Application of Fast Non-Local Means Algorithm for Noise Reduction Using Separable Color Channels in Light Microscopy Images
Abstract
:1. Introduction
2. Materials and Methods
2.1. Acquisition of Light Microscopy Image
2.2. Fast Non-Local Means Algorithm Modeling
2.3. Application of Fast Non-Local Means Algorithm
2.4. Quantitative Evaluation
3. Results
3.1. Smoothing Factor Experiment
3.2. Search Window and Kernel Size Experiment
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ryan, J.; Gerhold, A.R.; Boudreau, V.; Smith, L.; Maddox, P.S. Introduction to Modern Methods in Light Microscopy. Adv. Struct. Saf. Stud. 2017, 1563, 1–15. [Google Scholar] [CrossRef]
- Wilt, B.A.; Burns, L.D.; Ho, E.T.W.; Ghosh, K.K.; Mukamel, E.A.; Schnitzer, M.J. Advances in Light Microscopy for Neuroscience. Annu. Rev. Neurosci. 2009, 32, 435–506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Srebotnik, E.; Messner, K. A Simple Method That Uses Differential Staining and Light Microscopy to Assess the Selectivity of Wood Delignification by White Rot Fungi. Appl. Environ. Microbiol. 1994, 60, 1383–1386. [Google Scholar] [CrossRef] [Green Version]
- Majeed, H.; Keikhosravi, A.; Kandel, M.E.; Nguyen, T.H.; Liu, Y.; Balla, K.A.; Tangella, K.; Eliceiri, K.W.; Popescu, G. Quantitative Histopathology of Stained Tissues using Color Spatial Light Interference Microscopy (cSLIM). Sci. Rep. 2019, 9, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaytan, F.; Morales, C.; Reymundo, C.; Sempere, T.M. A novel RGB-trichrome staining method for routine histological analysis of musculoskeletal tissues. Sci. Rep. 2020, 10, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Rana, A.; Yauney, G.; Lowe, A.; Shah, P. Computational Histological Staining and Destaining of Prostate Core Biopsy RGB Images with Generative Adversarial Neural Networks. In Proceedings of the 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA), Orlando, FL, USA, 17–20 December 2018; pp. 828–834. [Google Scholar]
- Ashour, A.S.; Beagum, S.; Dey, N.; Ashour, A.S.; Pistolla, D.S.; Nguyen, G.N.; Le, D.-N.; Shi, F. Light microscopy image de-noising using optimized LPA-ICI filter. Neural Comput. Appl. 2016, 29, 1517–1533. [Google Scholar] [CrossRef]
- Kim, J.Y.; Lee, Y. Preliminary study of improved median filter using adaptively mask size in light microscopic image. Microscopy 2020, 69, 31–36. [Google Scholar] [CrossRef]
- Kim, T. Optical sectioning by optical scanning holography and a Wiener filter. Appl. Opt. 2006, 45, 872–879. [Google Scholar] [CrossRef]
- Anoraganingrum, D. Cell segmentation with median filter and mathematical morphology operation. In Proceedings of the 10th International Conference on Image Analysis and Processing, Venice, Italy, 27–29 September 1999; pp. 1043–1046. [Google Scholar]
- Adelmann, H.G. An edge-sensitive noise reduction algorithm for image processing. Comput. Biol. Med. 1999, 29, 137–145. [Google Scholar] [CrossRef]
- Homem, M.R.P.; Zorzan, M.R.; Mascarenhas, N.D.A. Poisson noise reduction in deconvolution microscopy. J. Comput. Interdiscip. Sci. 2011, 2, 173–177. [Google Scholar] [CrossRef] [Green Version]
- Cardullo, R.A.; Hinchcliffe, E.H. Post-Processing for Statistical Image Analysis in Light Microscopy. Zebrafish Dis. Models Chem. Screens 2013, 114, 285–315. [Google Scholar] [CrossRef]
- Wallace, W.; Schaefer, L.H.; Swedlow, J.R. A Workingperson’s Guide to Deconvolution in Light Microscopy. Biotechonolgy 2001, 31, 1076–1097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muñoz, F.J.S.; Jeanneret, R.; Tuval, I.; Basterretxea, G. Method for the determination of preferential orientation of marine particles from laser diffraction measurements. Opt. Express 2020, 28, 14085–14099. [Google Scholar] [CrossRef] [PubMed]
- Chu, L.A.; Chang, S.W.; Tang, W.C.; Tseng, Y.T.; Chen, P.; Chen, B.C. 5D superresolution imaging for a live cell nucleus. Curr. Opin. Genet. Dev. 2021, 67, 77–83. [Google Scholar] [CrossRef]
- Kim, H.E.; Kang, S.H.; Kim, K.; Lee, Y. Total Variation-Based Noise Reduction Image Processing Algorithm for Confocal Laser Scanning Microscopy Applied to Activity Assessment of Early Carious Lesions. Appl. Sci. 2020, 10, 4090. [Google Scholar] [CrossRef]
