Healthcare-Associated Laboratory-Confirmed Bloodstream Infections—Species Diversity and Resistance Mechanisms, a Four-Year Retrospective Laboratory-Based Study in the South of Poland
Abstract
:1. Introduction
2. Materials and Methods
2.1. Culture and Identification
2.2. Resistance Mechanisms
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- European Centre for Disease Prevention and Control. Incidence and Attributable Mortality of Healthcare-Associated Infections in Intensive Care Units in Europe, 2008–2012; ECDC: Stockholm, Sweden, 2018; Available online: https://www.ecdc.europa.eu/sites/default/files/documents/surveillance-report-HAI-Net-ICU-mortality-2008-2012.pdf (accessed on 15 October 2020).
- Fleischmann, M.C.; Scherag, A.; Adhikari, N.K.J.; Hartog, C.S.; Tsaganos, T.; Schlattmann, P.; Angus, D.C.; Reinhart, K. Assessment of global incidence and mortality of hospital-treated sepsis current estimates and limitations. Am. J. Respir. Crit. Care Med. 2016, 193, 259–272. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Sakhuja, A.; Kumar, G.; McGrath, E.; Nanchal, R.S.; Kashani, K.B. Culture-Negative Severe Sepsis. Chest 2016, 150, 1251–1259. [Google Scholar] [CrossRef] [PubMed]
- Źródłowski, T.; Sobońska, J.; Salamon, D.; McFarlane, I.M.; Ziętkiewicz, M.; Gosiewski, T. Classical Microbiological Diagnostics of Bacteremia: Are the Negative Results Really Negative? What is the Laboratory Result Telling Us About the “Gold Standard”? Microorganisms 2020, 8, 346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Idelevich, E.A.; Seifert, H.; Sundqvist, M.; Scudeller, L.; Amit, S.; Balode, A.; Bilozor, A.; Drevinek, P.; Tufan, Z.K.; Koraqi, A.; et al. Microbiological diagnostics of bloodstream infections in Europe—An ESGBIES survey. Clin. Microbiol. Infect. 2019, 25, 1399–1407. [Google Scholar] [CrossRef]
- Wałaszek, M.; Różańska, A.; Bulanda, M.; Wojkowska-Mach, J.; Polish Society of Hospital Infections Team. Alarming results of nosocomial bloodstream infections surveillance in Polish intensive care units. Prz. Epidemiol. 2018, 72, 33–44. [Google Scholar]
- Deptuła, A.; Trejnowska, E.; Dubiel, G.; Wanke-Rytt, M.; Deptuła, M.; Hryniewicz, W. Healthcare associated bloodstream infections in Polish hospitals: Prevalence, epidemiology and microbiology-summary data from the ECDC Point Prevalence Survey of Healthcare Associated Infections 2012–2015. Eur. J. Clin. Microbiol. Infect. Dis. 2018, 37, 565–570. [Google Scholar] [CrossRef]
- Litwin, A.; Fedorowicz, O.; Duszynska, W. Characteristics of Microbial Factors of Healthcare-Associated Infections Including Multidrug-Resistant Pathogens and Antibiotic Consumption at the University Intensive Care Unit in Poland in the Years 2011–2018. Int. J. Environ. Res. Public Health 2020, 17, 6943. [Google Scholar] [CrossRef]
- Kołpa, M.; Wałaszek, M.; Gniadek, A.; Wolak, Z.; Dobroś, W. Incidence, Microbiological Profile and Risk Factors of Healthcare-Associated Infections in Intensive Care Units: A 10 Year Observation in a Provincial Hospital in Southern Poland. Int. J. Environ. Res. Public Health 2018, 15, 112. [Google Scholar] [CrossRef] [Green Version]
- Rhee, C.; Kadri, S.S.; Dekker, J.P.; Danner, R.L.; Chen, H.-C.; Fram, D.; Zhang, F.; Wang, R.; Klompas, M.; for the CDC Prevention Epicenters Program. Prevalence of Antibiotic-Resistant Pathogens in Culture-Proven Sepsis and Outcomes Associated With Inadequate and Broad-Spectrum Empiric Antibiotic Use. JAMA Netw. Open 2020, 3, e202899. [Google Scholar] [CrossRef] [PubMed]
- Weiner, L.M.; Webb, A.K.; Limbago, B.; Dudeck, M.A.; Patel, J.; Kallen, A.J.; Edwards, J.R.; Sievert, D.M. Antimicrobial-Resistant Pathogens Associated With Healthcare-Associated Infections: Summary of Data Reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2011–2014. Infect. Control Hosp. Epidemiol. 2016, 7, 1288–1301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, Y.; Huang, Y.; Lizou, Y.; Li, J.; Zhang, R. Evaluation of Staphylococcus aureus Subtyping Module for Methicillin-Resistant Staphylococcus aureus Detection Based on Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry. Front. Microbiol. 2019, 10, 2504. [Google Scholar] [CrossRef]
- ECDC. Healthcare-Associated Infections Acquired in Intensive Care Units; Annual Epidemiological Report for 2017; ECDC: Stockholm, Sweden, 2017; Available online: https://www.ecdc.europa.eu/sites/default/files/documents/AER_for_2017-HAI.pdf (accessed on 1 October 2020).
