Running Performance Variability among Runners from Different Brazilian States: A Multilevel Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample
2.2. Instrument
2.2.1. Individual-level variables
- Running pace: Running pace was used as the primary performance indicator (included in the model as the outcome variable). Runners were asked to state their run pace in preferred distance.
- Frequency of training: Runners were asked to state the number of training sessions they complete per week (1–7 train/week). The variable was dichotomized as either at least 3 sessions/week or more than 3 sessions/week.
- Volume/week: Runners were asked to provide information about the average total distance (in kilometers) they usually cover during their weekly training sessions.
2.2.2. Sociodemographic
- Socioeconomic status (SES): Runners were asked to provide an estimate of their monthly income, in a Likert scale format, based on Brazilian minimum wage in 2019 [36]. Answers were restructured in the following categories: low (≤ BRL 998.00 or about < USD 241.06), medium (> BRL 998.00–≤ BRL 2994.00 or about USD 241.06–≤ 723.18), medium–high (> BRL 2994.00–≤ BRL 4990.00 or about > USD 723.18–≤ USD 1205), and high (> BRL 4990.00 or about > USD 1205), which were used in the analysis.
- Place of residence. Runners were asked about the city they live in (state capital or not).
- Weather: Runners were asked about their perception of the influence of the natural environment (namely weather conditions) during running practice. Based on their answers, the variable was dichotomized to yes (it influences) or no (it does not influence).
- Physical structures: The perception about the presence of physical structures and the environment (the existence of parks/places for the practice, street safety and design), that can promote ongoing running practice, was obtained and dichotomized to yes (it influences) or no (it does not influence).
2.2.3. State-level variables
- Human development index (HDI): Based on the HDI, states were categorized as medium (≤0.699), high (≥0.700 and ≤0.799), or very high (≥0.800) HDI. None of the states had an HDI classified as low (<0.600).
- Athletics events: Information regarding the existence of athletics events in the various Brazilian states was obtained from State Basic Information Research [38]. The variable was categorized as either yes (there is) or no (there is not).
- Violence index: Femicide was used as the violence index indicator, obtained from the Atlas of Violence [25]. It expresses the total number of women homicides by year in each state.
2.3. Statistical analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yan, X.; Papadimitriou, I.; Lidor, R.; Eynon, N. Nature versus Nurture in Determining Athletic Ability. Med. Sport Sci. 2016, 61, 15–28. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.J.; Snyder, E.M.; Lundstrom, C.J. Predictors of long-distance race performance in master runners. J. Hum. Sport Exerc. 2019, 15. [Google Scholar] [CrossRef]
- da Silva, P.N.; Solera, B.; Anversa, A.L.B.; de Almeida, T.L.; Manoel, F.D.A. Motivação para a prática da corrida de rua: Diferença entre atletas amadores de alta performance e atletas amadores. Phys. Educ. Sport J. 2019, 7, 21–27. [Google Scholar] [CrossRef]
- Nikolaidis, P.T.; Rosemann, T.J.; Knechtle, B. Skinfold Thickness Distribution in Recreational Marathon Runners. Int. J. Environ. Res. Public Health 2020, 17, 2978. [Google Scholar] [CrossRef]
- Herrmann, F.R.; Graf, C.; Karsegard, V.L.; Mareschal, J.; Achamrah, N.; Delsoglio, M.; Schindler, M.; Pichard, C.; Genton, L. Running performance in a timed city run and body composition: A cross-sectional study in more than 3000 runners. Nutrition 2019, 61, 1–7. [Google Scholar] [CrossRef]
- Deelen, I.; Janssen, M.; Vos, S.; Kamphuis, C.B.M.; Ettema, D. Attractive running environments for all? A cross-sectional study on physical environmental characteristics and runners’ motives and attitudes, in relation to the experience of the running environment. BMC Public Health 2019, 19, 366. [Google Scholar] [CrossRef]
- Casado, A.; Hanley, B.; Santos-Concejero, J.; Ruiz-Perez, L.M. World-class long-distance running performances are best predicted by volume of easy runs and deliberate practice of short-interval and tempo runs. J. Strength Cond. Res. 2019, 1–7. [Google Scholar] [CrossRef]
