Polycyclic Aromatic Hydrocarbons in Indoor Dust Collected during the COVID-19 Pandemic Lockdown in Saudi Arabia: Status, Sources and Human Health Risks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Solvents
2.2. Sampling
2.3. Sample Preparation and Quantitative Analysis
2.4. Human Risk Assessment Calculations
3. Results and Discussion
3.1. Profiling of PAHs in COVID-19 Lockdown Household Dust
3.2. Source Apportionment
3.3. Human Health Risk Assessment to PAHs via Dust Exposure
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Dong, T.T.; Lee, B.K. Characteristics, toxicity, and source apportionment of polycylic aromatic hydrocarbons (PAHs) in road dust of Ulsan, Korea. Chemosphere 2009, 74, 1245–1253. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Shafy, H.I.; Mansour, M.S. A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egypt. J. Pet. 2016, 25, 107–123. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Sheng, G.; Bi, X.; Feng, Y.; Mai, B.; Fu, J. Emission factors for carbonaceous particles and polycyclic aromatic hydrocarbons from residential coal combustion in China. Environ. Sci. Technol. 2005, 39, 1861–1867. [Google Scholar] [CrossRef]
- Guo, H.; Lee, S.C.; Ho, K.F.; Wang, X.M.; Zou, S.C. Particle-associated polycyclic aromatic hydrocarbons in urban air of Hong Kong. Atmos. Environ. 2003, 37, 5307–5317. [Google Scholar] [CrossRef]
- Gevao, B.; Al-Bahloul, M.; Zafar, J.; Al-Matrouk, K.; Helaleh, M. Polycyclic aromatic hydrocarbons in indoor air and dust in Kuwait: Implications for sources and nondietary human exposure. Arch. Environ. Contam. Toxicol. 2007, 53, 503–512. [Google Scholar] [CrossRef] [PubMed]
- Ali, N.; Ismail, I.M.I.; Khoder, M.; Shamy, M.; Alghamdi, M.; Costa, M.; Ali, L.N.; Wang, W.; Eqani, S.A.M.A.S. Polycyclic aromatic hydrocarbons (PAHs) in indoor dust samples from Cities of Jeddah and Kuwait: Levels, sources and non-dietary human exposure. Sci. Total Environ. 2016, 573, 1607–1614. [Google Scholar] [CrossRef] [PubMed]
- Ali, N. Polycyclic aromatic hydrocarbons (PAHs) in indoor air and dust samples of different Saudi microenvironments; health and carcinogenic risk assessment for the general population. Sci. Total Environ. 2019, 696, 133995. [Google Scholar] [CrossRef]
- Chuang, J.C.; Callahan, P.J.; Menton, R.G.; Gordon, S.M.; Lewis, R.G.; Wilson, N.K. Monitoring methods for polycyclic aromatic hydrocarbons and their distribution in house dust and track-in soil. Environ. Sci. Technol. 1995, 29, 494–500. [Google Scholar] [CrossRef]
- Sanderson, E.G.; Farant, J.P. Indoor and outdoor polycyclic aromatic hydrocarbons in residences surrounding a Söderberg aluminum smelter in Canada. Environ. Sci. Technol. 2004, 38, 5350–5356. [Google Scholar] [CrossRef]
- Butte, W.; Heinzow, B. Pollutants in house dust as indicators of indoor contamination. Rev. Environ. Contam. Toxicol. 2002, 175, 1. [Google Scholar] [PubMed]
- Kameda, T. Atmospheric chemistry of polycyclic aromatic hydrocarbons and related compounds. J. Health Sci. 2011, 57, 504–511. [Google Scholar] [CrossRef] [Green Version]
- Kuo, C.Y.; Chien, P.S.; Kuo, W.C.; Wei, C.T.; Rau, J.Y. Comparison of polycyclic aromatic hydrocarbon emissions on gasoline-and diesel-dominated routes. Environ. Monit. Assess. 2013, 185, 5749–5761. [Google Scholar] [CrossRef] [PubMed]