- Wisplinghoff, H.; Bischoff, T.; Tallent, S.M.; Seifert, H.; Wenzel, R.P.; Edmond, M.B. Nosocomial bloodstream infections in US hospitals: Analysis of 24,179 cases from a prospective nationwide surveillance study. Clin. Infect. Dis. 2004, 39, 309–317. [Google Scholar] [CrossRef] [Green Version]
- Bodonaik, N.C.; Moonah, S. Coagulase negative Staphylococci from blood cultures: Contaminants or pathogens? West Indian Med. J. 2006, 55, 174–182. [Google Scholar] [CrossRef]
- Ruiz-Giardin, J.M.; Ochoa Chamorro, I.; Velázquez Ríos, L.; Aroca, J.J.; Arata, M.I.G.; López, J.V.S.; Santillán, M.G. Bloodstream infections associated with central and peripheral venous catheters. BMC Infect. Dis. 2019, 19, 841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ifantidou, A.M.; Diamantidis, M.D.; Tseliki, G.; Angelou, A.S.; Christidou, P.; Papa, A.; Pentilas, D. Corynebacterium jeikeium bacteremia in a hemodialyzed patient. Int. J. Infect. Dis. 2010, 14, e265–e268. [Google Scholar] [CrossRef] [Green Version]
- Łętowska, I.; Olender, A. Recommendations for the Selection of Tests for Determining the Sensitivity of Bacteria to Antibiotics and Chemotherapeutic Agents. Determination of the Susceptibility of Gram-Positive Bacteria of the Genus Corynebacterium spp.; Krajowy Ośrodek Referencyjny ds. Lekowrażliwości Drobnoustrojów: Warszawa, Poland, 2010. Available online: https://korld.nil.gov.pl/pdf/Rekom2010Corynebact-aktualna.pdf (accessed on 1 December 2020).
- Biagi, M.; Tan, X.; Wu, T.; Jurkovic, M.; Vialichka, A.; Meyer, K.; Mendes, R.E.; Wenzler, E. Activity of potential alternative treatment agents for Stenotrophomonas maltophilia isolates nonsusceptible to levofloxacin and/or trimethoprim-sulfamethoxazole. J. Clin. Microbiol. 2020, 58, e01603-19. [Google Scholar] [CrossRef] [PubMed]
- Alp, S.; Gulmez, D.; Kardas, R.C.; Karahan, G.; Tas, Z.; Gursoy, G.; Ayaz-Ceylan, C.M.; Arikan-Akdagli, S.; Akova, M. Expect the unexpected: Fungemia caused by uncommon Candida species in a Turkish University Hospital. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 26. [Google Scholar] [CrossRef]
- Apsemidou, A.; Füller, M.A.; Idelevich, E.A.; Kurzai, O.; Tragiannidis, A.; Groll, A.H. Candida lusitaniae Breakthrough Fungemia in an Immuno-Compromised Adolescent: Case Report and Review of the Literature. J. Fungi 2020, 6, 380. [Google Scholar] [CrossRef]
- Badri, M.; Nilson, B.; Ragnarsson, S.; Senneby, E.; Rasmussen, M. Clinical and microbiological features of bacteraemia with Gram-positive anaerobic cocci: A population-based retrospective study. Clin. Microbiol. Infect. 2019, 25, 760.e1–760.e6. [Google Scholar] [CrossRef] [PubMed]
