Stiff Landings, Core Stability, and Dynamic Knee Valgus: A Systematic Review on Documented Anterior Cruciate Ligament Ruptures in Male and Female Athletes
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Daniel, D.M.; Stone, M.L.; Dobson, B.E.; Fithian, D.C.; Rossman, D.J.; Kaufman, K.R. Fate of the ACL-injured patient. A prospective outcome study. Am. J. Sports Med. 1994, 22, 632–644. [Google Scholar] [CrossRef]
- Muneta, T.; Sekiya, I.; Yagishita, K.; Ogiuchi, T.; Yamamoto, H.; Shinomiya, K. Two-bundle reconstruction of the anterior cruciate ligament using semitendinosus tendon with endobuttons: Operative technique and preliminary results. Arthroscopy 1999, 15, 618–624. [Google Scholar] [CrossRef] [PubMed]
- Arendt, E.; Dick, R. Knee injury patterns among men and women in collegiate basketball and soccer. NCAA data and review of literature. Am. J. Sports Med. 1995, 23, 694–701. [Google Scholar] [CrossRef] [PubMed]
- Boden, B.P.; Dean, G.S.; Feagin, J.A., Jr.; Garrett, W.E., Jr. Mechanisms of anterior cruciate ligament injury. Orthopedics 2000, 23, 573–578. [Google Scholar] [CrossRef]
- Agel, J.; Rockwood, T.; Klossner, D. Collegiate ACL Injury Rates Across 15 Sports: National Collegiate Athletic Association Injury Surveillance System Data Update (2004–2005 Through 2012–2013). Clin. J. Sport Med. 2016, 26, 518–523. [Google Scholar] [CrossRef]
- Montalvo, A.M.; Schneider, D.K.; Yut, L.; Webster, K.E.; Beynnon, B.; Kocher, M.S.; Myer, G.D. “What’s my risk of sustaining an ACL injury while playing sports?” A systematic review with meta-analysis. Br. J. Sports Med. 2019, 53, 1003–1012. [Google Scholar] [CrossRef]
- Mandelbaum, B.R.; Silvers, H.J.; Watanabe, D.S.; Knarr, J.F.; Thomas, S.D.; Griffin, L.Y.; Kirkendall, D.T.; Garrett, W., Jr. Effectiveness of a neuromuscular and proprioceptive training program in preventing anterior cruciate ligament injuries in female athletes: 2-year follow-up. Am. J. Sports Med. 2005, 33, 1003–1010. [Google Scholar] [CrossRef] [PubMed]
- Pflum, M.A.; Shelburne, K.B.; Torry, M.R.; Decker, M.J.; Pandy, M.G. Model prediction of anterior cruciate ligament force during drop-landings. Med. Sci. Sports Exerc. 2004, 36, 1949–1958. [Google Scholar] [CrossRef] [PubMed]
- Kiani, A.; Hellquist, E.; Ahlqvist, K.; Gedeborg, R.; Michaëlsson, K.; Byberg, L. Prevention of soccer-related knee injuries in teenaged girls. Arch. Intern. Med. 2010, 170, 43–49. [Google Scholar] [CrossRef] [Green Version]
- Knapik, J.J.; Bullock, S.H.; Toney, E.; Wells, J.D.; Hoedebecke, E.; Jones, B.H. Influence of an injury reduction program on injury and fitness outcomes among soldiers. Inj. Prev. 2004, 10, 37–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dingenen, B.; Malfait, B.; Nijs, S.; Peers, K.H.; Vereecken, S.; Verschueren, S.M.; Staes, F.F. Can two-dimensional video analysis during single-leg drop vertical jumps help identify non-contact knee injury risk? A one-year prospective study. Clin. Biomech. 2015, 30, 781–787. [Google Scholar] [CrossRef]
