Turunen, A.W.; Pentti, J.; Kivimäki, M.; Vahtera, J. Associations of traffic noise with self-rated health and psychotropic medication use. Scand. J. Work Environ. Health 2014, 40, 235–243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baudin, C.; LefÈvre, M.; Champelovier, P.; Lambert, J.; Laumon, B.; Evrard, A.S. Self-rated health status in relation to aircraft noise exposure, noise annoyance or noise sensitivity: The results of a cross-sectional study in France. BMC Public Health 2021, 21, 116. [Google Scholar] [CrossRef] [PubMed]
- Aletta, F.; Oberman, T.; Kang, J. Associations between Positive Health-Related Effects and Soundscapes Perceptual Constructs: A Systematic Review. Int. J. Environ. Res. Public Health 2018, 15, 2392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Von Lindern, E.; Hartig, T.; Lercher, P. Traffic-Related Exposures, Constrained Restoration, and Health in the Residential Context. Health Place 2016, 39, 92–100. [Google Scholar] [CrossRef] [PubMed]
- Annerstedt, M.; Jönsson, P.; Wallergård, M.; Johansson, G.; Karlson, B.; Grahn, P.; Hansen, A.M.; Währborg, P. Inducing physiological stress recovery with sounds of nature in a virtual reality forest--results from a pilot study. Physiol. Behav. 2013, 118, 240–250. [Google Scholar] [CrossRef] [PubMed]
- Thoma, M.V.; Mewes, R.; Nater, U.M. Preliminary evidence: The stress-reducing effect of listening to water sounds depends on somatic complaints: A randomized trial. Medicine (Baltimore) 2018, 97, e9851. [Google Scholar] [CrossRef]
- Ulrich, R.S. Aesthetic and affective response to natural environment. In Behavior and the Natural Environment; Altman, I., Wohlwill, J.F., Eds.; Springer: New York, NY, USA, 1983; pp. 85–125. [Google Scholar]
- Ulrich, R.S.; Simons, R.F.; Losito, B.D.; Fiorito, E.; Miles, M.A.; Zelson, M. Stress recovery during exposure to natural and urban environments. J. Environ. Psychol. 1991, 11, 201–230. [Google Scholar] [CrossRef]
- Kaplan, S. Attention and fascination: The search for cognitive clarity. In Humanscape: Environments for People; Kaplan, S., Kaplan, R., Eds.; original work published 1978; Ulrich’s: Ann Arbor, MI, USA, 1982; pp. 84–90. [Google Scholar]
- Kaplan, R.; Kaplan, S. The Experience of Nature: A Psychological Perspective; University Press: New York, NY, USA; Cambridge, UK, 1989. [Google Scholar]
- Franco, L.S.; Shanahan, D.F.; Fuller, R.A. A Review of the Benefits of Nature Experiences: More Than Meets the Eye. Int. J. Environ. Res. Public Health 2017, 14, 864. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hunter, M.D.; Eickhoff, S.B.; Pheasant, R.J.; Douglas, M.J.; Watts, G.R.; Farrow, T.F.; Hyland, D.; Kang, J.; Wilkinson, I.D.; Horoshenkov, K.V.; et al. The state of tranquility: Subjective perception is shaped by contextual modulation of auditory connectivity. Neuroimage 2010, 53, 611–618. [Google Scholar] [CrossRef] [PubMed]
- Hao, Y.; Kang, J.; Wörtche, H. Assessment of the masking effects of birdsong on the road traffic noise environment. J. Acoust. Soc. Am. 2016, 140, 978. [Google Scholar] [CrossRef] [Green Version]