- Brown, K.; Church, D.; Lynch, T.; Gregson, D. Bloodstream infections due to Peptoniphilus spp.: Report of 15 cases. Clin. Microbiol. Infect. 2014, 20, O857–O860. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, C.-Y.; Hsueh, P.-R.; Lu, C.-Y.; Tsai, H.-Y.; Lee, P.-I.; Shao, P.-L.; Wang, C.-Y.; Wu, T.-Z.; Chen, S.-W.; Huang, L.-M. Rothia dentocariosa bacteremia in children: Report of two cases and review of the literature. J. Formos. Med. Assoc. 2007, 106, S33–S38. [Google Scholar] [CrossRef] [Green Version]
- Cone, L.A.; Leung, M.M.; Hirschberg, J. Actinomyces odontolyticus bacteremia. Emerg. Infect. Dis. 2003, 9, 1629–1632. [Google Scholar] [CrossRef] [PubMed]
- Hussain, S.; Hussain, S.; Ashraf, M. Pneumonia and bacteraemia caused by Gemella morbillorum in a previously healthy infant: First reported case in literature. BMJ Case Rep. 2018, 27, bcr-2018. [Google Scholar] [CrossRef]
- Asai, N.; Koizumi, Y.; Yamada, A.; Sakanashi, D.; Watanabe, H.; Kato, H.; Shiota, A.; Hagihara, M.; Suematsu, H.; Yamagishi, Y.; et al. Pantoea dispersa bacteremia in an immunocompetent patient: A case report and review of the literature. J. Med. Case Rep. 2019, 13, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luque-Pérez, S.; Cobos-Carrascosa, E.; Guarino-Narváez, J.; Fernández-Puentes, V.; Eiros, J.M.; Sánchez-Porto, A. Rothia mucilaginosa bacteraemia in an immunocompetent paediatric patient: A new pathogen to take into account. A case report. Infez. Med. 2017, 25, 371–373. [Google Scholar] [PubMed]
- Asai, N.; Suematsu, H.; Yamada, A.; Watanabe, H.; Nishiyama, N.; Sakanashi, D.; Kato, H.; Shiota, A.; Hagihara, M.; Koizumi, Y.; et al. Brevibacterium paucivorans bacteremia: Case report and review of the literature. BMC Infect. Dis. 2019, 19, 344. [Google Scholar] [CrossRef] [PubMed]
- Pierron, A.; Zayet, S.; Toko, L.; Royer, P.; Garnier, P.; Gendrin, V. Catheter-related bacteremia with endocarditis caused by Kocuria rhizophila. Med. Mal. Infect. 2021, 51, 97–98. [Google Scholar] [CrossRef]
- Moissenet, D.; Becker, K.; Mérens, A.; Ferroni, A.; Dubern, B.; Vu-Thien, H. Persistent bloodstream infection with Kocuria rhizophila related to a damaged central catheter. J. Clin. Microbiol. 2012, 50, 1495–1498. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, N.; Tanabe, K.; Wake, M.; Sugamori, T.; Endo, A.; Yoshitomi, H.; Ishibashi, Y.; Shono, A.; Oda, T. Fatal septicemia and endotoxic shock due to Aeromonas hydrophila. Am. J. Case Rep. 2012, 13, 72–74. [Google Scholar] [CrossRef] [Green Version]
- Moura, Q.; Fernandes, M.R.; Cerdeira, L.; Santos, A.C.M.; de Souza, T.A.; Ienne, S.; Pignatari, A.C.C.; Gales, A.C.; Silva, R.M.; Lincopan, N. Draft genome sequence of a multidrug-resistant Aeromonas hydrophila ST508 strain carrying rmtD and blaCTX-M-131 isolated from a bloodstream infection. J. Glob. Antimicrob. Resist. 2017, 10, 289–290. [Google Scholar] [CrossRef]