- Krosshaug, T.; Steffen, K.; Kristianslund, E.; Nilstad, A.; Mok, K.M.; Myklebust, G.; Andersen, T.E.; Holme, I.; Engebretsen, L.; Bahr, R. The Vertical Drop Jump Is a Poor Screening Test for ACL Injuries in Female Elite Soccer and Handball Players: A Prospective Cohort Study of 710 Athletes. Am. J. Sports Med. 2016, 44, 874–883. [Google Scholar] [CrossRef] [Green Version]
- Koga, H.; Bahr, R.; Myklebust, G.; Engebretsen, L.; Grund, T.; Krosshaug, T. Estimating anterior tibial translation from model-based image-matching of a noncontact anterior cruciate ligament injury in professional football: A case report. Clin. J. Sport Med. 2011, 21, 271–274. [Google Scholar] [CrossRef] [PubMed]
- Koga, H.; Nakamae, A.; Shima, Y.; Iwasa, J.; Myklebust, G.; Engebretsen, L.; Bahr, R.; Krosshaug, T. Mechanisms for noncontact anterior cruciate ligament injuries: Knee joint kinematics in 10 injury situations from female team handball and basketball. Am. J. Sports Med. 2010, 38, 2218–2225. [Google Scholar] [CrossRef] [PubMed]
- Krosshaug, T.; Nakamae, A.; Boden, B.P.; Engebretsen, L.; Smith, G.; Slauterbeck, J.R.; Hewett, T.E.; Bahr, R. Mechanisms of anterior cruciate ligament injury in basketball: Video analysis of 39 cases. Am. J. Sports Med. 2007, 35, 359–367. [Google Scholar] [CrossRef] [PubMed]
- Hewett, T.E.; Torg, J.S.; Boden, B.P. Video analysis of trunk and knee motion during non-contact anterior cruciate ligament injury in female athletes: Lateral trunk and knee abduction motion are combined components of the injury mechanism. Br. J. Sports Med. 2009, 43, 417–422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khayambashi, K.; Ghoddosi, N.; Straub, R.K.; Powers, C.M. Hip Muscle Strength Predicts Noncontact Anterior Cruciate Ligament Injury in Male and Female Athletes: A Prospective Study. Am. J. Sports Med. 2015, 44, 355–361. [Google Scholar] [CrossRef]
- Hewett, T.E.; Myer, G.D.; Ford, K.R.; Heidt, R.S., Jr.; Colosimo, A.J.; McLean, S.G.; Van den Bogert, A.J.; Paterno, M.V.; Succop, P. Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: A prospective study. Am. J. Sports Med. 2005, 33, 492–501. [Google Scholar] [CrossRef] [Green Version]
- Zazulak, B.T.; Hewett, T.E.; Reeves, N.P.; Goldberg, B.; Cholewicki, J. Deficits in neuromuscular control of the trunk predict knee injury risk: A prospective biomechanical-epidemiologic study. Am. J. Sports Med. 2007, 35, 1123–1130. [Google Scholar] [CrossRef]
- Hewett, T.E.; Paterno, M.V.; Myer, G.D. Strategies for enhancing proprioception and neuromuscular control of the knee. Clin. Orthop. Relat. Res. 2002, 402, 76–94. [Google Scholar] [CrossRef]
- Li, G.; Rudy, T.W.; Sakane, M.; Kanamori, A.; Ma, C.B.; Woo, S.L. The importance of quadriceps and hamstring muscle loading on knee kinematics and in-situ forces in the ACL. J. Biomech. 1999, 32, 395–400. [Google Scholar] [CrossRef]
- Renström, P.; Arms, S.W.; Stanwyck, T.S.; Johnson, R.J.; Pope, M.H. Strain within the anterior cruciate ligament during hamstring and quadriceps activity. Am. J. Sports Med. 1986, 14, 83–87. [Google Scholar] [CrossRef] [PubMed]
