The Academic Landscapes of Manufacturing Enterprise Performance and Environmental Sustainability: A Study of Commonalities and Differences
Abstract
:1. Introduction
2. Materials and Methods
2.1. Stage 1: Citation Networks and Clustering
2.2. Stage 2: Semantic Linkage
2.3. Implementation
3. Results
3.1. The Academic Landscape of MEP
3.2. The Academic Landscape of ES
3.3. The Linkage between MEP and ES
4. Discussion
5. Summary and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Griskevicius, V.; Tybur, J.M.; Van den Bergh, B. Going Green to Be Seen: Status, Reputation, and Conspicuous Conservation. J. Pers. Soc. Psychol. 2010, 98, 392–404. [Google Scholar] [CrossRef]
- Why Sustainability Is Now the Key Driver of Innovation. Available online: https://hbr.org/2009/09/why-sustainability-is-now-the-key-driver-of-innovation (accessed on 1 February 2021).
- Li, L.; Msaad, H.; Sun, H.; Tan, M.X.; Lu, Y.; Lau, A.K.W. Green Innovation and Business Sustainability: New Evidence from Energy Intensive Industry in China. Int. J. Environ. Res. Public Health 2020, 17, 7826. [Google Scholar] [CrossRef]
- Shen, L.; Fan, R.; Wang, Y.; Yu, Z.; Tang, R. Impacts of Environmental Regulation on the Green Transformation and Upgrading of Manufacturing Enterprises. Int. J. Environ. Res. Public Health 2020, 17, 7680. [Google Scholar] [CrossRef] [PubMed]
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development. The 70th session of the UN General Assembly. New York, 2015, A/RES/70/1. Available online: https://www.refworld.org/docid/57b6e3e44.html (accessed on 24 January 2021).
- Kajikawa, Y.; Tacoa, F.; Yamaguchi, K. Sustainability science: The changing landscape of sustainability research. Sustain. Sci. 2014, 9, 431–438. [Google Scholar] [CrossRef]
- Fujita, K. Finding linkage between sustainability science and technologies based on citation network analysis. In Proceedings of the 2012 5th IEEE International Conference on Service-Oriented Computing and Applications, SOCA 2012, Taipei, Taiwan, 17–19 December 2012. [Google Scholar]
- Kajikawa, Y.; Ohno, J.; Takeda, Y.; Matsushima, K.; Komiyama, H. Creating an academic landscape of sustainability science: An analysis of the citation network. Sustain. Sci. 2007, 2, 221–231. [Google Scholar] [CrossRef]
- Muhuri, P.K.; Shukla, A.K.; Abraham, A. Industry 4.0: A bibliometric analysis and detailed overview. Eng. Appl. Artif. Intell. 2019, 78, 218–235. [Google Scholar] [CrossRef]
- Strozzi, F.; Colicchia, C.; Creazza, A.; Noè, C. Literature review on the ‘smart factory’ concept using bibliometric tools. Int. J. Prod. Res. 2017, 55, 6572–6591. [Google Scholar] [CrossRef]
- Bhardwaj, A.K.; Garg, A.; Ram, S.; Gajpal, Y.; Zheng, C. Research Trends in Green Product for Environment: A Bibliometric Perspective. Int. J. Environ. Res. Public Health 2020, 17, 8469. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Qu, L. Evolution and Emerging Trends of Sustainability in Manufacturing Based on Literature Visualization Analysis. IEEE Access 2020, 8, 121074–121088. [Google Scholar] [CrossRef]
- Furstenau, L.B.; Sott, M.K.; Kipper, L.M.; MacHado, E.L.; Lopez-Robles, J.R.; Dohan, M.S.; Cobo, M.J.; Zahid, A.; Abbasi, Q.H.; Imran, M.A. Link between Sustainability and Industry 4.0: Trends, Challenges and New Perspectives. IEEE Access 2020, 8, 140079–140096. [Google Scholar] [CrossRef]
- Kostoff, R.N.; Schaller, R.R. Science and technology roadmaps. IEEE Trans. Eng. Manag. 2001, 48, 132–143. [Google Scholar] [CrossRef]
- De Solla Price, D.J. Networks of scientific papers. Science 1965, 149, 510–515. [Google Scholar] [CrossRef]