- Hunt, B.; Rogers, C.; Blais, R.M.; Adachi, K.; Sathyavagiswaran, L. Paenibacillus Sepsis and Meningitis in a Premature Infant: A Case Report. Am. J. Forensic Med. Pathol. 2021, 42, 96–98. [Google Scholar] [CrossRef]
- Bankowski, M.; Blanton, J.; Fiorella, P.; Motes, J.; Pickens, N.; Racicot, J.; Odegard, A.; DuBose, P.; Chang, M.-K.; Abaaba, C. Aureimonas altamirensis masquerading as Brucella spp. in a blood culture from a 68-year-old male with cancer. Diagn. Microbiol. Infect. Dis. 2020, 96, 114957. [Google Scholar] [CrossRef]
- Pailhoriès, H.; Lemarié, C.; Quinqueneau, C.; Eveillard, M.; Baufreton, C.; Rouleau, F.; Mahaza, C.; Joly-Guillou, M.L.; Kempf, M. First report of endocarditis caused by a Pseudoclavibacter species. J. Clin. Microbiol. 2014, 52, 3465–3467. [Google Scholar] [CrossRef] [Green Version]
- Alonso-Echanove, J.; Shah, S.S.; Valenti, A.J.; Dirrigl, S.N.; Carson, L.A.; Arduino, M.J.; Jarvis, W.R. Nosocomial outbreak of Microbacterium species bacteremia among cancer patients. J. Infect. Dis. 2001, 184, 754–760. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, K.-I.; Kawano, T.; Mizuno, S.; Kubo, K.; Komiya, N.; Otsu, S. Erysipelothrix rhusiopathiae bacteremia following a cat bite. IDCases 2019, 18, e00631. [Google Scholar] [CrossRef] [PubMed]
- Hannon, D.M.; Harkin, E.; Donnachie, K.; Sibartie, S.; Doyle, M.; Chan, G. A case of Capnocytophaga canimorsus meningitis and bacteraemia. Ir. J. Med. Sci. 2020, 189, 251–252. [Google Scholar] [CrossRef] [PubMed]
- Lyytikäinen, O.; Lumio, J.; Sarkkinen, H.; Kolho, E.; Kostiala, A.; Ruutu, P.; the Hospital Infection Surveillance Team. Nosocomial bloodstream infections in Finnish hospitals during 1999–2000. Clin. Infect. Dis. 2002, 35, e14–e19. [Google Scholar]
- Pedroso, S.H.S.P.; Sandes, S.H.C.; Filho, R.A.T.; Nunes, A.C.; Serufo, J.C.; Farias, L.M.; Carvalho, M.A.R.; Bomfim, M.R.Q.; Santos, S.G. Coagulase-Negative Staphylococci Isolated from Human Bloodstream Infections Showed Multidrug Resistance Profile. Microb. Drug Resist. 2018, 24, 635–647. [Google Scholar] [CrossRef]
- Cui, J.; Liang, Z.; Mo, Z.; Zhang, J. The species distribution, antimicrobial resistance and risk factors for poor outcome of coagulase-negative staphylococci bacteraemia in China. Antimicrob. Resist. Infect. Control. 2019, 8, 65. [Google Scholar] [CrossRef] [Green Version]
- Asaad, A.M.; Ansar Qureshi, M.; Mujeeb Hasan, S. Clinical significance of coagulase-negative staphylococci isolates from nosocomial bloodstream infections. Infect. Dis. 2016, 48, 356–360. [Google Scholar] [CrossRef]
Hospital Unit | Patients N (%) | Negative Results of Blood Cultures N (%) | LC-BSI N (%) |
---|---|---|---|
ICUs | 363 (4.1) | 84 (23.1) | 279 (76.9) |
Surgical units | 557 (6.3) | 175 (31.4) | 382 (68.6) |
Other units | 7979 (89.7) | 4422 (55.4) | 3557 (44.6) |