- Coensel, B.D.; Vanwetswinkel, S.; Botteldooren, D. Effects of natural sounds on the perception of road traffic noise. J. Acoust. Soc. Am. 2011, 129, EL148–EL153. [Google Scholar] [CrossRef] [Green Version]
- Ryu, J.; Song, H. Masking Effect of Artificial and Natural Sounds on Residential Noises. In Proceedings of the Euronoise 2018—Conference Proceedings, Crete, Greece, 27–31 May 2018; pp. 1589–1592. [Google Scholar]
- Galbrun, L.; Ali, T.T. Acoustical and perceptual assessment of water sounds and their use over road traffic noise. J. Acoust. Soc. Am. 2013, 133, 227–237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali, T.T. Acoustical Design of Water Features and Their Use for Road Traffic Noise Masking. Ph.D. Thesis, Heriot-Watt University, Edinburg, UK, 2012. [Google Scholar]
- Szkody, E.; Stearns, M.; Stanhope, L.; McKinney, C. Stress-Buffering Role of Social Support during COVID-19. Fam. Process. 2020. [Google Scholar] [CrossRef]
- Berto, R. The Role of Nature in Coping with Psycho-Physiological Stress: A Literature Review on Restorativeness. Behav. Sci. 2014, 4, 394–409. [Google Scholar] [CrossRef] [Green Version]
- Dzhambov, A.M. Noise Sensitivity: A Neurophenomenological Perspective. Med. Hypot. 2015, 85, 650–655. [Google Scholar] [CrossRef]
- Heinonen-Guzejev, M.; Koskenvuo, M.; Mussalo-Rauhamaa, H.; Vuorinen, H.; Kaprio, J.; Heikkilä, K. Noise Sensitivity and Multiple Chemical Sensitivity Scales: Properties in a Population Based Epidemiological Study. Noise Health 2012, 14, 215–223. [Google Scholar] [CrossRef] [PubMed]
- Stansfeld, S.A.; Sharp, D.S.; Gallacher, J.; Babisch, W. Road Traffic Noise, Noise Sensitivity and Psychological Disorder. Psychol. Med. 1993, 23, 977–985. [Google Scholar] [CrossRef]
- Stansfeld, S.A.; Shipley, M. Noise Sensitivity and Future Risk of Illness and Mortality. Sci. Total Environ. 2015, 520, 114–119. [Google Scholar] [CrossRef]
- Fyhri, A.; Klæboe, R. Road Traffic Noise, Sensitivity, Annoyance and Self-Reported Health—A Structural Equation Model Exercise. Environ. Int. 2009, 35, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Hill, E.M.; Billington, H.; Krägeloh, C. Noise Sensitivity and Diminished Health: Testing Moderators and Mediators of the Relationship. Noise Health 2014, 16, 47–56. [Google Scholar] [CrossRef] [Green Version]
- Lercher, P.; Widmann, U. Association and Moderation of Self-Reported Hypotension with Traffic Noise Exposure: A Neglected Relationship. Noise Health 2013, 15, 205–2016. [Google Scholar] [CrossRef]
- Van Kamp, I.; Job, R.F.S.; Hatfield, J.; Haines, M.; Stellato, R.K.; Stansfeld, S.A. The Role of Noise Sensitivity in the Noise–Response Relation: A Comparison of Three International Airport Studies. J. Acoust. Soc. Am. 2004, 116, 3471–3479. [Google Scholar] [CrossRef] [PubMed]
- Cialani, C.; Mortazavi, R. The effect of objective income and perceived economic resources on self-rated health. Int. J. Equity Health 2020, 19, 19. [Google Scholar] [CrossRef] [PubMed]