- Klavans, R.; Boyack, K.W. Which Type of Citation Analysis Generates the Most Accurate Taxonomy of Scientific and Technical Knowledge? J. Assoc. Inf. Sci. Technol. 2017, 68, 984–998. [Google Scholar] [CrossRef]
- Shibata, N.; Kajikawa, Y.; Takeda, Y.; Sakata, I.; Matsushima, K. Detecting emerging research fronts in regenerative medicine by the citation network analysis of scientific publications. Technol. Forecast. Soc. Change 2011, 78, 274–282. [Google Scholar] [CrossRef]
- Clauset, A.; Newman, M.E.J.; Moore, C. Finding community structure in very large networks. Phys. Rev. E 2004, 70, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Fortunato, S. Community detection in graphs. Phys. Rep. 2010, 486, 75–174. [Google Scholar] [CrossRef]
- Blondel, V.D.; Guillaume, J.-L.; Lambiotte, R.; Lefebvre, E. Fast unfolding of communities in large networks. J. Stat. Mech. Theory Exp. 2008, 2008. [Google Scholar] [CrossRef]
- Šubelj, L.; van Eck, N.J.; Waltman, L. Clustering scientific publications based on citation relations: A systematic comparison of different methods. PLoS ONE 2015, 11, e0154404. [Google Scholar] [CrossRef]
- Newman, M.E.J. Fast algorithm for detecting community structure in networks. Phys. Rev. E—Stat. Nonlinear Soft Matter Phys. 2004, 69, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Dao, V.L.; Bothorel, C.; Lenca, P. Community structure: A comparative evaluation of community detection methods. Netw. Sci. 2019, 8, 1–41. [Google Scholar] [CrossRef]
- Salton, G.; Buckley, C. Term-weighting approaches in automatic text retrieval. Inf. Process. Manag. 1988, 24, 513–523. [Google Scholar] [CrossRef]
- Singhal, A. Modern Information Retrieval: A Brief Overview. Bull. IEEE Comput. Soc. Tech. Comm. Data Eng. 2001, 24, 35–43. [Google Scholar]
- Wijewickrema, M.; Petras, V.; Dias, N. Selecting a text similarity measure for a content-based recommender system: A comparison in two corpora. Electron. Libr. 2019, 37, 506–527. [Google Scholar] [CrossRef]
- Shibata, N.; Kajikawa, Y.; Sakata, I. Detecting potential technological fronts by comparing scientific papers and patents. Foresight 2011, 13, 51–60. [Google Scholar] [CrossRef]
- R Core Team R: A language and environment for statistical computing. R. Found. Stat. Comput. 2019, 3, 201.
- Csardi, G.; Nepusz, T. The igraph software package for complex network research. InterJ. Complex Syst. 2006, 1695, 1–9. [Google Scholar]
- Feinerer, I.; Hornik, K.; Meyer, D. Text mining infrastructure in R. J. Stat. Softw. 2008, 25, 1–54. [Google Scholar] [CrossRef]
- Adai, A.T.; Date, S.V.; Wieland, S.; Marcotte, E.M. LGL: Creating a map of protein function with an algorithm for visualizing very large biological networks. J. Mol. Biol. 2004, 340, 179–190. [Google Scholar] [CrossRef]
- Rhoades, S.A. The Effect of Diversification on Industry Profit Performance in 241 Manufacturing Industries: 1963. Rev. Econ. Stat. 1973, 55, 146. [Google Scholar] [CrossRef]
- Holtermann, S.E. Market Structure and Economic Performance in U.K. Manufacturing Industry. J. Ind. Econ. 1973, 22, 119. [Google Scholar] [CrossRef]
- Barbier, E.B.; Markandya, A.; Pearce, D.W. Environmental Sustainability and Cost-Benefit Analysis. Environ. Plan. A Econ. Sp. 1990, 22, 1259–1266. [Google Scholar] [CrossRef]
- Barbier, E.B.; Markandya, A. The conditions for achieving environmentally sustainable development. Eur. Econ. Rev. 1990, 34, 659–669. [Google Scholar] [CrossRef]
- Laursen, K.; Salter, A. Open for innovation: The role of openness in explaining innovation performance among U.K. manufacturing firms. Strateg. Manag. J. 2006, 27, 131–150. [Google Scholar] [CrossRef]