Total | 8899 (100.0) | 4681 (52.6) | 4218 (47.4) |
ICUs | Surgical Units | Other Units | Total Units | |||||
---|---|---|---|---|---|---|---|---|
No | Prevalence % | No | Prevalence % | No | Prevalence % | No | Prevalence % | |
Gram-positive | 176 | 63.1 | 265 | 69.4 | 2548 | 71.6 | 2989 | 70.9 |
Gram-negative | 88 | 31.5 | 102 | 26.7 | 982 | 27.6 | 1 172 | 27.8 |
Yeast/Fungi | 15 | 5.4 | 15 | 3.9 | 27 | 0.8 | 57 | 1.4 |
Total | 279 | 100.0 | 382 | 100.0 | 3557 | 100.0 | 4218 | 100.0 |
Type of Studied Populations | ||||
---|---|---|---|---|
ICUs | Surgical Units | Other Units | Total | |
Gram-positive, number of | ||||
genera | 14 | 20 | 41 | 44 |
species | 41 | 48 | 138 | 151 |
Gram-negative, number of | ||||
genera | 11 | 16 | 35 | 38 |
species | 12 | 23 | 63 | 67 |
Yeast/Fungi, number of | ||||
genera | 3 | 2 | 1 | 4 |
species | 5 | 5 | 6 | 9 |
ICUs | Surgical Units | Other Units | Total | |
---|---|---|---|---|
Prevalence % | Prevalence % | Prevalence % | Prevalence % | |
Gram-positive | ||||
Clostridium | 1.1 | 0.0 | 0.4 | 0.4 |
C. perfringens | 0.4 | 0.0 | 0.3 | 0.3 |
Corynebacterium | 3.6 | 2.9 | 2.2 | 2.3 |
C. afermentans | 0.4 | 1.6 | 0.7 | 0.8 |
C. striatum | 1.4 | 0.8 | 0.1 | 0.3 |
Enterococcus | 7.5 | 5.5 | 4.4 | 4.7 |
Enterococcus faecalis | 5.0 | 3.9 | 3.5 | 3.7 |
Enterococcus faecium | 2.5 | 1.6 | 0.8 | 1.0 |
Micrococcus | 1.4 | 2.1 | 2.4 | 2.3 |
Micrococcus luteus | 1.4 | 1.8 | 1.7 | 1.7 |
Micrococcus spp. | 0.0 | 0.3 | 0.6 | 0.5 |
Propionibacterium | 3.6 | 0.8 | 0.7 | 0.9 |
Propionibacterium acnes | 3.6 | 0.8 | 0.7 | 0.9 |
Staphylococcus | 38.0 | 49.0 | 51.4 | 50.3 |
S. aureus | 3.2 | 5.5 | 6.9 | 6.5 |
S. capitis | 3.2 | 0.0 | 1.9 | 1.8 |
S. epidermidis | 18.6 | 19.6 | 19.4 | 19.4 |
S. haemolyticus | 6.1 | 7.9 | 5.4 | 5.7 |
S. hominis | 5.4 | 13.6 | 15.4 | 14.6 |
S. pettenkoferi | 0.36 | 0.5 | 0.7 | 0.7 |
S. warneri | 0.0 | 0.8 | 0.7 | 0.7 |
Streptococcus | 5.4 | 3.9 | 6.5 | 6.2 |
Str. agalactiae | 0.0 | 0.5 | 0.6 | 0.5 |
Str. anginosus | 0.4 | 0.0 | 0.3 | 0.3 |
Str. gallolyticus | 0.0 | 0.0 | 0.4 | 0.3 |
Str. mitis | 1.1 | 0.8 | 0.6 | 0.7 |
Str. oralis | 0.4 | 0.8 | 1.0 | 0.9 |
Str. parasanguinis | 0.4 | 0.3 | 0.7 | 0.6 |
Str. pneumoniae | 0.4 | 0.0 | 1.0 | 0.9 |
Str. pyogenes | 0.7 | 0.3 | 0.3 | 0.3 |
Str. salivarius | 0.7 | 0.3 | 0.5 | 0.5 |
Gram-negative | ||||
Acinetobacter | 6.1 | 2.1 | 1.0 | 1.4 |
Acinetobacter baumannii | 6.1 | 1.6 | 0.6 | 1.0 |
Bacteroides | 0.4 | 1.0 | 0.8 | 0.8 |
Bacteroides fragilis | 0.4 | 0.5 | 0.6 | 0.6 |
Enterobacter | 0.0 | 0.5 | 0.9 | 0.8 |
Enterobacter cloacae | 0.0 | 0.5 | 0.9 | 0.8 |
Escherichia | 9.0 | 9.7 | 14.5 | 13.7 |
Escherichia coli | 9.0 | 9.7 | 14.5 | 13.7 |
Klebsiella | 10.8 | 6.5 | 5.7 | 6.1 |
Klebsiella oxytoca | 0.4 | 0.0 | 0.4 | 0.4 |
Klebsiella pneumoniae | 10.4 | 6.5 | 5.3 | 5.7 |