- Hewett, T.E.; Ford, K.R.; Xu, Y.Y.; Khoury, J.; Myer, G.D. Effectiveness of Neuromuscular Training Based on the Neuromuscular Risk Profile. Am. J. Sports Med. 2017, 45, 2142–2147. [Google Scholar] [CrossRef] [PubMed]
- Melnyk, B.M.; Gallagher-Ford, L.; Fineout-Overholt, E. Implementing the evidence-based practice competencies in health-care. In A Practical Guide for Improving Quality, Safety, & Outcomes; Sigma Theta Tau International: Indianapolis, IN, USA, 2016. [Google Scholar]
- Boden, B.P.; Torg, J.S.; Knowles, S.B.; Hewett, T.E. Video analysis of anterior cruciate ligament injury: Abnormalities in hip and ankle kinematics. Am. J. Sports Med. 2009, 37, 252–259. [Google Scholar] [CrossRef]
- Koga, H.; Nakamae, A.; Shima, Y.; Bahr, R.; Krosshaug, T. Hip and Ankle Kinematics in Noncontact Anterior Cruciate Ligament Injury Situations: Video Analysis Using Model-Based Image Matching. Am. J. Sports Med. 2018, 46, 333–340. [Google Scholar] [CrossRef]
- Montgomery, C.; Blackburn, J.; Withers, D.; Tierney, G.; Moran, C.; Simms, C. Mechanisms of ACL injury in professional rugby union: A systematic video analysis of 36 cases. Br. J. Sports Med. 2018, 52, 994–1001. [Google Scholar] [CrossRef]
- Sheehan, F.T.; Sipprell, W.H., 3rd; Boden, B.P. Dynamic sagittal plane trunk control during anterior cruciate ligament injury. Am. J. Sports Med. 2012, 40, 1068–1074. [Google Scholar] [CrossRef] [Green Version]
- Walden, M.; Krosshaug, T.; Bjørneboe, J.; Andersen, T.E.; Faul, O.; Hägglund, M. Three distinct mechanisms predominate in non-contact anterior cruciate ligament injuries in male professional football players: A systematic video analysis of 39 cases. Br. J. Sports Med. 2015, 49, 1452–1460. [Google Scholar] [CrossRef] [Green Version]
- Olsen, O.E.; Myklebust, G.; Engebretsen, L.; Bahr, R. Injury mechanisms for anterior cruciate ligament injuries in team handball: A systematic video analysis. Am. J. Sports Med. 2004, 32, 1002–1012. [Google Scholar] [CrossRef]
- Leppänen, M.; Pasanen, K.; Krosshaug, T.; Kannus, P.; Vasankari, T.; Kujala, U.M.; Bahr, R.; Perttunen, J.; Parkkari, J. Sagittal Plane Hip, Knee, and Ankle Biomechanics and the Risk of Anterior Cruciate Ligament Injury: A Prospective Study. Orthop. J. Sports Med. 2017, 5, 2325967117745487. [Google Scholar] [CrossRef] [Green Version]
- Leppänen, M.; Pasanen, K.; Kujala, U.M.; Vasankari, T.; Kannus, P.; Äyrämö, S.; Krosshaug, T.; Bahr, R.; Avela, J.; Perttunen, J.; et al. Stiff Landings Are Associated with Increased ACL Injury Risk in Young Female Basketball and Floorball Players. Am. J. Sports Med. 2017, 45, 386–393. [Google Scholar] [CrossRef] [PubMed]
- Numata, H.; Nakase, J.; Kitaoka, K.; Shima, Y.; Oshima, T.; Takata, Y.; Shimozaki, K.; Tsuchiya, H. Two-dimensional motion analysis of dynamic knee valgus identifies female high school athletes at risk of non-contact anterior cruciate ligament injury. Knee Surg. Sports Traumatol. Arthrosc. 2018, 26, 442–447. [Google Scholar] [CrossRef]