- Faems, D.; van Looy, B.; Debackere, K. Interorganizational Collaboration and Innovation: Toward a Portfolio Approach. J. Prod. Innov. Manag. 2005, 22, 238–250. [Google Scholar] [CrossRef]
- Li, S.; Ragu-Nathan, B.; Ragu-Nathan, T.S.; Subba Rao, S. The impact of supply chain management practices on competitive advantage and organizational performance. Omega 2006, 34, 107–124. [Google Scholar] [CrossRef]
- Cao, M.; Zhang, Q. Supply chain collaboration: Impact on collaborative advantage and firm performance. J. Oper. Manag. 2011, 29, 163–180. [Google Scholar] [CrossRef]
- Diabat, A.; Govindan, K. An analysis of the drivers affecting the implementation of green supply chain management. Resour. Conserv. Recycl. 2011, 55, 659–667. [Google Scholar] [CrossRef]
- Zhu, Q.; Sarkis, J. Relationships Between Operational Practices and Performance among Early Adopters of Green Supply Chain Management Practices in Chinese Manufacturing Enterprises. J. Oper. Manag. 2004, 22, 265–289. [Google Scholar] [CrossRef]
- Zhu, Q.; Sarkis, J.; Lai, K.-H. Institutional-Based Antecedents and Performance Outcomes of Internal and External Green Supply Chain Management Practices. J. Purch. Supply Manag. 2013, 19, 106–117. [Google Scholar] [CrossRef]
- Brown, J.D.; Earle, J.S.; Telegdy, Á. The Productivity Effects of Privatization: Longitudinal Estimates from Hungary, Romania, Russia, and Ukraine. J. Polit. Econ. 2006, 114, 61–99. [Google Scholar] [CrossRef]
- Xu, J.; Li, J. The interrelationship between intellectual capital and firm performance: Evidence from China’s manufacturing sector. J. Intellect. Cap. 2020. [Google Scholar] [CrossRef]
- Berndt, E.R.; Morrison, C.J. High-tech capital formation and economic performance in U.S. manufacturing industries An exploratory analysis. J. Econom. 1995, 65, 9–43. [Google Scholar] [CrossRef]
- Weill, P. The Relationship Between Investment in Information Technology and Firm Performance: A Study of the Valve Manufacturing Sector. Inf. Syst. Res. 1992, 3, 307–333. [Google Scholar] [CrossRef]
- Olhager, J.; Rudberg, M.; Wikner, J. Long-term capacity management: Linking the perspectives from manufacturing strategy and sales and operations planning. Int. J. Prod. Econ. 2001, 69, 215–225. [Google Scholar] [CrossRef]
- Joung, C.B.; Carrell, J.; Sarkar, P.; Feng, S.C. Categorization of Indicators for Sustainable Manufacturing. Ecol. Indic. 2013, 24, 148–157. [Google Scholar] [CrossRef]
- Cai, W.; Lai, K.; Liu, C.; Wei, F.; Ma, M.; Jia, S.; Jiang, Z.; Lv, L. Promoting Sustainability of Manufacturing Industry Through the Lean Energy-Saving and Emission-Reduction Strategy. Sci. Total Environ. 2019, 665, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Tahamtan, I.; Bornmann, L. What do citation counts measure? An updated review of studies on citations in scientific documents published between 2006 and 2018. Scientometrics 2019, 121, 1635–1684. [Google Scholar] [CrossRef]
- Aksnes, D.W.; Langfeldt, L.; Wouters, P. Citations, Citation Indicators, and Research Quality: An Overview of Basic Concepts and Theories. SAGE Open 2019, 9. [Google Scholar] [CrossRef]
- Kirca, A.H.; Jayachandran, S.; Bearden, W.O. Market Orientation: A Meta-Analytic Review and Assessment of its Antecedents and Impact on Performance. J. Mark. 2005, 69, 24–41. [Google Scholar] [CrossRef]
- Zahra, S.A.; Covin, J.G. Contextual influences on the corporate entrepreneurship-performance relationship: A longitudinal analysis. J. Bus. Ventur. 1995, 10, 43–58. [Google Scholar] [CrossRef]
