Serum Levels of Fibroblast Growth Factor 21 Are Positively Associated with Aortic Stiffness in Patients with Type 2 Diabetes Mellitus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Anthropometric Analysis
2.3. Biochemical Analyses
2.4. Measurements of cfPWV
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Naka, K.K.; Papathanassiou, K.; Bechlioulis, A.; Pappas, K.; Tigas, S.; Makriyiannis, D.; Antoniou, S.; Kazakos, N.; Margeli, A.; Papassotiriou, I.; et al. Association of vascular indices with novel circulating biomarkers as prognostic factors for cardiovascular complications in patients with type 2 diabetes mellitus. Clin. Biochem. 2018, 53, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Kozakova, M.; Morizzo, C.; Fraser, A.G.; Palombo, C. Impact of glycemic control on aortic stiffness, left ventricular mass and diastolic longitudinal function in type 2 diabetes mellitus. Cardiovasc. Diabetol. 2017, 16, 78. [Google Scholar] [CrossRef] [Green Version]
- Laurent, S.; Boutouyrie, P.; Lacolley, P. Structural and genetic bases of arterial stiffness. Hypertension 2005, 45, 1050–1055. [Google Scholar] [CrossRef] [PubMed]
- Cooper, L.L.; Palmisano, J.N.; Benjamin, E.J.; Larson, M.G.; Vasan, R.S.; Mitchell, G.F.; Hamburg, N.M. Microvascular Function Contributes to the Relation Between Aortic Stiffness and Cardiovascular Events: The Framingham Heart Study. Circ. Cardiovasc. Imaging 2016, 9, e004979. [Google Scholar] [CrossRef] [Green Version]
- Williams, B.; Mancia, G.; Spiering, W.; Agabiti Rosei, E.; Azizi, M.; Burnier, M.; Clement, D.L.; Coca, A.; de Simone, G.; Dominiczak, A.; et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur. Heart J. 2018, 39, 3021–3104. [Google Scholar] [CrossRef]
- Vlachopoulos, C.; Aznaouridis, K.; Terentes-Printzios, D.; Ioakeimidis, N.; Stefanadis, C. Prediction of cardiovascular events and all-cause mortality with brachial-ankle elasticity index: A systematic review and meta-analysis. Hypertension 2012, 60, 556–562. [Google Scholar] [CrossRef] [Green Version]
- Di Raimondo, D.; Tuttolomondo, A.; Musiari, G.; Schimmenti, C.; D’Angelo, A.; Pinto, A. Are the Myokines the Mediators of Physical Activity-Induced Health Benefits? Curr. Pharm. Des. 2016, 22, 3622–3647. [Google Scholar] [CrossRef] [PubMed]
- Cheung, B.M.; Deng, H.B. Fibroblast growth factor 21: A promising therapeutic target in obesity-related diseases. Expert Rev. Cardiovasc. Ther. 2014, 12, 659–666. [Google Scholar] [CrossRef]
- Cheng, P.; Zhang, F.; Yu, L.; Lin, X.; He, L.; Li, X.; Lu, X.; Yan, X.; Tan, Y.; Zhang, C. Physiological and Pharmacological Roles of FGF21 in Cardiovascular Diseases. J. Diabetes Res. 2016, 2016, 1540267. [Google Scholar] [CrossRef] [Green Version]
- Yafei, S.; Elsewy, F.; Youssef, E.; Ayman, M.; El-Shafei, M. Fibroblast growth factor 21 association with subclinical atherosclerosis and arterial stiffness in type 2 diabetes. Diabetes Metab. Syndr. 2019, 13, 882–888. [Google Scholar] [CrossRef]
