COVID-19 Management in the Pediatric Age: Consensus Document of the COVID-19 Working Group in Paediatrics of the Emilia-Romagna Region (RE-CO-Ped), Italy
Abstract
:1. Introduction
2. Material and Methods
3. Results
3.1. What Are the Preventive Measures to Use?
3.2. When Should the SARS-CoV-2 Swab Be Performed?
3.3. What Are the Samples with Optimal Sensitivity and Specificity for Diagnosis?
3.4. After How Many Days Should the Swab Be Repeated in Case of Positive SARS-CoV-2 Result?
3.5. What Is the Usefulness of Molecular, Antigenic and Serological Tests?
3.6. When Should the SARS-CoV-2-Positive Pediatric Patient Be Hospitalized?
3.7. What Are the Main Recommendations Other than Routine Ones to Follow in SARS-CoV-2-Positive Pediatric Patients with Chronic Disease?
3.8. What Are the Symptoms and Signs to Make MIS-C Diagnosis Possible?
3.9. When Is Only Symptomatic Treatment Indicated in COVID-19?
3.10. Are Immunomodulatory Drugs in COVID-19 in Pediatric Age Indicated?
3.11. When Is Anticoagulant Therapy Indicated and with What Drugs in COVID-19 in Pediatric Age?
3.12. When Is Antiviral Therapy Indicated and with What Drugs?
3.13. What Therapy Is Recommended in MIS-C?
3.13.1. Immunomodulatory Treatment
3.13.2. Support Measures
3.13.3. Pro-Coagulation Status Management
3.14. When Should SARS-CoV-2-Positive Pediatric Patients be Admitted into Intensive Care Unit?
3.15. How Should the Critical SARS-CoV-2-Positive Pediatric Patient Be Managed?
3.16. With Respect to Mental Health, Is There a Need for Support Interventions for COVID-19-Positive Children and Adolescents?
4. Conclusions
- The sharing of hospitalization and therapeutic management criteria for severe cases between professionals is essential to ensure a fair approach based on the best available knowledge;
- The prophylactic use of antibiotics in the management of pediatric patients with COVID-19 is not associated with advantages in terms of morbidity and mortality and contributes to the development of antimicrobial resistance;
- The activity of social and health professionals must also include the description, management and limitation of psychophysical-relational damage resulting from the SARS-CoV-2 pandemic on the health of children and adolescents, whether or not affected by COVID -19, and must be able to inform and alert at the political level;
- Due to the characteristics of COVID-19 pathology in pediatric age, the importance of strengthening the network between hospital and territorial pediatrics (both at the level of free choice pediatrics and at the level of community pediatrics and child neuropsychiatry and adolescents), school, educational, social and family personnel both for strictly clinical management and for the reduction in discomfort, with priority in children of more frail families, represents a priority;
- As regards hospitalized pediatric cases, given the scarcity of data available in the literature, it would be advisable for pediatricians to identify a set of variables to be monitored over time using a shared methodology and definitions.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; et al. China Novel Coronavirus Investigating and Research Team. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N. Engl. J. Med. 2020, 382, 727–733. [Google Scholar] [CrossRef] [PubMed]
- Bialek, S.; Gierke, R.; Hughes, M.; McNamara, L.A.; Pilishvili, T.; Skoff, T. Coronavirus Disease 2019 in Children—United States, February 12–April 2, 2020. Morb. Mortal. Wkly. Rep. 2020, 69, 422–426. [Google Scholar]
- Castagnoli, R.; Votto, M.; Licari, A.; Brambilla, I.; Bruno, R.; Perlini, S.; Rovida, F.; Baldanti, F.; Marseglia, G.L. Severe Acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in children and adolescents: A systematic review. JAMA Pediatr. 2020, 174, 882–889. [Google Scholar] [CrossRef] [Green Version]
- Dong, Y.; Dong, Y.; Mo, X.; Hu, Y.; Qi, X.; Jiang, F.; Jiang, Z.; Tonget, S. Epidemiology of COVID-19 among children in China. Pediatrics 2020, 145, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Götzinger, F.; Santiago-García, B.; Noguera-Julián, A.; Lanaspa, M.; Lancella, L.; Calò Carducci, F.I.; Gabrovska, N.; Velizarova, S.; Prunk, P.; Osterman, V.; et al. COVID-19 in children and adolescents in Europe: A multinational, multicentre cohort study. Lancet Child Adolesc. Health 2020, 4, 653–661. [Google Scholar] [CrossRef]