- DuPrey, K.M.; Liu, K.; Cronholm, P.F.; Reisman, A.S.; Collina, S.J.; Webner, D.; Kaminski, T.W. Baseline Time to Stabilization Identifies Anterior Cruciate Ligament Rupture Risk in Collegiate Athletes. Am. J. Sports Med. 2016, 44, 1487–1491. [Google Scholar] [CrossRef] [PubMed]
- Johnston, J.T.; Mandelbaum, B.R.; Schub, D.; Rodeo, S.A.; Matava, M.J.; Silvers-Granelli, H.J.; Cole, B.J.; ElAttrache, N.S.; McAdams, T.R.; Brophy, R.H. Video Analysis of Anterior Cruciate Ligament Tears in Professional American Football Athletes. Am. J. Sports Med. 2018, 46, 862–868. [Google Scholar] [CrossRef]
- Marotta, N.; Demeco, A.; de Scorpio, G.; Indino, A.; Iona, T.; Ammendolia, A. Late Activation of the Vastus Medialis in Determining the Risk of Anterior Cruciate Ligament Injury in Soccer Players. J. Sport Rehabil. 2020, 29, 952–955. [Google Scholar] [CrossRef]
- De Loës, M.; Dahlstedt, L.J.; Thomée, R. A 7-year study on risks and costs of knee injuries in male and female youth participants in 12 sports. Scand. J. Med. Sci. Sports. 2000, 10, 90–97. [Google Scholar] [CrossRef] [Green Version]
- Mather, R.C., 3rd; Koenig, L.; Kocher, M.S.; Dall, T.M.; Gallo, P.; Scott, D.J.; Bach, B.R., Jr.; Spindler, K.P.; MOON Knee Group. Societal and economic impact of anterior cruciate ligament tears. J. Bone Joint Surg. Am. 2013, 95, 1751–1759. [Google Scholar] [CrossRef] [Green Version]
- Noyes, F.R.; Barber Westin, S.D. Anterior cruciate ligament injury prevention training in female athletes: A systematic review of injury reduction and results of athletic performance tests. Sports Health 2012, 4, 36–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Padua, D.A.; DiStefano, L.J.; Hewett, T.E.; Garrett, W.E.; Marshall, S.W.; Golden, G.M.; Shultz, S.J.; Sigward, S.M. National Athletic Trainers’ Association Position Statement: Prevention of Anterior Cruciate Ligament Injury. J. Athl. Train. 2018, 53, 5–19. [Google Scholar] [CrossRef]
- Powers, C.M. The influence of altered lower-extremity kinematics on patellofemoral joint dysfunction: A theoretical perspective. J. Orthop. Sports Phys. Ther. 2003, 33, 639–646. [Google Scholar] [CrossRef] [PubMed]
- Powers, C.M. The influence of abnormal hip mechanics on knee injury: A biomechanical perspective. J. Orthop. Sports Phys. Ther. 2010, 40, 42–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arendt, E.A.; Bershadsky, B.; Agel, J. Periodicity of noncontact anterior cruciate ligament injuries during the menstrual cycle. J. Gend. Specif. Med. 2002, 5, 19–26. [Google Scholar] [PubMed]
- Slauterbeck, J.R.; Hardy, D.M. Sex hormones and knee ligament injuries in female athletes. Am. J. Med. Sci. 2001, 322, 196–199. [Google Scholar] [CrossRef] [PubMed]
- Wojtys, E.M.; Ashton-Miller, J.A.; Huston, L.J. A gender-related difference in the contribution of the knee musculature to sagittal-plane shear stiffness in subjects with similar knee laxity. J. Bone Joint Surg. Am. 2002, 84, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Hewett, T.E. Neuromuscular and hormonal factors associated with knee injuries in female athletes. Strategies for intervention. Sports Med. 2000, 29, 313–327. [Google Scholar] [CrossRef]