- Roberts, J.W.; Wallace, L.A.; Camann, D.E.; Dickey, P.; Gilbert, S.G.; Lewis, R.G.; Takaro, T.K. Monitoring and reducing exposure of infants to pollutants in house dust. In Reviews of Environmental Contamination and Toxicology; Springer: Boston, MA, USA, 2009; Volume 201, pp. 19–39. [Google Scholar]
- Santillo, D.; Labunska, I.; Davidson, H.; Johnston, P.; Strutt, M.; Knowles, O. Consuming chemicals: Hazardous chemicals in house dust as an indicator of chemical exposure in the home. Greenpeace Res. Lab. Tech. Note 2003, 2, 71. [Google Scholar]
- Deziel, N.C.; Wei, W.Q.; Abnet, C.C.; Qiao, Y.L.; Sunderland, D.; Ren, J.S.; Schantz, M.M.; Zhang, Y.; Strickland, P.T.; Abubaker, S.; et al. A multi-day environmental study of polycyclic aromatic hydrocarbon exposure in a high-risk region for esophageal cancer in China. J. Expo. Sci. Environ. Epidemiol. 2013, 23, 52–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, K.H.; Jahan, S.A.; Kabir, E.; Brown, R.J. A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects. Environ. Int. 2013, 60, 71–80. [Google Scholar] [CrossRef]
- Boström, C.E.; Gerde, P.; Hanberg, A.; Jernström, B.; Johansson, C.; Kyrklund, T.; Rannug, A.; Törnqvist, M.; Victorin, K.; Westerholm, R. Cancer risk assessment, indicators, and guidelines for polycyclic aromatic hydrocarbons in the ambient air. Environ. Health Perspect. 2002, 110 (Suppl. 3), 451–488. [Google Scholar] [PubMed] [Green Version]
- Lian, X.; Huang, J.; Huang, R.; Liu, C.; Wang, L.; Zhang, T. Impact of city lockdown on the air quality of COVID-19-hit of Wuhan city. Sci. Total Environ. 2020, 742, 140556. [Google Scholar] [CrossRef] [PubMed]
- Martin, A.; Markhvida, M.; Hallegatte, S.; Walsh, B. Socio-economic impacts of COVID-19 on household consumption and poverty. Econ. Disasters Clim. Chang. 2020, 4, 453–479. [Google Scholar] [CrossRef] [PubMed]
- Sjödin, H.; Wilder-Smith, A.; Osman, S.; Farooq, Z.; Rocklöv, J. Only strict quarantine measures can curb the coronavirus disease (COVID-19) outbreak in Italy, 2020. Eurosurveillance 2020, 25, 200. [Google Scholar] [CrossRef]
- Paustenbach, D.J.; Finley, B.L.; Long, T.F. The critical role of house dust in understanding the hazards posed by contaminated soils. Int. J. Toxicol. 1997, 16, 339–362. [Google Scholar] [CrossRef]
- Bergh, C.; Luongo, G.; Wise, S.; Östman, C. Organophosphate and phthalate esters in standard reference material 2585 organic contaminants in house dust. Anal. Bioanal. Chem. 2012, 402, 51–59. [Google Scholar] [CrossRef]
- Doyi, I.N.; Isley, C.F.; Soltani, N.S.; Taylor, M.P. Human exposure and risk associated with trace element concentrations in indoor dust from Australian homes. Environ. Int. 2019, 133, 105125. [Google Scholar] [CrossRef] [PubMed]
- Health Canada. Federal Contaminated Site Risk Assessment in Canada, Part II: Health Canada Toxicological Reference Values (TRVs) and Chemical-Specific Factors; Version 2.0; Health Canada: Ottawa, ON, Canada, 2010.
- USEPA. Risk Assessment Guidance for Superfund: Volume III Part A, Process for Conducting Probabilistic Risk Assessment; US Environmental Protection Agency: Washington, DC, USA, 2001.
- Department of Health. Australian Exposure Factor Guidance Document, Guidelines for Assessing Human Health Risks from Environmental Hazards. Available online: https://www.health.gov.au/internet/main/publishing.nsf/content/A12B57E41EC9F326CA257BF0001F9E7D/$File/Aust-Exposure-Factor-Guide.pdf (accessed on 1 February 2021).
