Variability of Urinary Creatinine in Healthy Individuals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Background Information
2.2. Blood and Urine Sampling
2.3. Sample Processing and Laboratory Measurements
2.4. Statistics
3. Results
3.1. Study Population
3.2. Urinary Flow Rate, Creatinine and Specific Gravity in 24 h Urine
3.3. Diluted or Concentrated Urine Spot Samples
3.4. Circadian Rhythm
4. Discussion
4.1. Urine Flow Rates
4.2. The 24 h Creatinine Excretion
4.3. Diurnal Variation of Creatinine in Spot Samples
4.4. Variability of Creatinine in Spot Samples
4.5. Creatinine versus Specific Gravity
4.6. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Symanski, E.; Greeson, N.M.H. Assessment of variability in biomonitoring data using a large database of biological measures of exposure. AIHA 2002, 63, 390–401. [Google Scholar] [CrossRef]
- Aylward, L.L.; Hays, S.M.; Smolders, R.; Koch, H.M.; Cocker, J.; Jones, K.; Warren, N.; Levy, L.; Bevan, R. Sources of variability in biomarker concentrations. J. Toxicol. Environ. Health B Crit. Rev. 2014, 17, 45–61. [Google Scholar] [CrossRef]
- Greenberg, G.N.; Levine, R.J. Urinary creatinine excretion is not stable: A new method for assessing urinary toxic substance concentrations. J. Occup. Med. 1989, 31, 832–838. [Google Scholar] [CrossRef] [PubMed]
- Boeniger, M.F.; Lowry, L.K.; Rosenberg, J. Interpretation of urine results used to assess chemical exposure with emphasis on creatinine adjustments: A review. Am. Ind. Hyg. Assoc. J. 1993, 54, 615–627. [Google Scholar] [CrossRef] [PubMed]
- Spierto, F.W.; Hannon, W.H.; Gunter, E.W.; Smith, S.J. Stability of urine creatinine. Clin. Chem. Acta 1997, 264, 227–232. [Google Scholar] [CrossRef]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.; Castro, A.F.; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef]
- Alessio, L.; Berlin, A.; Dell’Orto, A.; Toffoletto, F.; Ghezzi, I. Reliability of urinary creatinine as a parameter used to adjust values of urinary biological indicators. Int. Arch. Environ. Health 1985, 55, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Cocker, J.; Mason, H.J.; Warren, N.D.; Cotton, R.J. Creatinine adjustment of biological monitoring results. Occup. Med. 2011, 61, 349–353. [Google Scholar] [CrossRef] [Green Version]
- Ikeada, M.; Ezaki, T.; Tsukahara, T.; Moriguchi, J.; Fukui, Y.; Okamoto, S.; Ukai, H.; Sakurai, H. Bias induced by the use of creatinine-corrected values in evaluation of beta2-microglobulin levels. Toxicol. Lett. 2003, 145, 197–207. [Google Scholar] [CrossRef]
- Rappaport, S.M.; Kupper, L.L. Quantitative Exposure Assessment; Stephen Rappaport: El Cerrito, CA, USA, 2008. [Google Scholar]
- Forni Ogna, V.F.; Ogna, A.; Vuistiner, P.; Pruijm, M.; Ponte, B.; Ackermann, D.; Gabutti, L.; Vakilzadeh, N.; Mohaupt, M.; Martin, P.-Y.; et al. New anthropometry-based age- and sex-specific reference values for urinary 24-h creatinine excretion based on adult Swiss population. BMC Medicine 2015, 13, 40. [Google Scholar] [CrossRef] [Green Version]