- Lu, X.; Zhang, L.; Du, H.; Zhang, J.; Li, Y.Y.; Qu, J.; Zhang, W.; Wang, Y.; Bao, S.; Li, Y.; et al. SARS-CoV-2 infection in children. N. Engl. J. Med. 2020, 382, 1663–1665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, K.P.; Vunnam, S.R.; Patel, P.A.; Krill, K.L.; Korbitz, P.M.; Gallagher, J.P.; Suh, J.E.; Vunnam, R.R. Transmission of SARS-CoV-2: An update of current literature. Eur. J. Clin. Microbiol. Infect. Dis. 2020, 39, 2005–2011. [Google Scholar] [CrossRef]
- Ludvigsson, J.F. Systematic review of COVID-19 in children shows milder cases and a better prognosis than adults. Acta Paediatr. 2020, 109, 1088–1095. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.J.; Choe, Y.J.; Park, O.; Park, S.Y.; Kim, Y.M.; Kim, J.; Kweon, S.; Woo, Y.; Gwack, J.; Kim, S.S.; et al. Contact Tracing during Coronavirus Disease Outbreak, South Korea, 2020. Emerg. Infect. Dis. 2020, 26, 2465–2468. [Google Scholar] [CrossRef]
- Munro, A.P.S.; Faust, S.N. Children are not COVID-19 super spreaders: Time to go back to school. Arch. Dis. Child. 2020, 105, 618–619. [Google Scholar] [CrossRef]
- European Centre for Disease Prevention and Control. COVID-19 in Children and the Role of School Settings in Transmission—First Update (23 December); European Centre for Disease Prevention and Control: Stockholm, Sweden, 2020. [Google Scholar]
- Esposito, S.; Giannitto, N.; Squarci, A.; Neglia, C.; Argentiero, A.; Minichetti, P.; Cotugno, N.; Principi, N. Development of psychological problems among adolescents during school closures because of the COVID-19 lockdown phase in Italy: A cross-sectional survey. Front. Pediatr. 2021, 8, 628072. [Google Scholar] [CrossRef]
- De Miranda, D.M.; da Silva, A.B.; Oliveira, A.C.S.; Simoes-e-Silva, A.C. How is COVID-19 pandemic impacting mental health of children and adolescents? Int. J. Disaster Risk Reduct. 2020, 51, 101845. [Google Scholar] [CrossRef]
- Imai, N.; Gaythorpe, K.A.M.; Abbott, S.; Bhatia, S.; van Elsland, S.; Prem, K.; Liu, Y.; Ferguson, N.M. Adoption and impact of non-pharmaceutical interventions for COVID-19. Welcome Open Res. 2020, 5, 59. [Google Scholar] [CrossRef] [Green Version]
- Viner, R.M.; Russell, S.J.; Croker, H.; Packer, J.; Ward, J.; Stansfield, C.; Mytton, O.; Bonell, C.; Booy, R. School closure and management practices during coronavirus outbreaks including COVID-19: A rapid systematic review. Lancet Child Adolesc. Health 2020, 4, 397–404. [Google Scholar] [CrossRef]
- Singh, S.; Roy, D.; Sinha, K.; Parveen, S.; Sharma, G.; Joshi, G. Impact of COVID19 and lockdown on mental health of children and adolescents: A narrative review with recommendations. Psychiatry Res. 2020, 293, 113429. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention. Coronavirus Disease 2019 (COVID-19). Available online: https://www.cdc.gov/coronavirus/2019-nCoV/index.html (accessed on 12 December 2020).
- World Health Organization. Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/advice-for-public (accessed on 12 December 2020).
- Ministero della Salute. Available online: http://www.salute.gov.it/portale/nuovocoronavirus/homeNuovoCoronavirus.jsp (accessed on 12 December 2020).
- Cheng, K.K.; Lam, T.H.; Leung, C.C. Wearing face masks in the community during the COVID-19 pandemic: Altruism and solidarity. Lancet 2020. [Google Scholar] [CrossRef]
- Esposito, S.; Principi, N.; Leung, C.C.; Migliori, G.B. Universal use of face masks for success against COVID-19: Evidence and implications for prevention policies. Eur. Respir. J. 2020, 55, 2001260. [Google Scholar] [CrossRef] [PubMed]
- Hoang, A.; Chorath, K.; Moreira, A.; Evans, M.; Burmeister-Morton, F.; Burmeister, F.; Naqvi, R.; Petershack, M.; Moreira, A. COVID-19 in 7780 pediatric patients: A systematic review. EClinicalMedicine 2020, 24, 100433. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention. Information for Pediatric Heath Care Providers. Available online: www.cdc.gov/coronavirus/2019/ncov/hcp/pediatric-hcp.html (accessed on 12 December 2020).