- May, G.; Barletta, I.; Stahl, B.; Taisch, M. Energy Management in Production: A Novel Method to Develop Key Performance Indicators for Improving Energy Efficiency. Appl. Energy 2015, 149, 46–61. [Google Scholar] [CrossRef]
- Zhou, B.-H.; Shen, C.-Y. Multi-objective optimization of material delivery for mixed model assembly lines with energy consideration. J. Clean. Prod. 2018, 192, 293–305. [Google Scholar] [CrossRef]
- Vachon, S.; Klassen, R. Environmental Management and Manufacturing Performance: The Role of Collaboration in the Supply Chain. Int. J. Prod. Econ. 2008, 111, 299–315. [Google Scholar] [CrossRef]
- Zhu, Q.; Sarkis, J.; Lai, K. Green Supply Chain Management: Pressures, Practices and Performance Within the Chinese Automobile Industry. J. Clean. Prod. 2007, 15, 1041–1052. [Google Scholar] [CrossRef]
- Lieb, K.; Lieb, R. Environmental Sustainability in the Third-Party Logistics (3pl) Industry. Int. J. Phys. Distrib. Logist. Manag. 2010, 40, 524–533. [Google Scholar] [CrossRef]
- Moldan, B.; Janouskova, S.; Hak, T. How to Understand and Measure Environmental Sustainability: Indicators and Targets. Ecol. Indic. 2012, 17, 4–13. [Google Scholar] [CrossRef]
- Mori, K.; Christodoulou, A. Review of Sustainability Indices and Indicators: Towards a New City Sustainability Index (Csi). Environ. Impact Assess. Rev. 2012, 32, 94–106. [Google Scholar] [CrossRef]
- Robichaud, L.B.; Anantatmula, V.S. Anantatmula Greening Project Management Practices for Sustainable Construction. J. Manag. Eng. 2011, 27, 48–57. [Google Scholar] [CrossRef]
- Mattoni, B.; Guattari, C.; Evangelisti, L.; Bisegna, F.; Gori, P.; Asdrubali, F. Critical Review and Methodological Approach to Evaluate the Differences among International Green Building Rating Tools. Renew. Sustain. Energy Rev. 2018, 82, 950–960. [Google Scholar] [CrossRef]
- Bekun, F.; Alola, A.; Sarkodie, S. Toward a Sustainable Environment: Nexus Between Co2 Emissions, Resource Rent, Renewable and Nonrenewable Energy in 16-Eu Countries. Sci. Total Environ. 2019, 657, 1023–1029. [Google Scholar] [CrossRef]
- Alola, A. The Trilemma of Trade, Monetary and Immigration Policies in the United States: Accounting for Environmental Sustainability. Sci. Total Environ. 2019, 658, 260–267. [Google Scholar] [CrossRef]
- Dupuis, E.; Goodman, D. Should We Go “Home” to Eat?: Toward a Reflexive Politics of Localism. J. Rural Stud. 2005, 21, 359–371. [Google Scholar] [CrossRef]
- Kamble, S.; Gunasekaran, A.; Gawankar, S. Achieving Sustainable Performance in a Data-Driven Agriculture Supply Chain: A Review for Research and Applications. Int. J. Prod. Econ. 2020, 219, 179–194. [Google Scholar] [CrossRef]
- Hopwood, B.; Mellor, M.; O’brien, G. Sustainable Development: Mapping Different Approaches. Sustain. Dev. 2005, 13, 38–52. [Google Scholar] [CrossRef]
- Liu, J.; Hull, V.; Batistella, M.; DeFries, R.; Dietz, T.; Fu, F.; Hertel, T.W.; Izaurralde, R.C.; Lambin, E.F.; Li, S.; et al. Framing Sustainability in a Telecoupled World. Ecol. Soc. 2013, 18. [Google Scholar] [CrossRef]
- Lozano, R. Incorporation and Institutionalization of Sd into Universities: Breaking Through Barriers to Change. J. Clean. Prod. 2006, 14, 787–796. [Google Scholar] [CrossRef]
- Ralph, M.; Stubbs, W. Integrating Environmental Sustainability into Universities. High. Educ. 2014, 67, 71–90. [Google Scholar] [CrossRef]
- Brinkhurst, M.; Rose, P.; Maurice, G.; Ackerman, J. Achieving Campus Sustainability: Top-Down, Bottom-Up, or Neither? Int. J. Sustain. High. Educ. 2011, 12, 338–354. [Google Scholar] [CrossRef]
