Could tDCS Be a Potential Performance-Enhancing Tool for Acute Neurocognitive Modulation in eSports? A Perspective Review
Abstract
:1. Introduction
2. eSports-Cognitive Performance Requirements
3. a-tDCS as a Potential Performance-Enhancing Tool for Acute Modulation of Neurocognitive Functions in eSports
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Wagner, M.G. On the Scientific Relevance of eSports. In Proceedings of the International Conference on Internet Computing, Las Vegas, NV, USA, 26–29 June 2006; pp. 437–442. [Google Scholar]
- Campbell, M.J.; Toth, A.J.; Moran, A.P.; Kowal, M.; Exton, C. Esports: A new window on neurocognitive expertise? Prog. Brain Res. 2018, 240, 161–174. [Google Scholar] [PubMed]
- Himmelstein, D.; Liu, Y.; Shapiro, J.L. An exploration of mental skills among competitive league of legend players. Int. J. Gaming Comput. Mediat. Simul. 2017, 9, 1–21. [Google Scholar] [CrossRef]
- Friehs, M.A.; Dechant, M.; Vedress, S.; Frings, C.; Mandryk, R.L. Shocking advantage! Improving digital game performance using non-invasive brain stimulation. Int. J. Hum. Comput. Stud. 2021, 148, 102582. [Google Scholar] [CrossRef]
- Yin, K.Y.; Zi, Y.H.; Zhuang, W.; Gao, Y.; Tong, Y.; Song, L.J.; Liu, Y. Linking Esports to health risks and benefits: Current knowledge and future research needs. J. Sport Health Sci. 2020, 9, 485–488. [Google Scholar] [CrossRef] [PubMed]
- Nitsche, M.A.; Paulus, W. Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology 2001, 57, 1899–1901. [Google Scholar] [CrossRef]
- Nitsche, M.A.; Liebetanz, D.; Tergau, F.; Paulus, W. Modulation of cortical excitability by transcranial direct current stimulation. Der Nervenarzt 2002, 73, 332–335. [Google Scholar] [CrossRef]
- Nitsche, M.A.; Liebetanz, D.; Antal, A.; Lang, N.; Tergau, F.; Paulus, W. Modulation of cortical excitability by weak direct current stimulation- technical, safety and functional aspects. Suppl. Clin. Neurophysiol. 2003, 56, 255–276. [Google Scholar]
- Rosenkranz, K.; Nitsche, M.A.; Tergau, F.; Paulus, W. Diminution of training-induced transient motor cortex plasticity by weak transcranial direct current stimulation in the human. Neurosci. Lett. 2000, 296, 61–63. [Google Scholar] [CrossRef]
- Nitsche, M.A.; Paulus, W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J. Physiol. 2000, 527, 633–639. [Google Scholar] [CrossRef]
- Friehs, M.A.; Frings, C. Pimping inhibition: Anodal tDCS enhances stop-signal reaction time. J. Exp. Psychol. Hum. Percept. Perform. 2018, 44, 1933. [Google Scholar] [CrossRef]
- Friehs, M.A.; Frings, C. Cathodal tDCS increases stop-signal reaction time. Cogn. Affect. Behav. Neurosci. 2019, 19, 1129–1142. [Google Scholar] [CrossRef] [PubMed]
- Hsu, T.-Y.; Tseng, L.-Y.; Yu, J.-X.; Kuo, W.-J.; Hung, D.L.; Tzeng, O.J.; Walsh, V.; Muggleton, N.G.; Juan, C.-H. Modulating inhibitory control with direct current stimulation of the superior medial frontal cortex. Neuroimage 2011, 56, 2249–2257. [Google Scholar] [CrossRef] [PubMed]
- Kwon, Y.H.; Kwon, J.W. Response inhibition induced in the stop-signal task by transcranial direct current stimulation of the pre-supplementary motor area and primary sensoriomotor cortex. J. Phys. Ther. Sci. 2013, 25, 1083–1086. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stramaccia, D.F.; Penolazzi, B.; Altoè, G.; Galfano, G. TDCS over the right inferior frontal gyrus disrupts control of interference in memory: A retrieval-induced forgetting study. Neurobiol. Learn. Mem. 2017, 144, 114–130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frings, C.; Brinkmann, T.; Friehs, M.A.; van Lipzig, T. Single session tDCS over the left DLPFC disrupts interference processing. Brain Cogn. 2018, 120, 1–7. [Google Scholar] [CrossRef]