- Yamamoto, L.; Santos, E.H.D.; Pinto, L.S.; Rocha, M.C.; Kanunfre, K.A.; Vallada, M.G.; Okay, T.S. SARS-CoV-2 infections with emphasis on pediatric patients: A narrative review. Rev. Inst. Med. Trop. São Paulo 2020, 62, e65. [Google Scholar] [CrossRef] [PubMed]
- Kuttiatt, V.S.; Abraham, P.R.; Menon, R.P.; Vaidya, P.C.; Rahi, M. Coronavirus disease 2019 in children: Clinical & epidemiological implications. Indian J. Med. Res. 2020, 152, 21–40. [Google Scholar]
- Struyf, T.; Deeks, J.J.; Dinnes, J.; Takwoingi, Y.; Davenport, C.; Leeflang, M.M.; Spijker, R.; Hooft, L.; Emperador, D.; Dittrich, S.; et al. Cochrane COVID-19 Diagnostic Test Accuracy Group. Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19 disease. Cochrane Database Syst. Rev. 2020, 7, CD013665. [Google Scholar]
- Huff, H.V.; Singh, A. Asymptomatic transmission during the COVID-19 pandemic and implications for public health strategies. Clin. Infect. Dis. 2020, 71, 2752–2756. [Google Scholar] [CrossRef]
- Lin, E.E.; Blumberg, T.J.; Adler, A.C.; Fazal, F.Z.; Talwar, D.; Ellingsen, K.; Shah, A.S. Incidence of COVID-19 in Pediatric Surgical Patients Among 3 US Children’s Hospitals. JAMA Surg. 2020, 155, 775–777. [Google Scholar] [CrossRef] [PubMed]
- Hageman, J.R. Current Status of the COVID-19 Pandemic, Influenza and COVID-19 Together, and COVID-19 Viral Variants. Pediatr. Ann. 2020, 49, e448–e449. [Google Scholar] [CrossRef]
- Wang, H.; Liu, Q.; Hu, J.; Zhou, M.; Yu, M.; Li, K.; Xu, D.; Xiao, Y.; Yang, J.; Lu, Y.; et al. Nasopharyngeal Swabs Are More Sensitive Than Oropharyngeal Swabs for COVID-19 Diagnosis and Monitoring the SARS-CoV-2 Load. Front. Med. 2020, 7, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Tan, L.; Wang, X.; Liu, W.; Lu, Y.; Cheng, L.; Sun, Z. Comparison of nasopharyngeal and oropharyngeal swabs for SARS-CoV-2 detection in 353 patients received tests with both specimens simultaneously. Int. J. Infect. Dis. 2020, 94, 107–109. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Interim Guidelines for Collecting, Handling, and Testing Clinical Specimens for COVID-19. Available online: https://www.cdc.gov/coronavirus/2019-ncov/lab/guidelines-clinical-specimens.html (accessed on 12 December 2020).
- AAP. COVID-19 Testing Guidance. American Academy of Pediatrics. Available online: https://services.aap.org/en/pages/2019-novel-coronavirus-covid-19-infections/clinical-guidance/covid-19-testing-guidance/ (accessed on 12 December 2020).
- WHO. Diagnostic Testing for SARS-CoV-2—Interim Guidance. World Health Organization, Geneva. Available online: https://www.who.int/publications/i/item/diagnostic-testing-for-sars-cov-2 (accessed on 12 December 2020).