- Escobar, N.; Laibach, N. Sustainability Check for Bio-Based Technologies: A Review of Process-Based and Life Cycle Approaches. Renew. Sustain. Energy Rev. 2021, 135. [Google Scholar] [CrossRef]
- Argo, A.; Tan, E.; Inman, D.; Langholtz, M.; Eaton, L.; Jacobson, J.; Wright, C.; Muth, D.; Wu, M.; Chiu, Y.; et al. Investigation of Biochemical Biorefinery Sizing and Environmental Sustainability Impacts for Conventional Bale System and Advanced Uniform Biomass Logistics Designs. Biofuels Bioprod. Biorefin. 2013, 7, 282–302. [Google Scholar] [CrossRef]
- Naik, S.; Goud, V.; Rout, P.; Dalai, A. Production of First and Second Generation Biofuels: A Comprehensive Review. Renew. Sustain. Energy Rev. 2010, 14, 578–597. [Google Scholar] [CrossRef]
- Chugani, N.; Kumar, V.; Garza-Reyes, J.A.; Rocha-Lona, L.; Upadhyay, A. Investigating the green impact of Lean, Six Sigma and Lean Six Sigma: A systematic literature review. Int. J. Lean Six Sigma 2017, 8, 7–32. [Google Scholar] [CrossRef]
- Rossi, S.; Colicchia, C.; Cozzolino, A.; Christopher, M. The logistics service providers in eco-efficiency innovation: An empirical study. Supply Chain Manag. 2013, 18, 583–603. [Google Scholar] [CrossRef]
- Gupta, K.; Laubscher, R.F.; Davim, J.P.; Jain, N.K. Recent developments in sustainable manufacturing of gears: A review. J. Clean. Prod. 2016, 112, 3320–3330. [Google Scholar] [CrossRef]
- Fahimnia, B.; Sarkis, J.; Davarzani, H. Green supply chain management: A review and bibliometric analysis. Int. J. Prod. Econ. 2015, 162, 101–114. [Google Scholar] [CrossRef]
- Clelland, I.J.; Dean, T.J.; Douglas, T.J. Stepping towards sustainable business: An evaluation of waste minimization practices in US manufacturing. Interfaces 2000, 30, 107–124. [Google Scholar] [CrossRef]
- Zofío, J.L.; Prieto, A.M. Environmental efficiency and regulatory standards: The case of CO2 emission from OECD industries. Resour. Energy Econ. 2001, 23, 63–83. [Google Scholar] [CrossRef]
- Cheng, F.; Dehghanizadeh, M.; Audu, M.A.; Jarvis, J.M.; Holguin, F.O.; Brewer, C.E. Characterization and evaluation of guayule processing residues as potential feedstock for biofuel and chemical production. Ind. Crops Prod. 2020, 150. [Google Scholar] [CrossRef]
- Hecking, T.; Leydesdorff, L. Topic Modelling of Empirical Text Corpora: Validity, Reliability, and Reproducibility in Comparison to Semantic Maps. arXiv 2018, arXiv:1806.01045. [Google Scholar]
Cluster | Cluster Name | Articles | Average Year * | Average Citations * |
---|---|---|---|---|
1 | Innovation | 1176 | 2015.0 | 37.4 |
2 | Supply chain management | 1139 | 2013.2 | 30.6 |
3 | Green supply chain | 788 | 2016.3 | 31.3 |
4 | Lean manufacturing | 676 | 2013.4 | 22.5 |
5 | International trade | 630 | 2012.7 | 25.9 |
6 | Diversification | 407 | 2011.6 | 45.5 |
7 | Energy efficiency | 370 | 2016.1 | 23.9 |
8 | Capital and growth | 295 | 2011.1 | 22.7 |
9 | Market orientation | 274 | 2011.7 | 54.9 |
10 | Performance measurement and control systems | 268 | 2011.6 | 29.2 |
11 | Servitization | 227 | 2015.6 | 29.7 |
12 | Enterprise resource planning | 173 | 2006.8 | 37.3 |
13 | Quality standards and certifications | 150 | 2014.8 | 22.1 |
14 | Production planning | 144 | 2009.8 | 23.3 |
15 | Optimization systems and algorithms | 143 | 2015.7 | 18.1 |
16 | Privatization | 107 | 2012.2 | 21.5 |
17 | Other | 341 | 2012.5 | 18.7 |
Cluster | Cluster Name | Articles | Average Year * | Average Citations * |
---|---|---|---|---|
1 | Green supply chain | 859 | 2016.5 | 29.9 |
2 | Sustainability indicators | 564 | 2015.0 | 22.9 |
3 | Health and food consumption | 454 | 2016.9 | 29.5 |