- Xin, L.; Liu, Z.; Dou, J.; Yang, Z.; Zhang, X.; Liu, Z. A robust white-light interference signal leakage sampling correction method based on wavelet transform. Opt. Lasers Eng. 2020, 133, 106156. [Google Scholar] [CrossRef]
- Goncharova, A.S.; Honigmann, A.; Jug, F.; Krull, A. Improving Blind Spot Denoising for Microscopy. In Constructive Side-Channel Analysis and Secure Design; Springer International Publishing: New York, NY, USA, 2020; pp. 380–393. [Google Scholar]
- Yang, L.; Parton, R.; Ball, G.; Qiu, Z.; Greenaway, A.H.; Davis, I.; Lu, W. An adaptive non-local means filter for denoising live-cell images and improving particle detection. J. Struct. Biol. 2010, 172, 233–243. [Google Scholar] [CrossRef] [Green Version]
- Buades, A.; Coll, B.; Morel, J.M. A Non-Local Algorithm for Image Denoising. In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), Washington, DC, USA, 20–25 June 2005; Volume 2, pp. 60–65. [Google Scholar]
- Kumar, B.K.S. Image denoising based on non-local means filter and its method noise thresholding. Signal Image Video Process. 2012, 7, 1211–1227. [Google Scholar] [CrossRef]
- Fedorov, V.; Ballester, C. Affine Non-Local Means Image Denoising. IEEE Trans. Image Process. 2017, 26, 2137–2148. [Google Scholar] [CrossRef]
- Beveridge, T.J.; Lawrence, J.R.; Murray, R.G.E. Sampling and Staining for Light Microscopy. Methods Gen. Mol. Microbiol. 2014, 19–33. [Google Scholar] [CrossRef]
- Smyrek, I.; Stelzer, E.H. Quantitative three-dimensional evaluation of immunofluorescence staining for large whole mount spheroids with light sheet microscopy. Biomed. Opt. Express 2017, 8, 484–499. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Sun, J.; Wang, X. Facial Spot Contour Extraction based on Color Image Processing. In Proceedings of the Proceedings of the 2019 4th International Conference on Biomedical Signal and Image Processing (ICBIP 2019)–ICBIP ’19, Chengdu, China, 13–15 August 2019; Association for Computing Machinery (ACM): New York, NY, USA, 2019; pp. 87–92. [Google Scholar]
- Lukac, R.; Plataniotis, K.N.; Venetsanopoulos, A.N. Color image denoising using evolutionary computation. Int. J. Imaging Syst. Technol. 2005, 15, 236–251. [Google Scholar] [CrossRef] [Green Version]
- Zlokolica, V.; Pižurica, A.; Philips, W. Wavelet based motion compensated filtering of color video sequences. Wavelets XI 2005, 5914, 59141. [Google Scholar]
- Kelm, Z.S.; Blezek, D.; Bartholmai, B.; Erickson, B.J. Optimizing non-local means for denoising low dose CT. In Proceedings of the 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, Boston, MA, USA, 28 June–1 July 2009; pp. 662–665. [Google Scholar] [CrossRef]
- Salmon, J. On Two Parameters for Denoising With Non-Local Means. IEEE Signal Process. Lett. 2009, 17, 269–272. [Google Scholar] [CrossRef]
- Mittal, A.; Moorthy, A.K.; Bovik, A.C. Blind/Referenceless Image Spatial Quality Evaluator. In Proceedings of the 2011 Conference Record of the Forty Fifth Asilomar Conference on Signals, Systems and Computers (ASILOMAR), Pacific Grove, CA, USA, 6–9 November 2011; pp. 723–727. [Google Scholar]
- Mittal, A.; Soundararajan, R.; Bovik, A.C. Making a “completely blind” image quality analyzer. IEEE Signal Process. Lett. 2013, 20, 209–212. [Google Scholar] [CrossRef]
- Bajić, B.; Suveer, A.; Gupta, A.; Pepić, I.; Lindblad, J.; Sladoje, N.; Sintorn, I.M. Denoising of short exposure transmission electron microscopy images for ultrastructural enhancement. In Proceedings of the 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), Washington, DC, USA, 4–7 April 2018; pp. 921–925. [Google Scholar] [CrossRef]
- Loza, A.; Mualla, A.M.; Verkade, P.; Hill, P.; Bull, D.; Achim, A. Joint denoising and contrast enhancement for light microscopy image sequences. In Proceedings of the 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI), Beijing, China, 29 April–2 May 2014; pp. 1083–1086. [Google Scholar] [CrossRef]
- Kawada, R.; Koike, A.; Nakajima, Y. Prefilter Control Scheme for Low bitrate TV Distribution. In Proceedings of the 2006 IEEE International Conference on Multimedia and Expo, Toronto, ON, Canada, 9–12 July 2006; pp. 769–772. [Google Scholar] [CrossRef] [Green Version]