- Ong, K.L.; Hui, N.; Januszewski, A.S.; Kaakoush, N.O.; Xu, A.; Fayyad, R.; DeMicco, D.A.; Jenkins, A.J.; Keech, A.C.; Waters, D.D.; et al. High plasma FGF21 levels predicts major cardiovascular events in patients treated with atorvastatin (from the Treating to New Targets [TNT] Study). Metab. Clin. Exp. 2019, 93, 93–99. [Google Scholar] [CrossRef] [Green Version]
- Ong, K.L.; Januszewski, A.S.; O’Connell, R.; Jenkins, A.J.; Xu, A.; Sullivan, D.R.; Barter, P.J.; Hung, W.T.; Scott, R.S.; Taskinen, M.R.; et al. The relationship of fibroblast growth factor 21 with cardiovascular outcome events in the Fenofibrate Intervention and Event Lowering in Diabetes study. Diabetologia 2015, 58, 464–473. [Google Scholar] [CrossRef] [PubMed]
- Lenart-Lipinska, M.; Matyjaszek-Matuszek, B.; Gernand, W.; Nowakowski, A.; Solski, J. Serum fibroblast growth factor 21 is predictive of combined cardiovascular morbidity and mortality in patients with type 2 diabetes at a relatively short-term follow-up. Diabetes Res. Clin. Pract. 2013, 101, 194–200. [Google Scholar] [CrossRef] [PubMed]
- Sutton-Tyrrell, K.; Najjar, S.S.; Boudreau, R.M.; Venkitachalam, L.; Kupelian, V.; Simonsick, E.M.; Havlik, R.; Lakatta, E.G.; Spurgeon, H.; Kritchevsky, S.; et al. Elevated aortic pulse wave velocity, a marker of arterial stiffness, predicts cardiovascular events in well-functioning older adults. Circulation 2005, 111, 3384–3390. [Google Scholar] [CrossRef] [PubMed]
- Cruickshank, K.; Riste, L.; Anderson, S.G.; Wright, J.S.; Dunn, G.; Gosling, R.G. Aortic pulse-wave velocity and its relationship to mortality in diabetes and glucose intolerance: An integrated index of vascular function? Circulation 2002, 106, 2085–2090. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, I.M.; Wu, D.A.; Lee, C.J.; Hou, J.S.; Hsu, B.G.; Wang, J.H. Serum cystatin C is independently associated with aortic arterial stiffness in patients with type 2 diabetes. Clin. Chim. Acta Int. J. Clin. Chem. 2018, 480, 114–118. [Google Scholar] [CrossRef] [PubMed]
- Tseng, P.W.; Hou, J.S.; Wu, D.A.; Hsu, B.G. High serum adipocyte fatty acid binding protein concentration linked with increased aortic arterial stiffness in patients with type 2 diabetes. Clin. Chim. Acta Int. J. Clin. Chem. 2019, 495, 35–39. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Deng, L.; Zhang, Q.; Guo, J.; Zhou, J.; Song, W.; Yuan, F. Diagnostic Value of CK-18, FGF-21, and Related Biomarker Panel in Nonalcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis. BioMed Res. Int. 2017, 2017, 9729107. [Google Scholar] [CrossRef]
- Baek, J.; Nam, H.K.; Rhie, Y.J.; Lee, K.H. Serum FGF21 Levels in Obese Korean Children and Adolescents. J. Obes. Metab. Syndr. 2017, 26, 204–209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gu, L.; Jiang, W.; Zheng, R.; Yao, Y.; Ma, G. Fibroblast Growth Factor 21 Correlates with the Prognosis of Dilated Cardiomyopathy. Cardiology 2021, 146, 27–33. [Google Scholar] [CrossRef]