Morganella | 0.7 | 0.3 | 0.3 | 0.3 |
Morganella morganii | 0.7 | 0.3 | 0.3 | 0.3 |
Proteus | 0.4 | 1.3 | 1.3 | 1.3 |
Proteus mirabilis | 0.4 | 1.3 | 1.3 | 1.3 |
Pseudomonas | 2.2 | 1.8 | 0.9 | 1.1 |
Pseudomonas aeruginosa | 2.2 | 1.6 | 0.8 | 1.0 |
Salmonella | 0.4 | 0.5 | 0.4 | 0.5 |
Salmonella spp. | 0.4 | 0.3 | 0.3 | 0.3 |
Yeast strains | ||||
Candida | 4.7 | 3.7 | 0.8 | 1.3 |
Candida albicans | 2.2 | 1.0 | 0.4 | 0.6 |
Candida glabrata | 2.2 | 1.0 | 0.1 | 0.4 |
Total LC-BSI | 100.0 | 100.0 | 100.0 | 100.0 |
Human Microflora | Environmental Species | Veterinary Pathogen or Food Pathogen | |
---|---|---|---|
Gram-positive | |||
Aerobic/ Microaerophilic | Actinomyces neuii (1) Brevibacterium paucivorans (1) Brevibacterium casei (4) Brevibacterium ravenspurgenes (2) Dermabacter hominis (6) Globicatella sanguinis (1) Kocuria rhizophila (3) Kocuria kristinae (5) Nosocomiicoccus massiliensis (1) Rothia dentocariosa (3) Rothia mucilaginosa (9) | Aerococcus urinae (1) Aerococcus viridans (4) Arthrobacter cumminsii (4) Arthrobacter polychromogenes (1) Dietzia cinnamea (1) Microbacterium aurum (1) Microbacterium lacticum (1) Paenarthrobacter ilicis (1) Pseudoglutamicibacter cumminsii (1) Psychrobacillus psychrotolerans (1) Rothia endophytica (1) Zimmermanella faecalis (1) | Erysipelothrix rhusiopathiae (1) Macrococcus caseolyticus (1) |
Strict anaerobic/ Facultative anaerobic | Actinomyces odontolyticus (1) Actinomyces europaeus (1) Actinomyces radicidentis (1) Anaerococcus hydrogenalis (1) Anaerococcus lactolyticus (1) Anaerococcus vaginalis (1) Atopobium rimae (1) Cutibacterium avidum (1) Eubacterium tenue (1) Facklamia hominis (1) Finegoldia magna (4) Gemella haemolysans (4) Gemella morbillorum (1) Granulicatella adiacens (3) Peptoniphilus harei (3) Ruminococcus gnavus (1) Solobacterium moorei (1) Trueperella bernardiae (1) | Paenibacillus timonensis (1) Paenibacillus xylanilyticus (1) | Carnobacterium divergens (1) |
Gram-negative | |||
Aerobic/ Microaerophilic | Neisseria flavescens (2) Neisseria mucosa (1) Pantoea septica (1) Psychrobacter phenylpyrovicus(1) Psychrobacter sanguinis (1) Roseomonas mucosa (1) | Aureimonas altamirensis (1) Chryseobacterium sp. (1) Flavobacterium flavescens (1) Sphingobium sp. (1) Ochrobactrum anthropi (1) | Capnocytophaga canimorsus (1) |
Strict anaerobic/ Facultative anaerobic | Dialister micraerophilus (1) Eikenella corrodens (1) Leptotrichia hofstadii (1) Parabacteroides distasonis (1) | Aeromonas hydrophila (1) |
ICUs | Surgical Units | Other Units | Total | |
---|---|---|---|---|
Prevalence % | Prevalence % | Prevalence % | Prevalence % | |
E. faecalis | 14 | 15 | 126 | 155 |
HLAR | 84.6 | 60.0 | 44.1 | 49.0 |
E. faecium | 7 | 6 | 28 | 41 |
HLAR | 57.1 | 83.3 | 46.4 | 53.7 |
VRE | 14.3 | 0.0 | 0.0 | 2.4 |
HLAR + VRE | 0.0 | 50.0 | 14.3 | 17.1 |