- Tozetto, A.V.; Rosa, R.S.; Mendes, F.G.; Galatti, L.R.; Souza, E.R.; Collet, C.; Moura, B.M.; Silva, W.R. Local de nascimento e data de nascimento de medalhistas olímpicos brasileiros. Braz. J. Kinanthropometry Hum. Perform. 2017, 19. [Google Scholar] [CrossRef] [Green Version]
- Lassalle, G.; Recours, R.; Griffet, J. Role of family members in sport motivation, involvement and expertise of Track and Field athletes in France. J. Comp. Fam. Stud. 2018, 49, 333–354. [Google Scholar] [CrossRef]
- Trivedi, P.; Zimmer, D. Success at the Summer Olympics: How much do economic factors explain? Econometrics 2014, 2, 169–202. [Google Scholar] [CrossRef] [Green Version]
- Onywera, V.O.; Scott, R.A.; Boit, M.K.; Pitsiladis, Y.P. Demographic characteristics of elite Kenyan endurance runners. J. Sports Sci. 2006, 24, 415–422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tehrani, H.; Majlessi, F.; Shojaeizadeh, D.; Sadeghi, R.; Hasani Kabootarkhani, M. Applying Socioecological Model to Improve Women’s Physical Activity: A Randomized Control Trial. Iran. Red Crescent Med. J. 2016, 18, e21072. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vella, S.A.; Cliff, D.P.; Okely, A.D. Socio-ecological predictors of participation and dropout in organised sports during childhood. Int. J. Behav. Nutr. Phys. Act. 2014, 11, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bronfenbrenner, U. Bioecologia do Desenvolvimento Humano: Tornando os Seres Humanos Mais Humanos; Artmed: Porto Alegre, Brazil, 2011; p. 310. [Google Scholar]
- Maia, J.A.R.; Garganta, R.; Seabra, A.; Lopes, V.P.; Vinagre, J.; Freitas, D.L.; Prista, A.; Meira, C. Dados longitudinais e modelação hierárquica. Um tutorial para investigadores das ciências do desporto. Rev. Bras. Cineantropometria Desempenho Hum. 2005, 7, 94–108. [Google Scholar]
- Rossing, N.N.; Stentoft, D.; Flattum, A.; Côté, J.; Karbing, D.S. Influence of population size, density, and proximity to talent clubs on the likelihood of becoming elite youth athlete. Scand. J. Med. Sci. Sports 2018, 28, 1304–1313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marca, A.; Sedeaudab, A.; Guillaumea, M.; Rizka, M.; Schipmana, J.; Antero-Jacquemina, J.; Haidaa, A.; Berthelotab, G.; Toussainta, J.-F. Marathon progress: Demography, morphology and environment. J. Sports Sci. 2014, 32, 524–532. [Google Scholar] [CrossRef]
- Andersen, J.J. The State of Running 2019. Available online: https://runrepeat.com/state-of-running (accessed on 17 August 2020).
- Nikolaidis, P.T.; Onywera, V.; Knechtle, B. Running performance, nationality, sex, and age in the 10-km, half-marathon, marathon, and the 100-km ultramarathon IAAF 1999–2015. J. Strength Cond. Res. 2017, 31, 2189–2207. [Google Scholar] [CrossRef]
- RunRepeat. Marathon Statistics 2019 Worldwide. Available online: https://runrepeat.com/research-marathon-performance-across-nations (accessed on 7 March 2020).
- Instituto Brasileiro de Geografia e Estatística, I. Painel de Indicadores. Available online: https://www.ibge.gov.br/indicadores.html (accessed on 19 August 2020).
- Confederação Brasileira de Atletismo (CBAt). Ranking Brasileiro 2020. Available online: http://www.cbat.org.br/novo/?pagina=ranking (accessed on 7 March 2020).
- Galatti, L.R. AFEs, Human Development and Sport High Performance. In Movement is Life: Physical and Sports Activities for All People; Brasil, Relatório Nacional de Desenvolvimento Humano do Brasil., Ed.; United Nations Development Program (UNDP): Brasília, Brazil, 2017. [Google Scholar]
- Costa, I.T.; Cardoso, F.D.S.L.; Garganta, J. O Índice de Desenvolvimento Humano e a Data de Nascimento podem condicionar a ascensão de jogadores de Futebol ao alto nível de rendimento? Motriz 2013, 19, 34–45. [Google Scholar] [CrossRef] [Green Version]
- Cerqueira, D.; Bueno, S.; Lima, R.S.; Neme, C.; Ferreira, H.; Alves, P.P.; Marques, D.; Reis, M.; Cypriano, O.; Sobral, I.; et al. Atlas da Violência. Available online: http://www.ipea.gov.br/atlasviolencia/arquivos/downloads/6537-atlas2019.pdf (accessed on 10 May 2020).
- Instituto Brasileiro de Geografia e Estatística (IBGE). Clima. Available online: https://www.ibge.gov.br/geociencias/informacoes-ambientais/climatologia/15817-clima.html?=&t=acesso-ao-produto (accessed on 5 July 2020).