- Franz, K.; Ost, M.; Otten, L.; Herpich, C.; Coleman, V.; Endres, A.S.; Klaus, S.; Muller-Werdan, U.; Norman, K. Higher serum levels of fibroblast growth factor 21 in old patients with cachexia. Nutrition 2019, 63–64, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.T.; Hsu, B.G.; Wang, C.H.; Lin, Y.L.; Lai, Y.H.; Kuo, C.H. Lower Serum Fibroblast Growth Factor 21 Levels are Associated with Normal Lumbar Spine Bone Mineral Density in Hemodialysis Patients. Int. J. Environ. Res. Public Health 2020, 17, 1938. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.L.; Castro, A.F., 3rd; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef] [PubMed]
- Reference Values for Arterial Stiffness’ Collaboration. Determinants of pulse wave velocity in healthy people and in the presence of cardiovascular risk factors: ‘establishing normal and reference values’. Eur. Heart J. 2010, 31, 2338–2350. [Google Scholar] [CrossRef]
- Woo, Y.C.; Xu, A.; Wang, Y.; Lam, K.S. Fibroblast growth factor 21 as an emerging metabolic regulator: Clinical perspectives. Clin. Endocrinol. 2013, 78, 489–496. [Google Scholar] [CrossRef] [PubMed]
- Chow, W.S.; Xu, A.; Woo, Y.C.; Tso, A.W.; Cheung, S.C.; Fong, C.H.; Tse, H.F.; Chau, M.T.; Cheung, B.M.; Lam, K.S. Serum fibroblast growth factor-21 levels are associated with carotid atherosclerosis independent of established cardiovascular risk factors. Arter. Thromb. Vasc. Biol. 2013, 33, 2454–2459. [Google Scholar] [CrossRef] [Green Version]
- Vlachopoulos, C.; Aznaouridis, K.; Stefanadis, C. Prediction of cardiovascular events and all-cause mortality with arterial stiffness: A systematic review and meta-analysis. J. Am. Coll. Cardiol. 2010, 55, 1318–1327. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Y.; Liu, L.; Xu, A.; Zhou, P.; Long, Z.; Tu, Y.; Chen, X.; Tang, W.; Huang, G.; Zhou, Z. Serum fibroblast growth factor 21 levels are related to subclinical atherosclerosis in patients with type 2 diabetes. Cardiovasc. Diabetol. 2015, 14, 72. [Google Scholar] [CrossRef] [Green Version]
- Zhu, W.; Wang, C.; Liu, L.; Li, Y.; Li, X.; Cai, J.; Wang, H. Effects of fibroblast growth factor 21 on cell damage in vitro and atherosclerosis in vivo. Can. J. Physiol. Pharmacol. 2014, 92, 927–935. [Google Scholar] [CrossRef]
- Schram, M.T.; Henry, R.M.; van Dijk, R.A.; Kostense, P.J.; Dekker, J.M.; Nijpels, G.; Heine, R.J.; Bouter, L.M.; Westerhof, N.; Stehouwer, C.D. Increased central artery stiffness in impaired glucose metabolism and type 2 diabetes: The Hoorn Study. Hypertension 2004, 43, 176–181. [Google Scholar] [CrossRef]
- Teoh, W.L.; Price, J.F.; Williamson, R.M.; Payne, R.A.; Van Look, L.A.; Reynolds, R.M.; Frier, B.M.; Wilkinson, I.B.; Webb, D.J.; Strachan, M.W.; et al. Metabolic parameters associated with arterial stiffness in older adults with Type 2 diabetes: The Edinburgh Type 2 diabetes study. J. Hypertens. 2013, 31, 1010–1017. [Google Scholar] [CrossRef] [PubMed]