- Jeon, S.Y.; Han, S.J. Improvement of the working memory and naming by transcranial direct current stimulation. Ann. Rehabil. Med. 2012, 36, 585. [Google Scholar] [CrossRef]
- Loftus, A.M.; Yalcin, O.; Baughman, F.D.; Vanman, E.J.; Hagger, M.S. The impact of transcranial direct current stimulation on inhibitory control in young adults. Brain Behav. 2015, 5, e00332. [Google Scholar] [CrossRef] [Green Version]
- Friehs, M.A.; Frings, C. Offline beats online: Transcranial direct current stimulation timing influences on working memory. Neuroreport 2019, 30, 795–799. [Google Scholar] [CrossRef]
- Oliveira, J.F.; Zanão, T.A.; Valiengo, L.; Lotufo, P.A.; Benseñor, I.M.; Fregni, F.; Brunoni, A.R. Acute working memory improvement after tDCS in antidepressant-free patients with major depressive disorder. Neurosci. Lett. 2013, 537, 60–64. [Google Scholar] [CrossRef] [Green Version]
- Friehs, M.A.; Güldenpenning, I.; Frings, C.; Weigelt, M. Electrify your game! Anodal tDCS increases the resistance to head fakes in basketball. J. Cogn. Enhanc. 2019, 4, 62–70. [Google Scholar] [CrossRef]
- Borducchi, D.M.; Gomes, J.S.; Akiba, H.; Cordeiro, Q.; Borducchi, J.H.; Valentin, L.S.; Borducchi, G.M.; Dias, Á.M. Transcranial Direct Current Stimulation Effects on Athletes’ Cognitive Performance: An Exploratory Proof of Concept Trial. Front. Psychiatry 2016, 7, 183. [Google Scholar] [CrossRef] [Green Version]
- Margaret, C.; Keiper, R.; Manning, D.; Jenny, S.; Olrich, T.; Croft, C. No reason to LoL at LoL: The addition of esports to intercollegiate athletic departments. J. Study Sports Athl. Educ. 2017, 11, 143–160. [Google Scholar]
- Cunningham, G.; Fairley, S.; Ferkins, L.; Kerwin, S.; Lock, D.; Shaw, S.; Wicker, P. ESport: Construct specifications and implications for sport management. Sport Manag. Rev. 2018, 21, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Taylor, T.L. Raising the Stakes: E-Sports and the Professionalization of Computer Gaming; MIT Press: Cambridge, MA, USA, 2012. [Google Scholar]
- Pedraza-Ramirez, I.; Musculus, L.; Raab, M.; Laborde, S. Setting the scientific stage for esports psychology: A systematic review. Int. Rev. Sport Exerc. Psychol. 2020, 13, 319–352. [Google Scholar] [CrossRef]
- Ding, Y.; Hu, X.; Li, J.; Ye, J.; Wang, F.; Zhang, D. What Makes a Champion: The Behavioral and Neural Correlates of Expertise in Multiplayer Online Battle Arena Games. Int. J. Hum. Comput. Interact. 2018, 34, 682–694. [Google Scholar] [CrossRef]
- Toth, A.J.; Kowal, M.; Campbell, M.J. The Color-Word Stroop Task Does Not Differentiate Cognitive Inhibition Ability among Esports Gamers of Varying Expertise. Front. Psychol. 2019, 10, 2852. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Huang, L.; Li, B.; Wang, H.; Han, C. Time for a true display of skill: Top players in League of Legends have better executive control. Acta Psychol. 2020, 204, 103007. [Google Scholar] [CrossRef] [PubMed]
- Hallmann, K.; Giel, T. Esports—Competitive sports or recreational activity? Sport Manag. Rev. 2018, 21, 14–20. [Google Scholar] [CrossRef]
- Pluss, M.A.; Bennett, K.J.M.; Novak, A.R.; Panchuk, D.; Coutts, A.J.; Fransen, J. Esports: The Chess of the 21st Century. Front. Psychol. 2019, 10, 156. [Google Scholar] [CrossRef]
- Jenny, S.E.; Manning, R.D.; Keiper, M.C.; Olrich, T.W. Virtua(ly) athletes: Where eSports within the definition of “Sports”. Quest 2017, 69, 1–18. [Google Scholar] [CrossRef]
- Martin-Niedecken, A.L.; Schättin, A. Let the Body’n’Brain Games Begin: Toward Innovative Training Approaches in eSports Athletes. Front. Psychol. 2020, 11, 138. [Google Scholar] [CrossRef] [Green Version]
- Bonnar, D.; Castine, B.; Kakoschke, N.; Sharp, G. Sleep and performance in Eathletes: For the win! Sleep Health 2019, 5, 647–650. [Google Scholar] [CrossRef]