- Evans, G.W. The Built Environment and Mental Health. J. Urban Health 2003, 80, 536–555. [Google Scholar] [CrossRef] [PubMed]
- Maxwell, S.E.; Cole, D.A. Bias in cross-sectional analyses of longitudinal mediation. Psychol. Methods 2007, 12, 23–44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maxwell, S.E.; Cole, D.A.; Mitchell, M.A. Bias in cross-sectional analyses of longitudinal mediation: Partial and complete mediation under an autoregressive model. Multivar. Behav. Res. 2011, 46, 816–841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tate, C.U. On the overuse and misuse of mediation analysis: It may be a matter of timing. Basic Appl. Soc. Psychol. 2015, 37, 235–246. [Google Scholar] [CrossRef]
- Aletta, F.; Brinchi, S.; Carrese, S.; Gemma, A.; Guattari, C.; Mannini, L.; Patella, S.M. Analysing Urban Traffic Volumes and Mapping Noise Emissions in Rome (Italy) in the Context of Containment Measures for the COVID-19 Disease. Noise Mapp. 2020, 7, 114–122. [Google Scholar] [CrossRef]
Characteristic | Statistic | Range |
---|---|---|
Socio-demographics | ||
Age (median years, IQR) | 21.00 (3.00) | 18.00–35.00 |
Male (N, %) | 100 (31.0) | |
Bulgarian (N, %) | 281 (87.0) | |
Income adequacy (mean, SD) | 3.24 (1.11) | 0.00–5.00 |
Self-rated health (N, %) | ||
Very poor | 3 (0.9) | |
Poor | 16 (5.0) | |
Fair | 83 (25.7) | |
Good | 137 (42.4) | |
Very good | 84 (26.0) | |
Perceived exposure (median, IQR) | ||
Mechanical sounds | 4.00 (4.00) | 0.00–12.00 |
Human sounds | 3.00 (3.00) | 0.00–8.00 |
Nature sounds | 3.00 (3.00) | 0.00–4.00 |
Mediator | ||
Being away (median, IQR) | 5.00 (5.00) | 0.00–10.00 |
Confounders/modifiers | ||
Depression (N, %) | 112 (34.7) | |
Anxiety (N, %) | 70 (21.7) | |
Environmental sensitivity (mean, SD) | 9.87 (3.79) | 0.00–20.00 |
Dwelling type (N, %) | ||
Apartment | 191 (59.1) | |
House | 120 (37.2) | |
Hostel | 12 (3.7) | |
Duration of residence (median years, IQR) | 14.00 (16.00) | 0.50–32.00 |
Time at home (median hrs/day, IQR) | 20.00 (4.50) | 7.50–24.00 |
Crowding (median, IQR) | 1.00 (0.58) | 0.17–5.00 |
Settlement type (N, %) | ||
City | 160 (49.5) | |
Town | 136 (42.1) | |
Village | 27 (8.4) | |
University (N, %) | ||
Medical University of Plovdiv | 241 (74.6) | |
Plovdiv University | 82 (25.4) |
Sounds Pleasantness | Factor Loadings (95% CI) 1 | EC | Mean (SD) | Polychoric Correlations | ||||||
---|---|---|---|---|---|---|---|---|---|---|
F1: Mechanical | F2: Non-Mechanical | 1. | 2. | 3. | 4. | 5. | 6. | |||
1. Traffic | 0.76 (0.64, 0.85) | 0.55 | 2.11 (0.90) | 1.00 | ||||||
2. Indoor mechanical | 0.77 (0.66, 0.84) | 0.66 | 2.08 (0.81) | 0.57 | 1.00 | |||||
3. Outdoor mechanical | 0.93 (0.85, 0.98) | 0.81 | 1.78 (0.77) | 0.66 | 0.70 | 1.00 | ||||
4. Music | 0.82 (0.69, 0.91) | 0.63 | 3.59 (1.08) | 0.12 | 0.23 | 0.13 | 1.00 | |||
5. Human | 0.78 (0.66, 0.87) | 0.61 | 3.15 (1.08) | 0.16 | 0.29 | 0.20 | 0.61 | 1.00 | ||
6. Nature | 0.34 (0.15, 0.49) | 0.12 | 4.41 (0.78) | 0.08 | 0.14 | 0.10 | 0.27 | 0.28 | 1.00 |