- Cote, J.; Macdonald, D.J.; Baker, J.; Abernethy, B. When “where” is more important than “when”: Birthplace and birthdate effects on the achievement of sporting expertise. J. Sports Sci. 2006, 24, 1065–1073. [Google Scholar] [CrossRef]
- Sanchez Munoz, C.; Muros, J.J.; Lopez Belmonte, O.; Zabala, M. Anthropometric Characteristics, Body Composition and Somatotype of Elite Male Young Runners. Int. J. Environ. Res. Public Health 2020, 17, 674. [Google Scholar] [CrossRef] [Green Version]
- Dahl, J.; Degens, H.; Hildebrand, F.; Ganse, B. Do changes in middle-distance running kinematics contribute to the age-related decline in performance? J. Musculoskelet. Neuronal Interact. 2020, 20, 94–100. [Google Scholar] [PubMed]
- Tucker, R.; Collins, M. What makes champions? A review of the relative contribution of genes and training to sporting success. Br. J. Sports Med. 2012, 46, 555–561. [Google Scholar] [CrossRef] [PubMed]
- Thuany, M.; Gomes, T.N.; Souza, R.F.; Almeida, M. Onde estão os melhores corredores do Brasil? Rev. Bras. Ciên. e Mov. in press.
- Thuany, M.; Gomes, T.N.; Almeida, M.B. Validação de um instrumento para caracterização e verificação de fatores associados ao desempenho de corredores de rua. Scientia Plena 2020, 16, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Ettema, D. Runnable cities. Environ. Behav. 2016, 48, 1127–1147. [Google Scholar] [CrossRef]
- Vickers, A.J.; Vertosick, E.A. An empirical study of race times in recreational endurance runners. BMC Sports Sci. Med. Rehabil. 2016, 8, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janssen, M.; Walravens, R.; Vos, S.; Thibaut, E.; Brombacher, A.; Scheerder, J. Understanding different types of recreational runners and how they use running-related technology. Int. J. Environ. Res. Public Health 2020, 17, 2276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- República Federativa do Brasil. Decreto nº 9.661, de 1º de Janeiro de 2019. Diário Oficial da União. 2019.
- Atlas do Desenvolvimento Humano. Ranking - Todos os Estados (2010). Available online: http://atlasbrasil.org.br/2013/pt/ranking (accessed on 12 May 2020).
- Instituto Brasileiro de Geografia e Estatística (IBGE). Pesquisa de Informações Básicas Estaduais-ESTADIC. Available online: https://www.ibge.gov.br/estatisticas/sociais/saude/16770-pesquisa-de-informacoes-basicas-estaduais.html?=&t=downloads (accessed on 10 May 2020).
- Hox, J. Multilevel Analysis: Techniques and Applications, 2nd ed.; Lawrence Erlbaum Associates: Mahwah, NJ, USA, 2010. [Google Scholar]
- Raudenbush, S.W.; Bryk, A.S.; Cheong, Y.F.; Congdon, R.T., Jr.; Toit, M.d. HLM7 Hierarchical Linear and Nonlinear Modeling User Manual: User Guide for Scientific Software International’s, 1st ed.; Scienctific Software International: Lincolnwood, IL, USA, 2011. [Google Scholar]
- Snijders, T.A.B.; Bosker, R.J. Multilevel Analysis An introduction Tobasic and Advanced Multilevel Modeling; SAGE Publications: London, UK, 2012. [Google Scholar]
- Confederação Brasileira de Atletismo (CBAT)—Ranking Brasileiro de Corredores de Rua. Available online: http://www.cbat.org.br/novo/?pagina=ranking (accessed on 10 April 2019).