- Smolders, R.; Koch, H.M.; Moos, R.K.; Cocker, J.; Jones, K.; Warren, N.; Levy, L.; Bevan, R.; Hays, S.M.; Aylward, L.L. Inter- and intra-individual variation in urinary biomarker concentrations over a 6-day sampling period. Part 1: Metals. Toxicol. Lett. 2014, 231, 249–260. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-X.; Feng, W.; Zeng, Q.; Sun, Y.; Wang, P.; You, L.; Yang, P.; Huang, Z.; Yu, S.L.; Lu, W.Q. Variability of Metal Levels in Spot, First Morning, and 24-Hour Urine Samples over a 3-Month Period in Healthy Adult Chinese Men. Environ. Health Perspect. 2016, 124, 468–476. [Google Scholar] [CrossRef] [Green Version]
- Mayersohn, M.; Conrad, K.A.; Achari, R. The influence of cooked meat meal on creatinine plasma concentration and creatinine clearance. Br. J. Clin. Pharmacol. 1983, 15, 227–230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koopman, M.G.; Koomen, G.C.M.; Krediet, R.T.; de Moor, A.M.; Hoek, F.J.; Arisz, L. Circadian rhythm of glomerular filtration rate in normal individuals. Clinical. Sci. 1989, 77, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Van Acker, B.A.C.; Koomen, G.C.M.; Koopman, M.G.; Krediet, R.T.; Arisz, L. Discrepancy between circadian rhythms of inulin and creatinine clearance. J. Lab. Clin Med. 1992, 120, 400–410. [Google Scholar] [PubMed]
- Araki, S.; Murata, K.; Aono, H.; Yanagihara, S.; Niinuma, Y.; Yamamoto, R.; Ishihara, N. Comparison of the Effects of Urinary Flow on Adjusted and Non-adjusted Excretion of Heavy Metals and Organic Substances in ‘Healthy’ Men. J. Appl. Toxicol. 1986, 6, 245–251. [Google Scholar] [CrossRef] [PubMed]
- Araki, S.; Sata, F.; Murata, K. Adjustment for urinary flow rate: An improved approach to biological monitoring. Int. Arch. Occup. Environ. Health 1990, 62, 471–477. [Google Scholar] [CrossRef]
- Aono, H.; Araki, S. Circadian rhythms in the urinary excretion of heavy metals and organic substances in metal workers in relation to renal excretory mechanism: Profile analysis. Int. Arch. Occup. Health 1988, 60, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Akerstrom, M.; Barregard, L.; Lundh, T.; Sallsten, G. Variability of urinary cadmium excretion in spot urine samples, first morning voids, and 24h urine in a healthy non-smoking population: Implications for study design. J. Exp. Sci. Environ. Epidemiol. 2014, 24, 171–179. [Google Scholar] [CrossRef] [Green Version]
- Aylward, L.L.; Hays, S.M.; Zidek, A. Variation in urinary spot sample, 24h samples, and long-term average urinary concentrations of short-lived environmental chemicals: Implications for exposure assessment and reverse dosimetry. J. Exp. Sci. Environ. Epidemiol. 2017, 27, 582–590. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Romanoff, L.C.; Lewin, M.D.; Porter, E.N.; Trinidad, D.A.; Needham, L.L.; Patterson, D.G., Jr.; Sjödin, A. Variability of urinary concentrations of polycyclic aromatic hydrocarbon metabolite in general population and comparison of spot, first-morning, and 24-h void sampling. J. Exp. Sci. Environ. Epidemiol. 