- Lloyd, D.G. Rationale for training programs to reduce anterior cruciate ligament injuries in Australian football. J. Orthop. Sports Phys. Ther. 2001, 31, 645–654, discussion 661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McLean, S.G.; Lipfert, S.W.; van den Bogert, A.J. Effect of gender and defensive opponent on the biomechanics of sidestep cutting. Med. Sci. Sports Exerc. 2004, 36, 1008–1016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hashemi, J.; Breighner, R.; Chandrashekar, N.; Hardy, D.M.; Chaudhari, A.M.; Shultz, S.J.; Slauterbeck, J.R.; Beynnon, B.D. Hip extension, knee flexion paradox: A new mechanism for non-contact ACL injury. J. Biomech. 2011, 44, 577–585. [Google Scholar] [CrossRef]
- Jayaraman, V.M.; Sevensma, E.T.; Kitagawa, M.; Haut, R.C. Effects of Anterior-Posterior Constraint on Injury Patterns in the Human Knee During Tibial-Femoral Joint Loading from Axial Forces through the Tibia. Stapp. Car Crash J. 2001, 45, 449–468. [Google Scholar] [PubMed]
- Hewett, T.E.; Myer, G.D. The mechanistic connection between the trunk, hip, knee, and anterior cruciate ligament injury. Exerc. Sport Sci. Rev. 2011, 39, 161–166. [Google Scholar] [CrossRef] [Green Version]
- Dix, J.; Marsh, S.; Dingenen, B.; Malliaras, P. The relationship between hip muscle strength and dynamic knee valgus in asymptomatic females: A systematic review. Phys. Ther. Sport. 2019, 37, 197–209. [Google Scholar] [CrossRef] [Green Version]
- Beynnon, B.D.; Fleming, B.C. Anterior cruciate ligament strain in-vivo: A review of previous work. J. Biomech. 1998, 31, 519–525. [Google Scholar] [CrossRef]
- Beynnon, B.D.; Fleming, B.C.; Johnson, R.J.; Nichols, C.E.; Renström, P.A.; Pope, M.H. Anterior cruciate ligament strain behavior during rehabilitation exercises in vivo. Am. J. Sports Med. 1995, 23, 24–34. [Google Scholar] [CrossRef]
- Markolf, K.L.; Burchfield, D.M.; Shapiro, M.M.; Shepard, M.F.; Finerman, G.A.; Slauterbeck, J.L. Combined knee loading states that generate high anterior cruciate ligament forces. J. Orthop. Res. 1995, 13, 930–935. [Google Scholar] [CrossRef] [PubMed]
- Huxel Bliven, K.C.; Anderson, B.E. Core stability training for injury prevention. Sports Health 2013, 5, 514–522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Granata, K.P.; Orishimo, K.F.; Sanford, A.H. Trunk muscle coactivation in preparation for sudden load. J. Electromyogr. Kinesiol. 2001, 11, 247–254. [Google Scholar] [CrossRef]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA Statement for Reporting Systematic Reviews and Meta-Analyses of Studies That Evaluate Health Care Interventions: Explanation and Elaboration. PLoS Med. 2009, 6, e1000100. [Google Scholar] [CrossRef] [PubMed]
Primary Author | Study Quality | Female/Male | Sport | Time Span (Years) | Method | Analysis | Main Variable of Interest |
---|---|---|---|---|---|---|---|
Video Analysis Studies | |||||||
Koga 2010 [14] | VI | 10/0 | Basketball, Handball | case series | 2D analysis | knee valgus & flexion, peak vertical ground-reaction force | |