- Lang, N.; Siebner, H.R.; Ward, N.S.; Lee, L.; Nitsche, M.A.; Paulus, W.; Rothwell, J.C.; Lemon, R.N.; Frackowiak, R.S. How does transcranial DC stimulation of the primary motor cortex alter regional neuronal activity in the human brain? Eur. J. Neurosci. 2005, 22, 495–504. [Google Scholar] [CrossRef]
- Lang, N.; Nitsche, M.A.; Paulus, W.; Rothwell, J.C.; Lemon, R.N. Effects of transcranial direct current stimulation over the human motor cortex on corticospinal and transcallosal excitability. Exp. Brain Res. 2004, 156, 439–443. [Google Scholar] [CrossRef] [PubMed]
- Bikson, M.; Grossman, P.; Thomas, C.; Zannou, A.L.; Jiang, J.; Adnan, T.; Mourdoukoutas, A.P.; Kronberg, G.; Truong, D.; Boggio, P.; et al. Safety of Transcranial Direct Current Stimulation: Evidence Based Update 2016. Brain Stimul. 2016, 9, 641–661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, E.K.; Cohen, J.D. An integrative theory of prefrontal cortex function. Annu. Rev. Neurosci. 2001, 24, 167–202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramnani, N.; Owen, A.M. Anterior prefrontal cortex: Insights into function from anatomy and neuroimaging. Nat. Rev. Neurosci. 2004, 5, 184–194. [Google Scholar] [CrossRef] [PubMed]
- Lefaucheur, J.P.; Antal, A.; Ayache, S.S.; Benninger, D.H.; Brunelin, J.; Cogiamanian, F. Evidence-based guidelines on the therapeutic use of transcranial direct current stimulation (tDCS). Clin. Neurophysiol. 2017, 128, 56–92. [Google Scholar] [CrossRef] [PubMed]
- Antal, A.; Alekseichuk, I.; Bikson, M.; Brockmöller, J.; Brunoni, A.R.; Chen, R.; Cochen, L.G.; Dowthwaite, G.; Ellrich, J.; Flöel, A.; et al. Low intensity transcranial electric stimulation: Safety, ethical, legal regulatory and application guidelines. Clin. Neurophysiol. 2017, 128, 1774–1809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hauptmann, B.; Karni, A. From primed to learn: The saturation of repetition priming and the induction of long-term memory. Brain Res. Cogn. Brain Res. 2002, 13, 313–322. [Google Scholar] [CrossRef]
- Hurley, R.; Machado, L. Using tDCS priming to improve brain function: Can metaplasticity provide the key to boosting outcomes? Neurosci. Biobehav. Rev. 2017, 83, 155–159. [Google Scholar] [CrossRef]
- Alonzo, A.; Brassil, J.; Taylor, J.L.; Martin, D.; Loo, C.K. Daily transcranial direct current stimulation (tDCS) leads to greater increases in cortical excitability than second daily transcranial direct current stimulation. Brain Stimul. 2012, 5, 208–213. [Google Scholar] [CrossRef]
- Lin, C.H.; Knowlton, B.J.; Chiang, M.C.; Iacoboni, M.; Udompholkul, P.; Wu, A.D. Brain-behavior correlates of optimizing learning through interleaved practice. Neuroimage 2011, 56, 1758–1772. [Google Scholar] [CrossRef]
- Hahn, C.; Rice, J.; Macuff, S.; Minhas, P.; Rahman, A.; Bikson, M. Methods for extra-low voltage transcranial direct current stimulation: Current and time dependent impedance decreases. Clin. Neurophysiol. 2013, 124, 551–556. [Google Scholar] [CrossRef]
- Li, L.M.; Uehara, K.; Hanakawa, T. The contribution of interindividual factors to variability of response in transcranial direct current stimulation studies. Front. Cell. Neurosci. 2015, 9, 181. [Google Scholar] [CrossRef] [Green Version]
- Bikson, M.; Datta, A.; Rahman, A.; Scaturro, J. Electrode montages for tDCS and weak transcranial electrical stimulation: Role of “return” electrode’s position and size. Clin. Neurophysiol. 2010, 121, 1976–1978. [Google Scholar] [CrossRef] [Green Version]
- Moliadze, V.; Antal, A.; Paulus, W. Electrode-distance dependent after-effects of transcranial direct and random noise stimulation with extracephalic reference electrodes. Clin. Neurophysiol. 2010, 121, 2165–2171. [Google Scholar] [CrossRef] [PubMed]