- Meyer, M.L.; Tanaka, H.; Palta, P.; Cheng, S.; Gouskova, N.; Aguilar, D.; Heiss, G. Correlates of Segmental Pulse Wave Velocity in Older Adults: The Atherosclerosis Risk in Communities (ARIC) Study. Am. J. Hypertens. 2016, 29, 114–122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cecelja, M.; Chowienczyk, P. Dissociation of aortic pulse wave velocity with risk factors for cardiovascular disease other than hypertension: A systematic review. Hypertension 2009, 54, 1328–1336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Low, S.; Sum, C.F.; Tavintharan, S.; Yeoh, L.Y.; Liu, J.; Li, N.; Ang, K.; Lee, S.B.; Tang, W.E.; et al. Arterial stiffness is an independent predictor for albuminuria progression among Asians with type 2 diabetes-A prospective cohort study. J. Diabetes Complicat. 2017, 31, 933–938. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Garza, U.; Torres-Oteros, D.; Yarritu-Gallego, A.; Marrero, P.F.; Haro, D.; Relat, J. Fibroblast Growth Factor 21 and the Adaptive Response to Nutritional Challenges. Int. J. Mol. Sci. 2019, 20, 4692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Carotid–Femoral Pulse Wave Velocity | ||||
---|---|---|---|---|
Characteristics | All Patients (n = 130) | ≤10 m/s (Control; n = 85) | >10 m/s (AS; n = 45) | p Value |
Age (years) | 62.29 ± 12.30 | 60.39 ± 12.35 | 65.89 ± 11.49 | 0.015 * |
Male, n (%) | 69 (53.1) | 49 (57.6) | 20 (44.4) | 0.151 |
Hypertension, n (%) | 73 (56.2) | 45 (52.9) | 28 (62.2) | 0.310 |
SBP (mmHg) | 142.74 ± 20.10 | 138.21 ± 17.62 | 151.29 ± 21.84 | <0.001 * |
DBP (mmHg) | 83.15 ± 11.65 | 81.44 ± 11.20 | 86.40 ± 11.91 | 0.002 * |
cfPWV (m/s) | 9.61 ± 2.73 | 8.08 ± 1.40 | 12.51 ± 2.24 | <0.001 * |
Body mass index (kg/m2) | 26.88 ± 3.95 | 27.72 ± 4.19 | 27.19 ± 3.48 | 0.522 |
Body fat mass (%) | 31.71 ± 7.87 | 30.53 ± 8.04 | 33.93 ± 7.12 | 0.019 * |
Blood urea nitrogen (mg/dL) | 16.00 (12.00–19.00) | 15.00 (12.00–18.00) | 16.00 (12.00–22.00) | 0.231 |
Creatinine (mg/dL) | 0.8 (0.70–1.00) | 0.80 (0.70–0.90) | 0.90 (0.80–1.25) | 0.006 * |
eGFR (mL/min) | 87.69 ± 26.25 | 94.62 ± 24.76 | 74.60 ± 24.12 | <0.001 * |
UACR (mg/g) | 14.73 (6.90–52.73) | 10.91 (4.95–35.04) | 25.00 (9.40–151.61) | 0.004 * |
Fasting glucose (mg/dL) | 138.00 (121.00–173.50) | 130.00 (117.00–160.00) | 151.00 (124.50–190.00) | 0.043 * |
Glycated hemoglobin (HbA1c, %) | 7.50 (6.60–8.90) | 7.25 (6.53–8.75) | 8.10 (6.80–9.30) | 0.034 * |
HDL-C (mg/dL) | 47.10 ± 12.23 | 48.00 ± 11.60 | 45.40 ± 13.31 | 0.250 |
LDL-C (mg/dL) | 100.57 ± 26.56 | 101.36 ± 25.78 | 99.07 ± 28.21 | 0.641 |
Total cholesterol (mg/dL) | 163.02 ± 29.48 | 163.27 ± 27.04 | 162.56 ± 33.95 | 0.896 |
Triglyceride (mg/dL | 116.50 (85.00–171.75) | 104.00 (76.50–153.50) | 128.00 (84.00–212.00) | 0.016 * |
FGF-21 (pg/mL) | 191.88 (104.57–278.52) | 167.11 (95.02–233.02) | 263.35 (144.21–344.05) | <0.001 * |
ACE inhibitor, n (%) | 8 (6.2) | 6 (7.1) | 2 (4.4) | 0.555 |
ARB, n (%) | 52 (40.0) | 29 (34.1) | 23 (51.1) | 0.060 |
β-blocker, n (%) | 20 (15.4) | 10 (11.8) | 10 (22.2) | 0.116 |
CCB, n (%) | 45 (34.6) | 28 (32.9) | 17 (37.8) | 0.581 |
Statin, n (%) | 68 (52.3) | 42 (49.4) | 26 (57.8) | 0.364 |
Fibrate, n (%) | 6 (4.6) | 4 (4.7) | 2 (4.4) | 0.946 |