Variable | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) | (11) | (12) | (13) | (14) | (15) | (16) | (17) | (18) | (19) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(1) Self-rated health | 1.00 | ||||||||||||||||||
(2) Mechanical sounds | −0.26 1 | 1.00 | |||||||||||||||||
(3) Human sounds | −0.02 | 0.24 1 | 1.00 | ||||||||||||||||
(4) Nature sounds | 0.04 | −0.04 | 0.21 1 | 1.00 | |||||||||||||||
(5) Gender (female vs. male) | −0.14 1 | 0.01 | 0.07 | 0.01 | 1.00 | ||||||||||||||
(6) Age | 0.07 | 0.07 | −0.03 | −0.10 | −0.04 | 1.00 | |||||||||||||
(7) Ethnicity (other vs. Bulgarian) | −0.06 | 0.06 | 0.07 | 0.11 1 | 0.14 1 | −0.10 | 1.00 | ||||||||||||
(8) Income adequacy | 0.20 1 | −0.07 | 0.10 | 0.05 | −0.04 | 0.12 1 | 0.05 | 1.00 | |||||||||||
(9) Environmental sensitivity | −0.23 1 | 0.19 1 | 0.10 | 0.12 1 | 0.15 1 | −0.06 | 0.05 | −0.09 | 1.00 | ||||||||||
(10) Being away | 0.32 1 | −0.18 1 | −0.06 | 0.15 1 | 0.04 | 0.17 1 | −0.02 | 0.19 | −0.18 1 | 1.00 | |||||||||
(11) Crowding | 0.03 | 0.15 1 | 0.24 1 | 0.01 | 0.06 | −0.04 | 0.10 | −0.09 | 0.01 | −0.08 | 1.00 | ||||||||
(12) Garden | 0.12 1 | −0.37 1 | −0.07 | 0.21 1 | 0.00 | −0.13 1 | 0.04 | 0.02 | −0.05 | 0.14 1 | −0.22 1 | 1.00 | |||||||
(13) Terrace/balcony | 0.10 | 0.01 | 0.01 | −0.04 | −0.12 1 | 0.08 | −0.08 | 0.03 | −0.09 | 0.07 | −0.07 | −0.25 1 | 1.00 | ||||||
(14) Quiet room | 0.18 1 | −0.34 1 | −0.05 | 0.09 | −0.03 | 0.04 | −0.05 | 0.14 1 | −0.12 1 | 0.20 1 | −0.18 1 | 0.23 1 | 0.06 | 1.00 | |||||
(15) Soundproof windows | 0.21 1 | −0.10 | −0.00 | 0.09 | −0.05 | 0.16 1 | −0.04 | 0.22 1 | −0.00 | 0.15 1 | −0.12 | 0.04 | 0.03 | 0.34 1 | 1.00 | ||||
(16) Depression | −0.48 1 | 0.17 1 | 0.03 | 0.02 | 0.16 1 | −0.12 1 | 0.12 1 | −0.09 | 0.28 1 | −0.24 1 | 0.01 | −0.03 | −0.15 1 | −0.14 1 | −0.15 1 | 1.00 | |||
(17) Anxiety | −0.44 1 | 0.18 1 | 0.09 | −0.02 | 0.06 | −0.11 1 | −0.02 | −0.05 | 0.18 1 | −0.25 1 | −0.05 | −0.04 | −0.07 | −0.15 1 | −0.14 1 | 0.56 1 | 1.00 | ||
(18) Duration of residence | 0.09 | −0.05 | 0.06 | 0.05 | −0.10 | 0.08 | −0.02 | 0.06 | −0.09 | 0.00 | 0.02 | 0.16 1 | 0.03 | 0.02 | 0.01 | −0.12 1 | −0.01 | 1.00 | |
(19) Time at home/day | −0.11 | 0.09 | −0.08 | 0.10 | 0.02 | 0.03 | 0.12 1 | −0.03 | 0.10 | 0.01 | 0.02 | −0.02 | −0.08 | −0.12 1 | −0.13 1 | 0.23 1 | 0.15 1 | −0.05 | 1.00 |
Characteristics | Being Away | Self-Rated Health | Mechanical Sounds | Human Sounds | Nature Sounds |
---|---|---|---|---|---|
Dwelling type | |||||
Apartment | 5.00 (5.00) | 3.00 (1.00) | 4.00 (4.00) 1 | 3.00 (3.00) | 2.00 (2.00) 1 |
House | 6.00 (6.50) | 3.00 (2.00) | 3.00 (3.00) 1 | 3.00 (2.50) | 3.00 (2.00) 1 |
Hostel | 5.00 (5.50) | 3.00 (1.50) | 4.00 (3.50) 1 | 3.00 (2.50) | 3.00 (2.00) 1 |
Settlement type | |||||
City | 5.00 (5.00) | 3.00 (2.00) | 4.00 (4.00) 1 | 3.00 (2.00) 1 | 2.00 (2.00) |
Town | 5.00 (5.50) | 3.00 (1.00) | 4.00 (4.50) 1 | 3.00 (3.00) 1 | 3.00 (2.00) |
Village | 6.00 (7.00) | 3.00 (2.00) | 2.00 (3.00) 1 | 2.00 (2.00) 1 | 3.00 (2.00) |
Predictors | Being Away | Self-Rated Health | ||
---|---|---|---|---|
Main Model (R2 = 0.13) | Full Model (R2 = 0.17) | Main Model (R2 = 0.06) | Full Model (R2 = 0.07) | |