4 | Waste treatment and waste-to-energy systems | 331 | 2016.3 | 27.5 |
5 | Biofuels | 324 | 2016.2 | 33.8 |
6 | ICTs ** for sustainability | 270 | 2015.3 | 19.3 |
7 | Workplace green behavior | 252 | 2016.3 | 26.8 |
8 | Agrifood supply chain | 223 | 2014.3 | 30.3 |
9 | Trade policy and economic growth | 210 | 2017.8 | 18.9 |
10 | Sustainable tourism | 198 | 2015.7 | 23.4 |
11 | Mining and energy security | 184 | 2015.6 | 20.0 |
12 | Industry 4.0 | 179 | 2016.7 | 22.0 |
13 | Sustainable aquaculture | 172 | 2015.5 | 34.8 |
14 | Household sustainability | 169 | 2014.5 | 75.0 |
15 | Sustainability in sport | 160 | 2015.1 | 20.3 |
16 | Microalgae | 160 | 2015.5 | 52.2 |
17 | Entrepreneurship | 159 | 2016.3 | 24.5 |
18 | Sustainable universities | 146 | 2016.1 | 17.4 |
19 | Emergy | 134 | 2014.6 | 22.7 |
20 | Green buildings and sustainable construction | 132 | 2015.2 | 33.3 |
21 | Other | 995 | 2015.9 | 23.0 |
Keyword | MEP | ES * | ||||
---|---|---|---|---|---|---|
Articles | Average Year | Average Citations | Articles | Average Year | Average Citations | |
Firm performance | 1532 | 2013.6 | 40.9 | 103 | 2016.5 | 36.2 |
Innovation performance | 1215 | 2015.2 | 41.3 | 21 | 2018.2 | 6.2 |
Financial performance | 882 | 2014 | 36.3 | 103 | 2017.1 | 26.9 |
Environmental performance | 607 | 2015.8 | 33.5 | 678 | 2016.3 | 28.4 |
Business performance | 525 | 2013.8 | 28.9 | 43 | 2017.5 | 13.5 |
Operations performance | 488 | 2014 | 24.3 | 45 | 2016.2 | 57.5 |
Organizational performance | 356 | 2012 | 37 | 42 | 2017.5 | 31.5 |
Sustainability performance | 302 | 2017.4 | 16.2 | 330 | 2017.4 | 19 |
Export performance | 268 | 2011 | 28.6 | 2 | 2017 | 16 |
Economic performance | 266 | 2012.2 | 42.8 | 116 | 2015.9 | 40 |
Product performance | 239 | 2012.5 | 27.4 | 13 | 2016 | 24.9 |
Supply chain performance | 228 | 2014.7 | 26.3 | 28 | 2017.6 | 22.7 |
Manufacturing performance | 224 | 2012.6 | 27 | 6 | 2014 | 376.3 |
Improve performance | 202 | 2013 | 41.8 | 26 | 2016 | 55.3 |
Process performance | 171 | 2011.2 | 19.9 | 14 | 2018 | 41.2 |
Company performance | 144 | 2012.8 | 34.3 | 8 | 2018.6 | 6.4 |
Market performance | 144 | 2012.2 | 32.7 | 18 | 2018.1 | 26.2 |
Quality performance | 123 | 2010.8 | 40 | 4 | 2014.5 | 90.3 |
Organization performance | 116 | 2013.2 | 27.5 | 6 | 2020 | 3.5 |
Supplier performance | 102 | 2013.1 | 48.3 | 10 | 2016.5 | 64.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mejia, C.; Kajikawa, Y. The Academic Landscapes of Manufacturing Enterprise Performance and Environmental Sustainability: A Study of Commonalities and Differences. Int. J. Environ. Res. Public Health 2021, 18, 3370. https://doi.org/10.3390/ijerph18073370
Mejia C, Kajikawa Y. The Academic Landscapes of Manufacturing Enterprise Performance and Environmental Sustainability: A Study of Commonalities and Differences. International Journal of Environmental Research and Public Health. 2021; 18(7):3370. https://doi.org/10.3390/ijerph18073370
Chicago/Turabian StyleMejia, Cristian, and Yuya Kajikawa. 2021. "The Academic Landscapes of Manufacturing Enterprise Performance and Environmental Sustainability: A Study of Commonalities and Differences" International Journal of Environmental Research and Public Health 18, no. 7: 3370. https://doi.org/10.3390/ijerph18073370
APA StyleMejia, C., & Kajikawa, Y. (2021). The Academic Landscapes of Manufacturing Enterprise Performance and Environmental Sustainability: A Study of Commonalities and Differences. International Journal of Environmental Research and Public Health, 18(7), 3370. https://doi.org/10.3390/ijerph18073370