- Maragkidou, A.; Arar, S.; Al-Hunaiti, A.; Ma, Y.; Harrad, S.; Jaghbeir, O.; Faouri, D.; Hämeri, K.; Hussein, T. Occupational health risk assessment and exposure to floor dust PAHs inside an educational building. Sci. Total Environ. 2017, 579, 1050–1056. [Google Scholar] [CrossRef] [PubMed]
- Hsu, H.I.; Lin, M.Y.; Chen, Y.C.; Chen, W.Y.; Yoon, C.; Chen, M.R.; Tsai, P.J. An integrated approach to assess exposure and health-risk from polycyclic aromatic hydrocarbons (PAHs) in a fastener manufacturing industry. Int. J. Environ. Res. Public Health 2014, 11, 9578–9594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maertens, R.M.; Yang, X.; Zhu, J.; Gagne, R.W.; Douglas, G.R.; White, P.A. Mutagenic and carcinogenic hazards of settled house dust I: Polycyclic aromatic hydrocarbon content and excess lifetime cancer risk from preschool exposure. Environ. Sci. Technol. 2008, 42, 1747–1753. [Google Scholar] [CrossRef] [Green Version]
- Mahler, B.J.; Metre, P.C.V.; Wilson, J.T.; Musgrove, M.; Burbank, T.L.; Ennis, T.E.; Bashara, T.J. Coal-tar-based parking lot sealcoat: An unrecognized source of PAH to settled house dust. Environ. Sci. Technol. 2010, 44, 894–900. [Google Scholar] [CrossRef]
- Qi, H.; Li, W.L.; Zhu, N.Z.; Ma, W.L.; Liu, L.Y.; Zhang, F.; Li, Y.F. Concentrations and sources of polycyclic aromatic hydrocarbons in indoor dust in China. Sci. Total Environ. 2014, 491, 100–107. [Google Scholar] [CrossRef]
- Kang, Y.; Cheung, K.C.; Wong, M.H. Polycyclic aromatic hydrocarbons (PAHs) in different indoor dusts and their potential cytotoxicity based on two human cell lines. Environ. Int. 2010, 36, 542–547. [Google Scholar] [CrossRef]
- Mannino, M.R.; Orecchio, S. Polycyclic aromatic hydrocarbons (PAHs) in indoor dust matter of Palermo (Italy) area: Extraction, GC–MS analysis, distribution and sources. Atmos. Environ. 2008, 42, 1801–1817. [Google Scholar] [CrossRef]
- Whitehead, T.P.; Metayer, C.; Petreas, M.; Does, M.; Buffler, P.A.; Rappaport, S.M. Polycyclic aromatic hydrocarbons in residential dust: Sources of variability. Environ. Health Perspect. 2013, 121, 543–550. [Google Scholar] [CrossRef] [PubMed]
- Yunker, M.B.; Macdonald, R.W.; Vingarzan, R.; Mitchell, R.H.; Goyette, D.; Sylvestre, S. PAHs in the Fraser River basin: A critical appraisal of PAH ratios as indicators of PAH source and composition. Org. Geochem. 2002, 33, 489–515. [Google Scholar] [CrossRef]
- Baumard, P.; Budzinski, H.; Garrigues, P.; Dizer, H.; Hansen, P.D. Polycyclic aromatic hydrocarbons in recent sediments and mussels (Mytilus edulis) from the Western Baltic Sea: Occurrence, bioavailability and seasonal variations. Mar. Environ. Res. 1999, 47, 17–47. [Google Scholar] [CrossRef]