Krosshaug 2007 [15] | VI | 1/1 | Basketball, Handball | cohort | 3D analysis | knee valgus & flexion, peak vertical ground-reaction force, medial knee displacement | |
Hewett 2005 [18] | IV | 205/0 | Basketball, Soccer | 1.5 | cohort | 3D analysis | knee valgus, ground reaction force, knee loading |
Boden 2009 [25] | IV | 33/23 | Basketball, Soccer, Handball, Football, Gymnastics/Cheer | matched cohort | 2D analysis | hip & knee motion | |
Koga 2018 [26] | VI | 10/0 | Basketball, Handball | case series | 2D analysis | hip & ankle motion, COM | |
Montgomery 2018 [27] | IV | 0/73 | Rugby | matched cohort | 2D analysis | ground contact angle, knee & ankle motion | |
Sheehan 2012 [28] | IV | 26/14 | Basketball, Soccer, Handball, Football | matched cohort | 2D analysis | COM, limb angle, trunk angle | |
Walden 2015 [29] | VI | 0/39 | Soccer | case series | 2D analysis | hip, knee, & ankle flexion | |
Olsen 2004 [30] | VI | 52/0 | Handball | case series | 2D analysis | knee valgus & flexion | |
Pre-Screen Studies | |||||||
Dingenen 2015 [11] | IV | 50/0 | Soccer, Handball, Volleyball | 1 | cohort | 2D analysis | hip flexion, knee valgus, lateral trunk motion |
Krosshaug 2016 [12] | IV | 710/0 | Soccer, Handball | 7 | cohort | 3D analysis | knee valgus, & flexion, vertical ground reaction force, medial knee displacement |
Hewett 2009 [16] | IV | 16/7 | Basketball | matched cohort | 2D analysis | trunk angle, knee valgus | |
Khayambashi 2015 [17] | IV | 138/363 | Football, Soccer, Volleyball, Basketball, Handball | 1 | cohort | Dynamometer | hip strength |
Zazulak 2007 [19] | IV | 140/137 | 3 | cohort | Electromagnetic sensor | trunk displacement | |
Leppänen 2017 [31] | IV | 171/0 | Basketball, Floorball | 3 | cohort | 3D analysis | hip, knee, & ankle motion |
Leppänen 2017 [32] | IV | 171/0 | Basketball, Floorball | 3 | cohort | 3D analysis | knee valgus & flexion, vertical ground-reaction force, medial knee displacement |
Numata 2018 [33] | IV | 291/0 | Basketball, Handball | 3 | matched cohort | 2D analysis | knee valgus |
Duprey 2016 [34] | IV | 112/166 | Football, Volleyball, Field Hockey, Lacrosse, Basketball, Soccer | 3.1 | cohort | Force platform | TTS score |
Hip Flexion_IC (Degrees) | Peak Hip Flexion Moment (N·m) | Hip Abduction (Degrees) | |||||||
---|---|---|---|---|---|---|---|---|---|
Injured | Control | p-Value | Injured | Control | p-Value | Injured | Control | p-Value | |
Hewett 2005 [18] | NS | NS | 147.9 ± 33.5 | 106.8 ± 45.3 | <0.01 | NS | NS | ||
Boden 2009 [25] | 50.1 ± 13.2 | 25.8 ± 14.7 | 0.0003 | NS | NS | 29.9 ± 11.0 | 25.7 ± 12.7 | ||
Koga 2018 [26] | 51 | NS | NS | 21 | NS | ||||
Montgomery 2018 [27] | 26.5 ± 15.99 * | 43.3 ± 24.8 * | 0.26 | NS | NS | NS | NS | ||
Sheehan 2012 [28] | 48 ± 12 | 31 ± 22 | NS | NS | NS | NS | |||
Walden 2015 [29] | 15 | NS | NS | NS | NS | NS | |||
Leppänen 2017 [31] | 45.4 ± 10.7 | 43.5 ± 9.2 | 0.43 | 134.7 ± 42.4 | 122.9 ± 40.0 | 0.24 | NS | NS |
Knee Flexion IC (Degrees) | Peak Knee Flexion (Degrees) | Knee Abduction IC (Degrees) | Peak Knee Abduction Moment (N·m) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Injured | Control | p-Value | Injured | Control | p-Value | Injured | Control | p-Value | Injured | Control | p-Value | |