- Sedeaud, A.; Marc, A.; Marck, A.; Dor, F.; Schipman, J.; Dorsey, M.; Haida, A.; Berthelot, G.; Toussaint, J.-F. BMI, a performance parameter for speed improvement. PLoS ONE 2014, 9, e90183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Loughlin, E.; Nikolaidis, P.T.; Rosemann, T.; Knechtle, B. Different predictor variables for women and men in ultra-marathon running- the Wellington Urban Ultramarathon 2018. Int. J. Environ. Res. Public Health 2019, 16, 1844. [Google Scholar] [CrossRef] [Green Version]
- Joyner, M.J. Physiological limits to endurance exercise performance: Influence of sex. J. Physiol. 2017, 595, 2949–2954. [Google Scholar] [CrossRef] [Green Version]
- Mujika, I.; Taipale, R.S. Sport Science on Women, Women in Sport Science. Int. J. Sports Physiol. Perform. 2019, 14, 1013–1014. [Google Scholar] [CrossRef] [Green Version]
- Vitti, A.; Nikolaidis, P.T.; Villiger, E.; Onywera, V.; Knechtle, B. The “New York City Marathon”: Participation and performance trends of 1.2M runners during half-century. Res. Sports Med. 2019, 28, 121–137. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.M. Structural and functional body components in athletic health and performance phenotypes. Eur. J. Clin. Nutr. 2019, 73, 215–224. [Google Scholar] [CrossRef] [PubMed]
- Fuziki, M.K. Corrida de Rua: Fisiologia, Treinamento e Lesões; Phorte: São Paulo, Brazil, 2012; p. 400. [Google Scholar]
- Moosesab, M.; Moosesab, K.; Hailebcd, D.W.; Durusselb, J.; Kaasika, P.; Pitsiladisb, Y.P. Dissociation between running economy and running performance in elite Kenyan distance runners. J. Sports Sci. 2015, 33, 136–144. [Google Scholar] [CrossRef] [PubMed]
- Nikolaidis, P.T.; Rosemann, T.; Knechtle, B. Sex differences in the age of peak marathon race time. Chin. J. Physiol. 2018, 61, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Festa, L.; Tarperi, C.; Skroce, K.; Torre, A.L.; Schena, F. Effects of Different Training Intensity Distribution in Recreational Runners. Front. Sports Act. Living 2020, 1, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Doherty, C.; Keogh, A.; Davenport, J.; Lawlor, A.; Smyth, B.; Caulfield, B. An evaluation of the training determinants of marathon performance: A meta-analysis with meta-regression. J. Sci. Med. Sport 2020, 23, 182–188. [Google Scholar] [CrossRef]
- Souza, K.M.; Lucas, R.D.; Grossl, T.; Costa, V.P.; Guglielmo, L.G.A.; Denadai, B.S. Predição da performance de corredores de endurance por meio de testes de laboratório e pista. Rev. Bras. Cineantropometria Desempenho Hum. 2014, 16. [Google Scholar] [CrossRef]
- Helou, N.E.; Tafflet, M.; Berthelot, G.; Tolaini, J.; Marc, A.; Guillaume, M.; Hausswirth, C.; Toussaint, J.-F. Impact of environmental parameters on marathon running performance. PLoS ONE 2012, 7, e37407. [Google Scholar] [CrossRef] [Green Version]
- Instituto Brasileiro de Geografia e Estatística (IBGE). Climatologia. Available online: https://www.ibge.gov.br/geociencias/informacoes-ambientais/climatologia/15817-clima.html?=&t=o-que-e (accessed on 17 May 2020).
- Reverdito, R.S.; Galatti, L.R.; Lima, L.A.d.; Nicolau, P.S.; Scaglia, A.J.; Paes, R.R. The “Programa Segundo Tempo” in Brazilian Municipalities: Outcome Indicators in Macrosystem. J. Phys. Educ. 2016, 27. [Google Scholar] [CrossRef] [Green Version]
- Allen-Collinson, J. Running the routes together: Co-running and knowledge in action. J. Contemp. Ethnogr. 2008, 37, 38–61. [Google Scholar] [CrossRef]
- Moraes, P.M.; Nicolau, P.S.; Melo, F.G.; Carneiro, K.T.; Paes, R.R.; Reverdito, R.S. O programa segundo tempo na região Centro-Oeste: Continuidade e estrutura burocrática do esporte nos municípios. Rev. Bras. Ciência Mov. 2017, 25, 129–140. [Google Scholar]
- Ren, Z.; Zuo, Y.; Ma, Y.; Zhang, M.; Smith, L.; Yang, L.; Loprinz, P.D.; Yu, Q.; Zou, L. The natural environmental factors influencing the spatial distribution of marathon event: A case study from China. Int. J. Environ. Res. Public Health 2020, 17, 2238. [Google Scholar] [CrossRef] [Green Version]
- Petroski, E.L.; Silva, A.F.D.; Pelegrini, A. Aptidão física relacionada a saúde em adolescentes brasileiros residentes em áreas de médio/baixo índice de desenvolvimento humano. Rev. Salud Pública 2011, 13, 219–228. [Google Scholar] [CrossRef] [Green Version]
- Hino, A.A.F.; Gonçalves, P.B.; Reis, R.S. Relatório do Ranking das Capitais Brasileiras Amigas da Atividade Física. Available online: https://saude.abril.com.br/fitness/relatorio-do-ranking-das-capitais-brasileiras-amigas-da-atividade-fisica/ (accessed on 17 April 2020).