- Wen, T.; Yang, F.; Gu, J.; Chen, S.; Wang, L.; Xie, Y. An adaptive kernel regression method for 3D ultrasound reconstruction using speckle prior and parallel GPU implementation. Neurocomputing 2018, 275, 208–223. [Google Scholar] [CrossRef]
- Ding, Y.; Xue, X.; Wang, Z.; Jiang, Z.; Fan, X.; Luo, Z. Domain Knowledge Driven Deep Unrolling for Rain Removal from Single Image. In Proceedings of the 2018 7th International Conference on Digital Home (ICDH), Kuala Lumpur, Malaysia, 19–20 September 2018; pp. 14–19. [Google Scholar]
- Coupé, P.; Yger, P.; Barillot, C. Fast Non Local Means Denoising for 3D MR Images. In Constructive Side-Channel Analysis and Secure Design; Springer International Publishing: New York, NY, USA, 2006; pp. 33–40. [Google Scholar]
- Liu, Y.L.; Wang, J.; Chen, X.; Guo, Y.W.; Peng, Q.S. A Robust and Fast Non-Local Means Algorithm for Image Denoising. J. Comput. Sci. Technol. 2008, 23, 270–279. [Google Scholar] [CrossRef]
- Park, C.R.; Lee, Y. Fast non-local means noise reduction algorithm with acceleration function for improvement of image quality in gamma camera system: A phantom study. Nucl. Eng. Technol. 2019, 51, 719–722. [Google Scholar] [CrossRef]
- Ville, D.V.D.V.; Kocher, M. Nonlocal means with dimensionality reduction and SURE-based parameter selection. IEEE Trans. Image Process. 2011, 20, 2683–2690. [Google Scholar] [CrossRef] [Green Version]
- Iftikhar, M.A.; Jalil, A.; Rathore, S.; Hussain, M. Robust brain MRI denoising and segmentation using enhanced non-local means algorithm. Int. J. Imaging Syst. Technol. 2014, 24, 52–66. [Google Scholar] [CrossRef]
- Zhong, H.; Yang, C.; Zhang, X. A New Weight for Nonlocal Means Denoising Using Method Noise. IEEE Signal Process. Lett. 2012, 19, 535–538. [Google Scholar] [CrossRef]
- Dauwe, A.; Goossens, B.; Luong, H.Q.; Philips, W. A fast non-local image denoising algorithm. Electron. Imaging 2008 2008, 6812, 681210. [Google Scholar] [CrossRef]
- Li, H.; Suen, C.Y. A novel Non-local means image denoising method based on grey theory. Pattern Recognit. 2016, 49, 237–248. [Google Scholar] [CrossRef]
- Ren, C.; He, X.; Nguyen, T.Q. Single Image Super-Resolution via Adaptive High-Dimensional Non-Local Total Variation and Adaptive Geometric Feature. IEEE Trans. Image Process. 2016, 26, 1. [Google Scholar] [CrossRef] [PubMed]
- Maeda, Y.; Fukushima, N.; Matsuo, H. Taxonomy of Vectorization Patterns of Programming for FIR Image Filters Using Kernel Subsampling and New One. Appl. Sci. 2018, 8, 1235. [Google Scholar] [CrossRef] [Green Version]
- Korn, A.; Fenchel, M.; Bender, B.; Danz, S.; Hauser, T.; Ketelsen, D.; Flohr, T.; Claussen, C.; Heuschmid, M.; Ernemann, U.; et al. Iterative Reconstruction in Head CT: Image Quality of Routine and Low-Dose Protocols in Comparison with Standard Filtered Back-Projection. Am. J. Neuroradiol. 2011, 33, 218–224. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, S.-H.; Kim, J.-Y. Application of Fast Non-Local Means Algorithm for Noise Reduction Using Separable Color Channels in Light Microscopy Images. Int. J. Environ. Res. Public Health 2021, 18, 2903. https://doi.org/10.3390/ijerph18062903
Kang S-H, Kim J-Y. Application of Fast Non-Local Means Algorithm for Noise Reduction Using Separable Color Channels in Light Microscopy Images. International Journal of Environmental Research and Public Health. 2021; 18(6):2903. https://doi.org/10.3390/ijerph18062903
Chicago/Turabian StyleKang, Seong-Hyeon, and Ji-Youn Kim. 2021. "Application of Fast Non-Local Means Algorithm for Noise Reduction Using Separable Color Channels in Light Microscopy Images" International Journal of Environmental Research and Public Health 18, no. 6: 2903. https://doi.org/10.3390/ijerph18062903
APA StyleKang, S. -H., & Kim, J. -Y. (2021). Application of Fast Non-Local Means Algorithm for Noise Reduction Using Separable Color Channels in Light Microscopy Images. International Journal of Environmental Research and Public Health, 18(6), 2903. https://doi.org/10.3390/ijerph18062903