Krosshaug 2016 [12] | −2.2 ± 4.7 | −1.7 ± 4.1 | 0.51 | 92.2 ± 13.8 | 90.8 ± 14.9 | 0.62 | −2.2 ± 4.7 | −1.7 ± 4.1 | 0.51 | 21.2 ± 12.2 | 20.9 ± 11.0 | 0.91 |
Hewett 2005 [18] | 71.9 ± 12 | 82.4 ± 8.0 | <0.05 | −45.3 ± 28.5 | −18.4 ± 15.6 | <0.001 | ||||||
Boden 2009 [25] | 21.8 ± 7.0 | 18.3 ± 7.5 | 0.2504 | 17.6 | 39.3 | 0.0001 | 5.5 ± 6.0 | 5.6 ± 6.7 | 0.96 | NS | NS | |
Montgomery 2018 [27] | 13.6 ± 3.63 ** | 23.6 ± 17.3 ** | <0.001 ** | NS | NS | NS | NS | NS | NS | |||
Olsen 2004 [30] | 15.8 ± 5.8 | NS | NS | NS | 13.15 | NS | 12.6 | NS | ||||
Leppänen 2017 [32] | 30.2 ± 11.7 | 27.6 ± 9.0 | 0.29 | 81.5 ± 10.0 | 84.6 ± 10.3 | 0.25 | 0.9 ± 5.8 | −1.8 ± 6.7 | 0.12 | 37.1 ± 24.9 | 31.2 ± 22.0 | 0.32 |
Numata 2018 [33] | NS | NS | NS | NS | 2.1 ± 2.4 * | 0.4 ± 2.2 * | 0.006 | 8.3 ± 4.3 | 5.1 ± 4.1 | 0.007 |
Ankle PF_IC (Degrees) | |||
---|---|---|---|
Injured | Control | p-Value | |
Boden 2009 [25] | 10.7 ± 9.6 | 22.9 ± 10.1 | 0.0059 |
Koga 2018 [26] | −2.5 ± 18.6 | NS | |
Montgomery 2018 [27] | −2.5 ± 13.6 * | 0 * | 0.033 * |
Leppänen 2017 [31] | 7.4 ± 8.4 | 9.8 ± 9.6 | 0.26 |
Female Lateral Trunk Angle (Degrees) | Male Lateral Trunk Angle (Degrees) | Female Forward Trunk Lean (Degrees) | |||||||
---|---|---|---|---|---|---|---|---|---|
Injured | Control | p-Value | Injured | Control | p-Value | Injured | Control | p-Value | |
Hewett 2009 [16] | 11.1 ± 2 | 4.2 ± 9.6 | 0.29 | −5.5 ± 9.5 | NS | 0.04 | 1.6 ± 9.3 | 14.0 ± 7.3 | <0.01 |
Sheehan 2012 [28] | 4 ± 14 | 15 ± 13 | 6 ± 17 | 18 ± 14 | NS | NS |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Larwa, J.; Stoy, C.; Chafetz, R.S.; Boniello, M.; Franklin, C. Stiff Landings, Core Stability, and Dynamic Knee Valgus: A Systematic Review on Documented Anterior Cruciate Ligament Ruptures in Male and Female Athletes. Int. J. Environ. Res. Public Health 2021, 18, 3826. https://doi.org/10.3390/ijerph18073826
Larwa J, Stoy C, Chafetz RS, Boniello M, Franklin C. Stiff Landings, Core Stability, and Dynamic Knee Valgus: A Systematic Review on Documented Anterior Cruciate Ligament Ruptures in Male and Female Athletes. International Journal of Environmental Research and Public Health. 2021; 18(7):3826. https://doi.org/10.3390/ijerph18073826
Chicago/Turabian StyleLarwa, Joseph, Conrad Stoy, Ross S. Chafetz, Michael Boniello, and Corinna Franklin. 2021. "Stiff Landings, Core Stability, and Dynamic Knee Valgus: A Systematic Review on Documented Anterior Cruciate Ligament Ruptures in Male and Female Athletes" International Journal of Environmental Research and Public Health 18, no. 7: 3826. https://doi.org/10.3390/ijerph18073826
APA StyleLarwa, J., Stoy, C., Chafetz, R. S., Boniello, M., & Franklin, C. (2021). Stiff Landings, Core Stability, and Dynamic Knee Valgus: A Systematic Review on Documented Anterior Cruciate Ligament Ruptures in Male and Female Athletes. International Journal of Environmental Research and Public Health, 18(7), 3826. https://doi.org/10.3390/ijerph18073826