- Datta, A.; Bansal, V.; Diaz, J.; Patel, J.; Reato, D.; Bikson, M. Gyri-precise head model of transcranial direct current stimulation: Improved spatial focality using a ring electrode versus conventional rectangular pad. Brain Stimul. 2009, 2, 201–207. [Google Scholar] [CrossRef] [Green Version]
- Park, J.H.; Hong, S.B.; Kim, D.W.; Suh, M.; Im, C.H. A novel array-type transcranial direct current stimulation (tDCS) system for accurate focusing on targeted brain areas. Magn. IEEE Trans. 2011, 47, 882–885. [Google Scholar] [CrossRef]
- Wiethoff, S.; Hamada, M.; Rothwell, J.C. Variability in response to transcranial direct current stimulation of the motor cortex. Brain Stimul. 2014, 7, 468–475. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Kuhn, A.; Pérez-Fernández, C.; Moreno, M.; Flores, P.; Sánchez-Santed, F. Differential effects of transcranial direct current stimulation (tDCS) depending on previous musical training. Front. Psychol. 2018, 9, 1465. [Google Scholar] [CrossRef] [PubMed]
- Ruffini, G.; Fox, M.D.; Ripolles, O.; Miranda, P.C.; Pascual-Leone, A. Optimization of multifocal transcranial current stimulation for weighted cortical pattern targeting from realistic modeling of electric felds. Neuroimage 2014, 89, 216–225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madhavan, S.; Stinear, J.W. Focal and bidirectional modulation of lower limb motor cortex using anodal transcranial direct current stimulation. Brain Stimul. 2010, 3, 42–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bikson, M.; Rahman, A.; Datta, A.; Fregni, F.; Merabet, L. High-resolution modeling assisted design of customized and individualized transcranial direct current stimulation protocols. Neuromodulation Technol. Neural Interface 2012, 15, 306–315. [Google Scholar] [CrossRef] [Green Version]
- Opitz, A.; Paulus, W.; Will, S.; Antunes, A.; Thielscher, A. Determinants of the electric field during transcranial direct current stimulation. Neuroimage 2015, 109, 140–150. [Google Scholar] [CrossRef]
- Javadi, A.H.; Cheng, P.; Walsh, V. Short duration transcranial direct current stimulation (tDCS) modulates verbal memory. Brain Stimul. 2012, 5, 468–474. [Google Scholar] [CrossRef]
- Stagg, C.J. The Physiological Basis of Brain Stimulation. In The Stimulated Brain; Cohen Kadosh, R., Ed.; Elsevier: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Andrews, S.C.; Hoy, K.E.; Enticott, P.G.; Daskalakis, Z.J.; Fitzgerald, P.B. Improving working memory: The effect of combining cognitive activity and anodal transcranial direct current stimulation to the left dorsolateral prefrontal cortex. Brain Stimul. 2011, 4, 84–89. [Google Scholar] [CrossRef]
- Monte-Silva, K.; Kuo, M.F.; Liebetanz, D.; Paulus, W.; Nitsche, M.A. Shaping the optimal repetition interval for cathodal transcranial direct current stimulation (tDCS). J. Neurophysiol. 2010, 103, 1735–1740. [Google Scholar] [CrossRef] [Green Version]
- Kessler, S.K.; Minhas, P.; Woods, A.J.; Rosen, A.; Gorman, C.; Bikson, M. Dosage considerations for transcranial direct current stimulation in children: A computational modeling study. PLoS ONE 2013, 8, e76112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Floel, A.; Suttorp, W.; Kohl, O.; Kurten, J.; Lohmann, H.; Breitenstein, C.; Knecht, S. Noninvasive brain stimulation improves object-location learning in the elderly. Neurobiol. Aging 2012, 33, 1682–1689. [Google Scholar] [CrossRef]