- Budzinski, H.; Jones, I.; Bellocq, J.; Pierard, C.; Garrigues, P.H. Evaluation of sediment contamination by polycyclic aromatic hydrocarbons in the Gironde estuary. Mar. Chem. 1997, 58, 85–97. [Google Scholar] [CrossRef]
- Li, C.K.; Kamens, R.M. The use of polycyclic aromatic hydrocarbons as source signatures in receptor modeling. Atmos. Environ. Part A Gen. Top. 1993, 27, 523–532. [Google Scholar] [CrossRef] [Green Version]
- Sicre, M.A.; Marty, J.C.; Saliot, A.; Aparicio, X.; Grimalt, J.; Albaiges, J. Aliphatic and aromatic hydrocarbons in different sized aerosols over the Mediterranean Sea: Occurrence and origin. Atmos. Environ. (1967) 1987, 21, 2247–2259. [Google Scholar] [CrossRef]
- Cecinato, A. Polynuclear aromatic hydrocarbons (PAH), benz (a) pyrene (BaPY) and nitrated-PAH (N-PAH) in suspended particulate matter: Proposal for revision of the Italian reference method. Annali di Chimica 1997, 87, 483–496. [Google Scholar]
- Wei, H.; Guangbin, L.; Yong, T.; Qin, Z. Emission of polycyclic aromatic hydrocarbons from different types of motor vehicles’ exhaust. Environ. Earth Sci. 2015, 74, 5557–5564. [Google Scholar] [CrossRef]
- Bulder, A.S.; Hoogenboom, L.A.P.; Kan, C.A.; Van Raamsdonk, L.W.D.; Traag, W.A.; Bouwmeester, H. Initial Risk Assessment of Polycyclic Aromatic Hydrocarbons (PAHs) in Feed (Materials); No. 2006.001; RIKILT: Wageningen, The Netherlands, 2006. [Google Scholar]
Parameters | Children | Adults | Reference |
---|---|---|---|
Ingestion rate (Ring) (mg day−1) | 200 | 100 | [7] |
Inhalation rate (Rinh) (m3 day−1) | 7.6 | 20 | [7] |
Exposure frequency (EF) (day year−1) | 350 | [25] | |
Duration of exposure (ED) (years) | 2 | 30 | [26] |
Exposed skin area (SA) (cm3) | 1600 | 6700 | [26] |
Dust to skin adherence factor (SL) (mg cm−2) | 0.5 | [26] | |
Dermal absorption factor (ABSd) | 0.03 | 0.001 | [25] |
Particle emission factor (PEF) (m3 kg−1) | 1.36 × 109 | [25] | |
Body weight (BW) (kg) | 15 | 70 | [7] |
Lifetime (LT) (years) | 70 | [7] | |
Conversion factor (CF) | 1 × 10−6 | [25] | |
Dust dermal contact factor-age-adjusted (DFSadj) (mg × year kg−1 day−1) | 362.4 | [25] | |
Dust ingestion rate age-adjusted (IR) (mg × year kg−1 day−1) | 113 | [25] | |
Exposure time (ET) (hr day−1) | 17.8 | 20 | [26] |
Average non-carcinogenic exposure time (ATnca) | ED × 365 | [25] | |
Average carcinogenic exposure time (ATca) | LT × 365 | [25] |
Analytes | PAHs | BaPeq as TEQ | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Average | StDev | Median | Mini | Max | Toxic Equivalent Factors (TEFs) [28] | Average | StDev | Median | Mini | Max | |