Metformin, n (%) | 72 (55.4) | 48 (56.5) | 24 (53.3) | 0.752 |
Sulfonylureas, n (%) | 72 (55.4) | 47 (55.3) | 25 (55.6) | 0.977 |
DDP-4 inhibitor, n (%) | 78 (60.0) | 51 (60.0) | 27 (60.0) | 1.000 |
Insulin, n (%) | 35 (26.9) | 23 (27.1) | 12 (26.7) | 0.962 |
Variables | Adjusted Odds Ratio | 95% C.I. | p-Value |
---|---|---|---|
Fibroblast growth factor 21, 1 pg/mL | 1.005 | 1.002–1.009 | 0.002 * |
Systolic blood pressure, 1 mmHg | 1.004 | 1.004–1.052 | 0.023 |
Estimated glomerular filtration rate, 1 mL/min | 0.968 | 0.947–0.990 | 0.004 |
Variables | Carotid–Femoral Pulse Wave Velocity (m/s) | ||||
---|---|---|---|---|---|
Simple Regression | Multivariate Regression | ||||
r | p-Value | Beta | Adjusted R2 Change | p-Value | |
Female | 0.054 | 0.542 | — | — | — |
Hypertension | 0.223 | 0.008 * | — | — | — |
Age (years) | 0.238 | 0.006 * | — | — | — |
Height (cm) | −0.081 | 0.359 | — | — | — |
Body weight (kg) | 0.067 | 0.448 | — | — | — |
Body mass index (kg/m2) | 0.150 | 0.089 | — | — | — |
Body fat mass (%) | 0.195 | 0.026 * | — | — | — |
SBP (mmHg) | 0.331 | <0.001 * | 0.271 | 0.065 | 0.002 * |
DBP (mmHg) | 0.231 | 0.008 * | — | — | — |
Total cholesterol (mg/dL) | 0.040 | 0.652 | — | — | — |
Log-Triglyceride (mg/dL) | 0.281 | 0.001 * | — | — | — |
HDL-C (mg/dL) | −0.082 | 0.355 | — | — | — |
LDL-C (mg/dL | −0.042 | 0.636 | — | — | — |
Log-Glucose (mg/dL) | 0.241 | 0.006 * | — | — | — |
Log-HbA1c (%) | 0.218 | 0.013 * | — | — | — |
Log-BUN (mg/dL) | 0.109 | 0.219 | — | — | — |
Log-Creatinine (mg/dL) | 0.263 | 0.002 * | — | — | — |
eGFR (mL/min) | −0.314 | 0.001 * | — | — | — |
Log-UACR (mg/g) | 0.227 | 0.015 * | — | — | — |
Log-FGF21 (pg/mL) | 0.338 | <0.001 * | 0.369 | 0.168 | <0.001 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, S.-Y.; Wu, D.-A.; Tsai, J.-P.; Hsu, B.-G. Serum Levels of Fibroblast Growth Factor 21 Are Positively Associated with Aortic Stiffness in Patients with Type 2 Diabetes Mellitus. Int. J. Environ. Res. Public Health 2021, 18, 3434. https://doi.org/10.3390/ijerph18073434
Huang S-Y, Wu D-A, Tsai J-P, Hsu B-G. Serum Levels of Fibroblast Growth Factor 21 Are Positively Associated with Aortic Stiffness in Patients with Type 2 Diabetes Mellitus. International Journal of Environmental Research and Public Health. 2021; 18(7):3434. https://doi.org/10.3390/ijerph18073434
Chicago/Turabian StyleHuang, Sin-Yi, Du-An Wu, Jen-Pi Tsai, and Bang-Gee Hsu. 2021. "Serum Levels of Fibroblast Growth Factor 21 Are Positively Associated with Aortic Stiffness in Patients with Type 2 Diabetes Mellitus" International Journal of Environmental Research and Public Health 18, no. 7: 3434. https://doi.org/10.3390/ijerph18073434
APA StyleHuang, S. -Y., Wu, D. -A., Tsai, J. -P., & Hsu, B. -G. (2021). Serum Levels of Fibroblast Growth Factor 21 Are Positively Associated with Aortic Stiffness in Patients with Type 2 Diabetes Mellitus. International Journal of Environmental Research and Public Health, 18(7), 3434. https://doi.org/10.3390/ijerph18073434