β (95% CI) | β (95% CI) | OR (95% CI) | OR (95% CI) | |
Mechanical sounds | −0.12 (−0.25, 0.01) | −0.06 (−0.20, 0.08) | 0.86 (0.79, 0.93) 1 | 0.86 (0.79, 0.94) 1 |
Human sounds | −0.09 (−0.28, 0.10) | −0.07 (−0.27, 0.13) | 1.05 (0.94, 1.19) | 1.04 (0.91, 1.17) |
Nature sounds | 0.47 (0.20, 0.74) 1 | 0.41 (0.14, 0.69) 1 | 1.06 (0.89, 1.25) | 1.06 (0.88, 1.26) |
Gender (female vs. male) | 0.57 (−0.18, 1.32) | 0.40 (−0.38, 1.18) | 0.64 (0.40, 1.01) | 0.66 (0.41, 1.06) |
Age | 0.16 (0.04, 0.28) 1 | 0.16 (0.04, 0.28) 1 | 1.02 (0.95, 1.09) | 1.00 (0.93, 1.07) |
Ethnicity (other vs. Bulgarian) | −0.26 (−1.33, 0.81) | −0.28 (−1.43, 0.88) | 0.80 (0.43, 1.46) | 0.92 (0.49, 1.75) |
Income adequacy | 0.50 (0.16, 0.84) 1 | 0.49 (0.15, 0.83) 1 | 1.29 (1.07, 1.57) 1 | 1.22 (1.00, 1.49) |
Environmental sensitivity | −0.14 (−0.23, −0.06) 1 | −0.15 (−0.24, −0.06) 1 | 0.91 (0.86, 0.97) 1 | 0.92 (0.87, 0.97) 1 |
Settlement type | ||||
Town vs. city | 0.28 (−0.56, 1.14) | 0.72 (0.43, 1.19) | ||
Village vs. city | 0.55 (−0.76, 1.86) | 0.66 (0.27, 1.62) | ||
University (PU vs. MUP) | 0.60 (−0.33, 1.52) | 1.04 (0.61, 1.76) | ||
Dwelling type | ||||
House vs. apartment | 0.18 (−0.68, 1.05) | 1.03 (0.61, 1.74) | ||
Hostel vs. apartment | −1.06 (−3.32, 1.20) | 0.71 (0.23, 2.20) | ||
Duration of residence | −0.03 (−0.07, 0.02) | 1.02 (0.99, 1.04) | ||
Time at home/day | 0.08 (−0.05, 0.21) | 0.98 (0.91, 1.05) | ||
Crowding | −0.19 (−0.89, 0.51) | 1.18 (0.75, 1.84) | ||
Quiet room | 0.72 (−0.10, 1.53) | 1.15 (0.70, 1.89) | ||
Soundproof windows | 0.38 (−0.36, 1.11) | 1.82 (1.15, 2.88) 1 |
Effect Modifier | N | Mechanical Sounds | p-int. | Human Sounds | p-int. | Nature Sounds | p-int. |
---|---|---|---|---|---|---|---|
Gender | 0.136 | 0.154 | 0.233 | ||||
Male | 100 | 0.78 (0.67, 0.90) | 1.31 (1.02, 1.68) | 1.22 (0.88, 1.68) | |||
Female | 223 | 0.88 (0.81, 0.97) | 1.00 (0.87, 1.15) | 1.01 (0.82, 1.24) | |||
Income adequacy | 0.674 | 0.912 | 0.473 | ||||
Low | 193 | 0.85 (0.78, 0.95) | 1.05 (0.90, 1.22) | 1.02 (0.82, 1.28) | |||
High | 130 | 0.84 (0.73, 0.97) | 1.06 (0.87, 1.30) | 1.16 (0.87, 1.54) | |||
Quiet room | 0.653 | 0.882 | 0.923 | ||||
No | 210 | 0.87 (0.79, 0.95) | 1.04 (0.89, 1.21) | 1.05 (0.85, 1.30) | |||
Yes | 113 | 0.90 (0.76, 1.07) | 1.04 (0.84, 1.29) | 1.09 (0.80, 1.50) | |||
Soundproof windows | 0.622 | 0.090 1 | 0.254 | ||||
No | 183 | 0.84 (0.76, 0.93) | 1.16 (0.98, 1.37) | 1.09 (0.87, 1.37) | |||
Yes | 140 | 0.90 (0.80, 1.02) | 0.95 (0.79, 1.13) | 0.98 (0.75, 1.28) | |||
Garden | 0.212 | 0.193 | 0.028 1 | ||||
No | 171 | 0.89 (0.80, 0.98) | 1.07 (0.92, 1.25) | 1.17 (0.93, 1.48) | |||
Yes | 152 | 0.81 (0.70, 0.93) | 1.02 (0.85, 1.24) | 0.84 (0.64, 1.11) | |||
Terrace/balcony | 0.201 | 0.593 | 0.680 | ||||
No | 46 | 0.60 (0.43, 0.84) | 1.21 (0.84, 1.74) | 0.90 (0.51, 1.58) | |||
Yes | 277 | 0.88 (0.81, 0.95) | 1.02 (0.90, 1.16) | 1.09 (0.90, 1.31) | |||
Crowding | 0.094 1 | 0.736 | 0.012 1 | ||||
Low | 204 | 0.79 (0.71, 0.88) | 1.10 (0.94, 1.28) | 0.87 (0.70, 1.09) | |||