Ace | 80 | 225 | <LOQ | <LOQ | 1130 | 0.001 | 0 | 0 | 0 | 0 | 1 |
Flu | 520 | 1320 | 255 | 165 | 7710 | 0.001 | 1 | 1 | 0 | 0 | 8 |
Phe | 1590 | 2215 | 950 | 320 | 12,850 | 0.001 | 2 | 2 | 1 | 0 | 13 |
Ant | 400 | 595 | 215 | 170 | 3390 | 0.01 | 4 | 6 | 2 | 2 | 34 |
Pyr | 910 | 955 | 600 | 170 | 4700 | 0.001 | 1 | 1 | 1 | 0 | 5 |
BaA | 205 | 195 | 175 | <LOQ | 845 | 0.1 | 20 | 19 | 18 | 0 | 85 |
Chr | 660 | 965 | 380 | 60 | 4990 | 0.01 | 7 | 10 | 4 | 1 | 50 |
BbF | 485 | 505 | 300 | <LOQ | 2675 | 0.1 | 48 | 50 | 30 | 0 | 268 |
BkF | 585 | 1445 | 435 | <LOQ | 7115 | 0.1 | 59 | 145 | 44 | 0 | 712 |
BaP | 250 | 490 | <LOQ | <LOQ | 2155 | 1 | 250 | 490 | 2 | 0 | 2155 |
IcdP | 240 | 260 | 135 | <LOQ | 1200 | 0.1 | 24 | 26 | 13 | 0 | 120 |
DahA | 170 | 400 | 65 | <LOQ | 2095 | 1 | 170 | 400 | 65 | 0 | 2095 |
BghiP | 235 | 320 | 90 | <LOQ | 1115 | 0.01 | 2 | 3 | 1 | 0 | 11 |
PAHs | 6570 | 6700 | 3980 | 2310 | 37,665 | ||||||
BaPE | 385 | 595 | 100 | 5 | 2710 | ||||||
BaPE/BaP | 7.1 | 6.1 | 5.4 | 1.2 | 21.2 |
Chemicals | Adults | Children | |||||||
Non-Carcinogenic | RfD [42] | HQ-Ingestion | HQ-Dermal | HQ-Inhalation | HI | HQ-Ingestion | HQ-Dermal | HQ-Inhalation | HI |
Ace | 0.06 | 1.3 × 10−6 | 8.9 × 10−8 | 7.8 × 10−9 | 1.4 × 10−6 | 2.5 × 10−5 | 3.0 × 10−6 | 1.2 × 10−8 | 2.8 × 10−5 |
Flu | 0.04 | 6.6 × 10−6 | 4.4 × 10−7 | 3.9 × 10−8 | 7.1 × 10−6 | 1.2 × 10−4 | 1.5 × 10−5 | 6.1 × 10−8 | 1.4 × 10−4 |
Phe | 0.04 | 4.4 × 10−5 | 2.9 × 10−6 | 2.6 × 10−7 | 4.7 × 10−5 | 8.2 × 10−4 | 9.8 × 10−5 | 4.1 × 10−7 | 9.2 × 10−4 |
Ant | 0.3 | 1.6 × 10−6 | 1.0 × 10−7 | 9.1 × 10−9 | 1.7 × 10−6 | 2.9 × 10−5 | 3.5 × 10−6 | 1.4 × 10−8 | 3.3 × 10−5 |
Pyr | 0.03 | 4.6 × 10−5 | 3.1 × 10−6 | 2.7 × 10−7 | 5.0 × 10−5 | 8.7 × 10−4 | 1.0 × 10−4 | 4.3 × 10−7 | 9.7 × 10−4 |
BaP | 0.00014 * | 3.7 × 10−3 | 2.5 × 10−4 | 2.2 × 10−5 | 4.0 × 10−3 | 6.9 × 10−2 | 8.3 × 10−3 | 3.5 × 10−5 | 7.8 × 10−2 |
Carcinogenic | Ingestion dose | Dermal dose | Inhalation dose | ILRC | Ingestion dose | Dermal dose | Inhalation dose | ILRC (Children) | |
∑PAHs | 1.9 × 10−5 | 6.1 × 10−8 | 3.1 × 10−6 | 1.5 × 10−4 | 1.9 × 10−5 | 1.8 × 10−6 | 1.8 × 10−7 | 1.9 × 10−4 | |
BaP | 1.2 × 10−6 | 3.8 × 10−9 | 1.9 × 10−7 | 9.4 × 10−6 | 1.2 × 10−6 | 1.1 × 10−7 | 1.1 × 10−8 | 1.1 × 10−5 | |
BaP × 10 | 1.4 × 10−6 | 4.5 × 10−9 | 2.3 × 10−7 | 1.1 × 10−5 | 1.4 × 10−6 | 1.3 × 10−7 | 1.3 × 10−8 | 1.4 × 10−5 |
Analytes | Adults | Toddlers | ||||||
---|---|---|---|---|---|---|---|---|
Exposure with Low Dust Intake (20 mg/Day) | Exposure with High Dust Intake (100 mg/Day) | Exposure with Low Dust Intake (50 mg/Day) | Exposure with High Dust Intake (200 mg/Day) | |||||