2013, 23, 109–110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, Y.S.; Kupper, L.L.; Rappport, S.M. Air samples versus biomarkers for epidemiology. Occup. Environ. Med. 2005, 62, 750–760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pleil, J.D.; Walleace, M.A.G.; Stiegel, M.A.; Funk, W.E. Human biomarker interpretation: The importance of intra-class correlation coefficient (ICC) and their calculations based on mixed models, ANOVA, and variance estimates. J. Toxicol. Environ. Health B Crit. Rev. 2018, 21, 161–180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trevisan, A. Concentration adjustment of spot samples in analysis of urinary xenobiotic metabolites. Am. J. Ind. Med. 1990, 17, 637–642. [Google Scholar] [CrossRef]
- Barr, D.B.; Wilder, L.C.; Claudill, S.P.; Gonzales, A.J.; Needham, L.L.; Pirkle, J.L. Urinary creatinine concentrations in the U.S. population: Implications for urinary biological monitoring measurements. EHP 2005, 113, 192–200. [Google Scholar] [CrossRef] [Green Version]
- Yeh, H.-C.; Lin, Y.-S.; Kuo, C.-C.; Weidermann, D.; Weaver, V.; Fadrowski, J.; Neu, A.; Navas-Acien, A. Urine osmolality in the US population: Implications for environmental monitoring. Environ. Res. 2015, 136, 482–490. [Google Scholar] [CrossRef] [Green Version]
- Carrieri, M.; Trevisan, A.; Bartolucci, G.B. Adjustment to concentration-dilution of spot urine samples: Correlation between specific gravity and creatinine. Int. Arch. Occup. Environ. 2001, 74, 63–67. [Google Scholar] [CrossRef]
- Suwazono, Y.; Åkesson, A.; Alvén, T.; Järup, L.; Vahter, M. Creatinine versus specific gravity-adjusted urinary cadmium concentrations. Biomarkers 2005, 10, 117–126. [Google Scholar] [CrossRef] [PubMed]
- Barregard, L.; Ellingsen, D.G.; Berlinger, B.; Weinbruch, S.; Harari, F.; Sallsten, G. Normal variability of 22 elements in 24-h urine samples—results from a biobank from healthy non-smoking adults. Int. J. Hyg. Environ. Health 2021, 233, 113693. [Google Scholar] [CrossRef]
All (n = 60) | Women (n = 31) | Men (n = 29) | ||||
---|---|---|---|---|---|---|
Mean, median (range) | % | Mean, median (range) | % | Mean, median (range) | % | |
Age | 34, 31 (21–64) | 35, 31 (21–62) | 33, 29 (21–64) | |||
Body weight (kg) | 72, 70 (49–140) | 62, 61 (49–80) | 83, 78 (65–140) | |||
BMI (kg/m2) | 24, 23 (19–44) | 23, 22 (19–28) | 25, 24 (21–44) | |||
Rice (meals/week), % ≥ 3 | 2.3, 2.0 (0–10) | 30 | 1.8, 1.0 (0–6) | 19 | 2.8, 2.0 (0–10) | 41 |
Fish (meals/week), % ≥ 2 | 1.8, 2.0 (0–7) | 52 | 1.8, 1.5 (0–7) | 48 | 1.9, 2.0 (0–5) | 51 |
Meat (meals/week), % ≥ 6 | 4.7, 4.5 (0–14) | 32 | 3.8, 4.0 (0–10) | 23 | 5.6, 5.0 (1–14) | 41 |
Amalgam fillings | 20 a | 9 a | 30 a | |||
Exercise (≥2 × 30 min/week) | 78 | 77 | 79 |
All (n = 60) | Women (n = 31) | Men (n = 29) | |
---|---|---|---|
Total urinary volume (L) | 1.68, 1.58 (0.84–3.66) | 1.69, 1.61 (0.84–2.70) | 1.67, 1.53 (0.99–3.66) |
Collection time (h) | 24, 24 (22–28) | 24, 24 (23–28) | 24, 24 (22–25) |
Urinary flow rate in 24 h (mL/h) | 70, 66 (35–152) | 70, 68 (35–111) | 70, 65 (41–152) |