Variables | Mean (Standard Deviation) or Frequency (%) |
---|---|
Sex | |
Male | 711 (61.8%) |
Female | 440 (38.2%) |
Age (years) | 37.9 (9.4) |
BMI (kg·m−2) | 24.3 (3.1) |
Practice time | |
≤1 year | 173 (15.0%) |
>1 year | 976 (84.8%) |
Running pace (s) | 324.2 (57.7) |
Volume training/week (km) | 35.5 (29.5) |
Frequency training/week | |
≤3 sessions/week | 678 (58.9%) |
>3 sessions/week | 473 (41.1%) |
Live in capital | |
No | 512 (44.5%) |
Yes | 639 (55.5%) |
Socioeconomic status (SES) | |
Low | 65 (5.6%) |
Medium | 542 (47.1%) |
Medium-high | 526 (45.7%) |
High | 4 (0.3%) |
Natural environment influences | |
No | 371 (32.2%) |
Yes | 779 (67.7%) |
Physical environment influences | |
No | 299 (26.0%) |
Yes | 852 (74.0%) |
Athletics events | |
No | 5 (19.2%) |
Yes | 21 (80.8%) |
Human development index | |
Medium | 13 (50.0%) |
High | 12 (46.2%) |
Very High | 1 (3.8%) |
Female homicides | 187.4 (150.1) |
Parameters | Null Model | Model 1 | Model 2 | ||||||
---|---|---|---|---|---|---|---|---|---|
Estimates | Standard Error | p-Value | Estimates | Standard Error | p-Value | Estimates | Standard Error | p-Value | |
Intercept | 323.65 | 2.92 | <0.001 | 346.49 | 5.81 | <0.001 | 356.81 | 5.36 | <0.001 |
Sex | −54.98 | 3.08 | <0.001 | −55.25 | 3.13 | <0.001 | |||
Age | 1.09 | 0.12 | <0.001 | 1.12 | 0.12 | <0.001 | |||
BMI | 6.86 | 0.52 | <0.001 | 6.88 | 0.52 | <0.001 | |||
Place of residence | 0.02 | 3.17 | 0.995 | −0.15 | 3.30 | 0.963 | |||
SES | 6.23 | 2.06 | 0.003 | 6.42 | 2.01 | 0.002 | |||
Natural environment | 7.58 | 3.25 | 0.02 | 7.50 | 3.26 | 0.022 | |||
Physical structure | 3.89 | 2.71 | 0.152 | 3.96 | 2.68 | 0.140 | |||
Frequency/week | −16.64 | 2.65 | <0.001 | −16.45 | 2.55 | <0.001 | |||
Volume/week | −0.30 | 0.08 | <0.001 | −0.30 | 0.08 | <0.001 | |||
Athletic events | −9.36 | 2.34 | 0.001 | ||||||
Woman homicides | −0.01 | 0.01 | 0.139 | ||||||
HDI | −5.21 | 2.93 | 0.089 | ||||||
Variance components: random effects | |||||||||
Between-states | 104.13 | 45.34 | 9.79 | ||||||
Within-sates | 3261.73 | 1479.73 | 1484.38 | ||||||
Model summary | |||||||||
Deviance statistic | 12,595.210 | 10,093.54 | 100,85.06 | ||||||
Number of estimated parameters | 3 | 12 | 15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thuany, M.; Gomes, T.N.; Hill, L.; Rosemann, T.; Knechtle, B.; Almeida, M.B. Running Performance Variability among Runners from Different Brazilian States: A Multilevel Approach. Int. J. Environ. Res. Public Health 2021, 18, 3781. https://doi.org/10.3390/ijerph18073781
Thuany M, Gomes TN, Hill L, Rosemann T, Knechtle B, Almeida MB. Running Performance Variability among Runners from Different Brazilian States: A Multilevel Approach. International Journal of Environmental Research and Public Health. 2021; 18(7):3781. https://doi.org/10.3390/ijerph18073781
Chicago/Turabian StyleThuany, Mabliny, Thayse Natacha Gomes, Lee Hill, Thomas Rosemann, Beat Knechtle, and Marcos B. Almeida. 2021. "Running Performance Variability among Runners from Different Brazilian States: A Multilevel Approach" International Journal of Environmental Research and Public Health 18, no. 7: 3781. https://doi.org/10.3390/ijerph18073781
APA StyleThuany, M., Gomes, T. N., Hill, L., Rosemann, T., Knechtle, B., & Almeida, M. B. (2021). Running Performance Variability among Runners from Different Brazilian States: A Multilevel Approach. International Journal of Environmental Research and Public Health, 18(7), 3781. https://doi.org/10.3390/ijerph18073781