90th Percentile | Mean | 90th Percentile | Mean | 90th Percentile | Mean | 90th Percentile | Mean | |
Ace | 0.0 | 0.0 | 0.2 | 0.1 | 0.5 | 0.3 | 1.9 | 1.3 |
Flu | 0.1 | 0.1 | 0.5 | 0.7 | 1.6 | 2.2 | 6.4 | 8.7 |
Phe | 0.7 | 0.5 | 3.7 | 2.3 | 10.7 | 6.6 | 42.7 | 26.5 |
Ant | 0.2 | 0.1 | 1.0 | 0.6 | 2.8 | 1.7 | 11.3 | 6.6 |
Pyr | 0.6 | 0.3 | 2.9 | 1.3 | 8.5 | 3.8 | 33.9 | 15.1 |
BaA | 0.1 | 0.1 | 0.6 | 0.3 | 1.6 | 0.9 | 6.4 | 3.4 |
Chr | 0.5 | 0.2 | 2.4 | 0.9 | 7.0 | 2.7 | 28.1 | 11.0 |
BbF | 0.3 | 0.1 | 1.6 | 0.7 | 4.7 | 2.0 | 18.9 | 8.0 |
BkF | 0.3 | 0.2 | 1.4 | 0.8 | 4.1 | 2.4 | 16.6 | 9.7 |
BaP | 0.2 | 0.1 | 1.1 | 0.4 | 3.2 | 1.0 | 12.7 | 4.2 |
IcdP | 0.2 | 0.1 | 0.8 | 0.3 | 2.4 | 1.0 | 9.7 | 4.0 |
DahA | 0.1 | 0.0 | 0.3 | 0.2 | 0.9 | 0.7 | 3.5 | 2.8 |
BghiP | 0.2 | 0.1 | 0.9 | 0.3 | 2.6 | 1.0 | 10.6 | 4.0 |
PAHs | 3.5 | 1.9 | 17.5 | 9.5 | 51.5 | 27.5 | 206 | 109.5 |
BaPE | 0.3 | 0.1 | 1.3 | 0.5 | 3.7 | 1.6 | 14.9 | 6.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alamri, S.H.; Ali, N.; Ali Albar, H.M.S.; Rashid, M.I.; Rajeh, N.; Ali Qutub, M.M.; Malarvannan, G. Polycyclic Aromatic Hydrocarbons in Indoor Dust Collected during the COVID-19 Pandemic Lockdown in Saudi Arabia: Status, Sources and Human Health Risks. Int. J. Environ. Res. Public Health 2021, 18, 2743. https://doi.org/10.3390/ijerph18052743
Alamri SH, Ali N, Ali Albar HMS, Rashid MI, Rajeh N, Ali Qutub MM, Malarvannan G. Polycyclic Aromatic Hydrocarbons in Indoor Dust Collected during the COVID-19 Pandemic Lockdown in Saudi Arabia: Status, Sources and Human Health Risks. International Journal of Environmental Research and Public Health. 2021; 18(5):2743. https://doi.org/10.3390/ijerph18052743
Chicago/Turabian StyleAlamri, Sultan Hassan, Nadeem Ali, Hussain Mohammed Salem Ali Albar, Muhammad Imtiaz Rashid, Nisreen Rajeh, Majdy Mohammed Ali Qutub, and Govindan Malarvannan. 2021. "Polycyclic Aromatic Hydrocarbons in Indoor Dust Collected during the COVID-19 Pandemic Lockdown in Saudi Arabia: Status, Sources and Human Health Risks" International Journal of Environmental Research and Public Health 18, no. 5: 2743. https://doi.org/10.3390/ijerph18052743
APA StyleAlamri, S. H., Ali, N., Ali Albar, H. M. S., Rashid, M. I., Rajeh, N., Ali Qutub, M. M., & Malarvannan, G. (2021). Polycyclic Aromatic Hydrocarbons in Indoor Dust Collected during the COVID-19 Pandemic Lockdown in Saudi Arabia: Status, Sources and Human Health Risks. International Journal of Environmental Research and Public Health, 18(5), 2743. https://doi.org/10.3390/ijerph18052743