Urine flow rate per body weight in 24 h (ml/kg, h) | 1.02, 0.96 (0.38–2.17) | 1.15, 1.13 (0.57–2.13) | 0.88, 0.79 (0.38–2.17 |
Creatinine excretion rate (g/24 h) | 1.60, 1.51 (0.77–3.99) | 1.27, 1.26 (0.77–1.82) | 1.96, 1.94 (1.30–3.99) |
Creatinine excretion rate (g/24 h/kg body weight) | 0.022, 0.023 (0.011–0.036) | 0.021, 0.022 (0.012–0.031) | 0.024, 0.024 (0.011–0.036) |
Creatinine excretion rate (g/h) | 0.066, 0.062 (0.032–0.165) | 0.052, 0.053 (0.033–0.073) | 0.082, 0.080 (0.056–0.165) |
Creatinine concentration (g/L) | 1.06, 0.94 (0.40–2.26) | 0.82, 0.76 (0.40–1.74) | 1.31, 1.26 (0.56–2.26) |
Specific gravity | 1.017, 1.016 (1.008–1.031) | 1.015, 1.014 (1.009–1.026) | 1.020, 1.019 (1.008–1.031) |
Within-Individual | Between-Individual | ||||
---|---|---|---|---|---|
Samples | n | Variance (95% CI) | Variance (95% CI) | ICC | Sex 1 |
24-h | 119 | ||||
Flow rate (mL/h) | 0.05 (0.03, 0.07) | 0.08 (0.05, 0.13) | 0.62 | ns | |
Flow rate/kg (mL/kg, h) | 0.05 (0.03, 0.07) | 0.11 (0.07, 0.13) | 0.70 | p = 0.003 | |
Creatinine conc. (g/L) | 0.04 (0.03, 0.06) | 0.10 (0.07, 0.16) | 0.72 | p < 0.001 | |
Creatinine excretion rate (g/h) | 0.02 (0.01, 0.03) | 0.03 (0.02, 0.06) | 0.64 | p < 0.001 | |
All spot samples | 718 | ||||
Flow rate (mL/h) female | 0.41 (0.25, 0.47) | 0.07 (0.02, 0.12) | 0.14 | ns | |
Flow rate (mL/h) male | 0.30 (0.26, 0.35) | 0.10 (0.03, 0.16) | 0.24 | ||
Creatinine conc. (g/L), female | 0.33 (0.29, 0.39) | 0.09 (0.03, 0.15) | 0.22 | p < 0.0001 | |
Creatinine conc. (g/L), male | 0.25 (0.22, 0.29) | 0.12 (0.04, 0.19) | 0.32 | ||
Creatinine excretion rate (g/h) | 0.12 (0.10, 0.13) | 0.03 (0.02, 0.06) | 0.23 | p < 0.0001 | |
Overnight (ON) samples | 119 | ||||
Flow rate (mL/h) female | 0.22 (0.14, 0.40) | 0.18 (0.02, 0.33) | 0.44 | ns | |
Flow rate (mL/h) male | 0.13 (0.08, 0.24) | 0.03 (−0.04, 0.09) | 0.16 | ||
Creatinine conc. (g/L), female | 0.11 (0.07, 0.19) | 0.21 (0.08, 0.35) | 0.71 | p < 0.001 | |
Creatinine conc. (g/L), male | 0.09 (0.05, 0.16) | 0.05 (−0.01, 0.10) | 0.51 | ||
Creatinine excretion rate (g/h) | 0.06 (0.04, 0.09) | 0.06 (0.03, 0.12) | 0.48 | p < 0.0001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sallsten, G.; Barregard, L. Variability of Urinary Creatinine in Healthy Individuals. Int. J. Environ. Res. Public Health 2021, 18, 3166. https://doi.org/10.3390/ijerph18063166
Sallsten G, Barregard L. Variability of Urinary Creatinine in Healthy Individuals. International Journal of Environmental Research and Public Health. 2021; 18(6):3166. https://doi.org/10.3390/ijerph18063166
Chicago/Turabian StyleSallsten, Gerd, and Lars Barregard. 2021. "Variability of Urinary Creatinine in Healthy Individuals" International Journal of Environmental Research and Public Health 18, no. 6: 3166. https://doi.org/10.3390/ijerph18063166
APA StyleSallsten, G., & Barregard, L. (2021). Variability of Urinary Creatinine in Healthy Individuals. International Journal of Environmental Research and Public Health, 18(6), 3166. https://doi.org/10.3390/ijerph18063166