- Tseng, P.; Hsu, T.Y.; Chang, C.F.; Tzeng, O.J.; Hung, D.L.; Muggleton, N.G.; Juan, C.H. Unleashing potential: Transcranial direct current stimulation over the right posterior parietal cortex improves change detection in low-performing individuals. J. Neurosci. 2012, 32, 10554–10561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berryhill, M.E.; Jones, K.T. tDCS selectively improves working memory in older adults with more education. Neurosci. Lett. 2012, 521, 148–151. [Google Scholar] [CrossRef]
- Pena-Gomez, C.; Vidal-Piñeiro, D.; Clemente, I.C.; Pascual-Leone, A.; Bartrés-Faz, D. Down-regulation of negative emotional processing by transcranial direct current stimulation: Effects of personality characteristics. PLoS ONE 2011, 6, e22812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krause, B.; Cohen Kadosh, R. Not all brains are created equal: The relevance of individual differences in responsiveness to transcranial electrical stimulation. Front. Syst. Neurosci. 2014, 8, 25. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, C.; Santos, L.; Peterson, M.D.; Ehinger, M. Safety of noninvasive brain stimulation in children and adolescents. Brain Stimul. 2015, 8, 76–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jackson, M.P.; Bikson, M.; Liebetanz, D.; Nitsche, M. How to consider animal data in tDCS safety standards. Brain Stimul. 2017, 10, 1141. [Google Scholar] [CrossRef] [PubMed]
- Russell, M.; Goodman, T.; Wang, Q.; Groshong, B.; Lyeth, B.G. Gender differences in current received during transcranial electrical stimulation. Front. Psychiatry 2014, 5, 104. [Google Scholar] [CrossRef] [Green Version]
- Rudro, T.; Workman, C.D.; Fietsam, A.C.; Kamholz, J. Response variability in transcranial direct current simulation: Why sex matters. Front. Psychiatry 2020, 11, 585. [Google Scholar] [CrossRef] [PubMed]
- Hester, B. Teens Spend 25 Times More of Their Time Playing Video Games than Going to the Movies. Available online: https://www.ign.com/articles/2016/12/21/teens-spend-25-times-more-of-their-time-playing-videogames-than-going-to-the-movies (accessed on 20 October 2020).
- Center on Media and Child Health. Video Games. Available online: https://cmch.tv/parents/video-games (accessed on 14 October 2020).
- Davis, N.J. Neurodoping: Brain stimulation as a performance-enhancing measure. Sports Med. 2013, 43, 649–653. [Google Scholar] [CrossRef]
- Petersen, T.S. Sport, Neuro-Doping and Ethics. Neuroethics 2021, 1–4. [Google Scholar] [CrossRef]
- Møller, V.; Christiansen, A.V. Neuro-Doping—A Serious Threat to the Integrity of Sport? Neuroethics 2020, 1–10. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Machado, S.; Travassos, B.; Teixeira, D.S.; Rodrigues, F.; Cid, L.; Monteiro, D. Could tDCS Be a Potential Performance-Enhancing Tool for Acute Neurocognitive Modulation in eSports? A Perspective Review. Int. J. Environ. Res. Public Health 2021, 18, 3678. https://doi.org/10.3390/ijerph18073678
Machado S, Travassos B, Teixeira DS, Rodrigues F, Cid L, Monteiro D. Could tDCS Be a Potential Performance-Enhancing Tool for Acute Neurocognitive Modulation in eSports? A Perspective Review. International Journal of Environmental Research and Public Health. 2021; 18(7):3678. https://doi.org/10.3390/ijerph18073678
Chicago/Turabian StyleMachado, Sergio, Bruno Travassos, Diogo S. Teixeira, Filipe Rodrigues, Luis Cid, and Diogo Monteiro. 2021. "Could tDCS Be a Potential Performance-Enhancing Tool for Acute Neurocognitive Modulation in eSports? A Perspective Review" International Journal of Environmental Research and Public Health 18, no. 7: 3678. https://doi.org/10.3390/ijerph18073678
APA StyleMachado, S., Travassos, B., Teixeira, D. S., Rodrigues, F., Cid, L., & Monteiro, D. (2021). Could tDCS Be a Potential Performance-Enhancing Tool for Acute Neurocognitive Modulation in eSports? A Perspective Review. International Journal of Environmental Research and Public Health, 18(7), 3678. https://doi.org/10.3390/ijerph18073678