S. aureus | 9 | 21 | 244 | 274 |
MRSA | 55.6 | 33.3 | 9.4 | 12.8 |
MLSB | 55.6 | 66.7 | 23.4 | 27.7 |
MRSA + MLSB | 44.4 | 33.3 | 9.0 | 12.0 |
all CNS | 97 | 165 | 1583 | 1845 |
MRCNS | 71.1 | 86.1 | 70.1 | 71.5 |
MLSB | 69.1 | 81.9 | 70.0 | 71.0 |
MRCNS + MLSB | 62.9 | 71.5 | 57.2 | 58.8 |
Streptococcus | 15 | 15 | 231 | 261 |
MLSB | 13.3 | 40.0 | 18.6 | 19.5 |
A. baumannii | 17 | 6 | 20 | 43 |
carbapenem resistant * | 70.6 | 100.0 | 40.0 | 60.5 |
MDR ** | 52.9 | 33.3 | 15.0 | 32.5 |
Pseudomonas aeruginosa | 6 | 6 | 29 | 41 |
carbapenem resistant * | 66.7 | 16.7 | 17.2 | 24.4 |
MDR ** | 16.7 | 0.0 | 0.0 | 2.4 |
E. cloacae | 0 | 2 | 32 | 34 |
ESBL | 0.0 | 100.0 | 56.3 | 58.8 |
MDR ** | 0.0 | 0.0 | 6.25 | 5.9 |
E.coli | 25 | 37 | 516 | 578 |
ESBL | 32.0 | 37.8 | 25.8 | 26.8 |
AmpC | 0.0 | 2.7 | 0.4 | 0.5 |
combined ESBL + AmpC | 0.0 | 0.0 | 0.2 | 0.2 |
MDR ** | 4.0 | 2.7 | 1.6 | 1.7 |
Klebsiella pneumoniae | 29 | 25 | 187 | 241 |
ESBL | 72.4 | 68.0 | 61.5 | 63.5 |
combined ESBL + AmpC | 6.9 | 8.0 | 2.1 | 3.3 |
MDR ** | 13.8 | 4.0 | 8.0 | 8.3 |
other Enterobacterales | 8 | 7 | 91 | 106 |
ESBL | 37.5 | 0.0 | 9.9 | 11.3 |
MDR ** | 12.5 | 14.3 | 5.5 | 6.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chmielarczyk, A.; Pomorska-Wesołowska, M.; Romaniszyn, D.; Wójkowska-Mach, J. Healthcare-Associated Laboratory-Confirmed Bloodstream Infections—Species Diversity and Resistance Mechanisms, a Four-Year Retrospective Laboratory-Based Study in the South of Poland. Int. J. Environ. Res. Public Health 2021, 18, 2785. https://doi.org/10.3390/ijerph18052785
Chmielarczyk A, Pomorska-Wesołowska M, Romaniszyn D, Wójkowska-Mach J. Healthcare-Associated Laboratory-Confirmed Bloodstream Infections—Species Diversity and Resistance Mechanisms, a Four-Year Retrospective Laboratory-Based Study in the South of Poland. International Journal of Environmental Research and Public Health. 2021; 18(5):2785. https://doi.org/10.3390/ijerph18052785
Chicago/Turabian StyleChmielarczyk, Agnieszka, Monika Pomorska-Wesołowska, Dorota Romaniszyn, and Jadwiga Wójkowska-Mach. 2021. "Healthcare-Associated Laboratory-Confirmed Bloodstream Infections—Species Diversity and Resistance Mechanisms, a Four-Year Retrospective Laboratory-Based Study in the South of Poland" International Journal of Environmental Research and Public Health 18, no. 5: 2785. https://doi.org/10.3390/ijerph18052785
APA StyleChmielarczyk, A., Pomorska-Wesołowska, M., Romaniszyn, D., & Wójkowska-Mach, J. (2021). Healthcare-Associated Laboratory-Confirmed Bloodstream Infections—Species Diversity and Resistance Mechanisms, a Four-Year Retrospective Laboratory-Based Study in the South of Poland. International Journal of Environmental Research and Public Health, 18(5), 2785. https://doi.org/10.3390/ijerph18052785