High | 119 | 0.92 (0.82, 1.03) | 0.91 (0.74, 1.11) | 1.34 (1.00, 1.80) | |||
Environmental sensitivity | 0.567 | 0.618 | 0.108 | ||||
Low | 148 | 0.87 (0.77, 0.98) | 1.04 (0.86, 1.24) | 0.91 (0.70, 1.17) | |||
High | 175 | 0.85 (0.77, 0.94) | 1.05 (0.89, 1.23) | 1.19 (0.94, 1.51) | |||
Depression | 0.007 1 | 0.293 | 0.602 | ||||
No | 211 | 0.95 (0.86, 1.05) | 0.95 (0.82, 1.11) | 1.07 (0.86, 1.34) | |||
Yes | 112 | 0.77 (0.67, 0.87) | 1.14 (0.93, 1.39) | 1.08 (0.81, 1.45) | |||
Anxiety | 0.359 | 0.700 | 0.366 | ||||
No | 253 | 0.90 (0.82, 0.98) | 1.06 (0.92, 1.21) | 1.00 (0.82, 1.22) | |||
Yes | 70 | 0.83 (0.71, 0.97) | 1.13 (0.87, 1.48) | 1.24 (0.83, 1.87) | |||
Time at home | 0.261 | 0.288 | 0.770 | ||||
<20 h | 185 | 0.92 (0.83, 1.02) | 0.95 (0.80, 1.12) | 1.14 (0.91, 1.43) | |||
> 20 h | 138 | 0.79 (0.70, 0.89) | 1.17 (0.97, 1.41) | 1.00 (0.76, 1.32) |
Being Away | Self-Rated Health | |||
---|---|---|---|---|
β (95% CI) | p-Value | β (95% CI) | p-Value | |
Direct effects | ||||
Mechanical sounds | −0.15 (−0.28, −0.02) | 0.025 | −0.08 (−0.12, −0.04) | <0.001 |
Human sounds | −0.03 (−0.22, 0.16) | 0.750 | 0.03 (−0.03, 0.10) | 0.344 |
Nature sounds | 0.43 (0.16, 0.71) | 0.002 | 0.01 (−0.09, 0.11) | 0.881 |
Indirect effects | ||||
Mechanical sounds | - | - | −0.01 (−0.03, −0.001) | 0.057 |
Human sounds | - | - | −0.002 (−0.02, 0.01) | 0.759 |
Nature sounds | - | - | 0.03 (0.01, 0.06) | 0.014 |
Total effects | ||||
Mechanical sounds | −0.15 (−0.28, −0.02) | 0.025 | −0.09 (−0.13, −0.05) | <0.001 |
Human sounds | −0.03 (−0.22, 0.16) | 0.750 | 0.03 (−0.04, 0.10) | 0.400 |
Nature sounds | 0.43 (0.16, 0.71) | 0.002 | 0.04 (−0.06, 0.14) | 0.409 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dzhambov, A.M.; Lercher, P.; Stoyanov, D.; Petrova, N.; Novakov, S.; Dimitrova, D.D. University Students’ Self-Rated Health in Relation to Perceived Acoustic Environment during the COVID-19 Home Quarantine. Int. J. Environ. Res. Public Health 2021, 18, 2538. https://doi.org/10.3390/ijerph18052538
Dzhambov AM, Lercher P, Stoyanov D, Petrova N, Novakov S, Dimitrova DD. University Students’ Self-Rated Health in Relation to Perceived Acoustic Environment during the COVID-19 Home Quarantine. International Journal of Environmental Research and Public Health. 2021; 18(5):2538. https://doi.org/10.3390/ijerph18052538
Chicago/Turabian StyleDzhambov, Angel M., Peter Lercher, Drozdstoy Stoyanov, Nadezhda Petrova, Stoyan Novakov, and Donka D. Dimitrova. 2021. "University Students’ Self-Rated Health in Relation to Perceived Acoustic Environment during the COVID-19 Home Quarantine" International Journal of Environmental Research and Public Health 18, no. 5: 2538. https://doi.org/10.3390/ijerph18052538
APA StyleDzhambov, A. M., Lercher, P., Stoyanov, D., Petrova, N., Novakov, S., & Dimitrova, D. D. (2021). University Students’ Self-Rated Health in Relation to Perceived Acoustic Environment during the COVID-19 Home Quarantine. International Journal of Environmental Research and Public Health, 18(5), 2538. https://doi.org/10.3390/ijerph18052538