- Donà, D.; Minotti, C.; Costenaro, P.; Da Dalt, M.D.L.; Giaquinto, C. Fecal-oral transmission of SARS-Cov-2 in Children. Pediatr. Infect. Dis. J. 2020, 39, e133–e134. [Google Scholar] [CrossRef] [PubMed]
- Palmas, G.; Moriondo, M.; Trapani, S.; Ricci, S.; Calistri, E.; Pisano, L.; Perferi, G.; Galli, L.; Venturini, E.; Indolfi, G.; et al. Nasal Swab as Preferred Clinical Specimen for COVID-19 Testing in Children. Pediatr. Infect. Dis. J. 2020, 39, e267–e270. [Google Scholar] [CrossRef] [PubMed]
- Capecchi, E.; Di Pietro, G.M.; Luconi, E. Testing Pediatric COVID-19 (TPC-19). Is Nasopharyngeal Swab Comparable with Nasopharyngeal Aspirate to Detect SARS-CoV-2 in Children? Pediatr. Infect. Dis. J. 2020, 39, e288–e289. [Google Scholar] [CrossRef]
- Yonker, L.M.; Neilan, A.M.; Bartsch, Y.; Patel, A.B.; Regan, J.; Arya, P.; Gootkind, E.; Park, G.; Hardcastle, M.; St John, A.; et al. Pediatric Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): Clinical Presentation, Infectivity, and Immune Responses. J. Pediatr. 2020, 227, 45–52. [Google Scholar] [CrossRef]
- Xu, C.L.H.; Raval, M.; Schnall, J.A.; Kwong, J.C.; Holmes, N.E. Duration of Respiratory and Gastrointestinal Viral Shedding in Children With SARS-CoV-2: A Systematic Review and Synthesis of Data. Pediatr. Infect. Dis. J. 2020, 39, e249–e256. [Google Scholar] [CrossRef]
- Wölfel, R.; Corman, V.M.; Guggemos, W.; Seilmaier, M.; Zange, S.; Müller, M.A.; Niemeyer, D.; Jones, T.C.; Vollmar, P.; Rothe, C.; et al. Virological assessment of hospitalized patients with COVID-2019. Nature 2020, 581, 465–469. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization (WHO). Criteria for Releasing Covid-19 Patients from Isolation. 2020. Available online: https://www.who.int/news-room/commentaries/detail/criteria-for-releasing-covid-19-patients-from-isolation (accessed on 12 December 2020).
- European Centre for Disease Prevention and Control. Guidance for Discharge and Ending Isolation of People with COVID-19, 16 October 2020; ECDC: Stockholm, Sweden, 2020; Available online: https://www.ecdc.europa.eu/sites/default/files/documents/Guidance-for-discharge-and-ending-of-isolation-of-people-with-COVID-19.pdf (accessed on 12 December 2020).
- Ministero della Salute. Covid-19: Indications for Duration and End of Isolation and Quarantine. Available online: http://www.salute.gov.it/portale/news/p3_2_1_1_1.jsp?lingua=italiano&menu=notizie&p=dalministero&id=5117 (accessed on 12 December 2020).
- Gupta, M.L.; Gothwal, S.; Gupta, R.K.; Sharma, R.B.; Meena, J.S.; Sulaniya, P.K.; Dev, D.; Gupta, D.K. Duration of Viral Clearance in Children with SARS-CoV-2 Infection in Rajasthan, India. Indian Pediatr. 2021, 58, 123–125. [Google Scholar] [CrossRef]
- Walsh, K.A.; Spillane, S.; Comber, L.; Cardwell, K.; Harrington, P.; Connell, J.; Teljeur, C.; Broderick, N.; de Gascun, C.F.; Smith, S.M.; et al. The duration of infectiousness of individuals infected with SARS-CoV-2. J. Infect. 2020, 81, 847–856. [Google Scholar] [CrossRef] [PubMed]
- Russo, A.; Minichini, C.; Starace, M.; Astorri, R.; Calò, F.; Coppola, N. Vanvitelli COVID-19 Group. Current Status of Laboratory Diagnosis for COVID-19: A Narrative Review. Infect. Drug Resist. 2020, 13, 2657–2665. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention (CDC). Overview of Testing for SARS-CoV2 (COVID-19); Centers for Disease Control and Prevention: Atlanta, GA, USA, 2020. Available online: https://www.cdc.gov/coronavirus/2019-ncov/hcp/testing-overview.htlm (accessed on 12 December 2020).
- Dinnes, J.; Deeks, J.J.; Adriano, A.; Berhane, S.; Davenport, C.; Dittrich, S.; Emperador, D.; Takwoingi, Y.; Cunningham, J.; Beese, S.; et al. Cochrane COVID-19 Diagnostic Test Accuracy Group. Rapid, point-of-care antigen and molecular-based tests for diagnosis of SARS-CoV-2 infection. Cochrane Database Syst. Rev. 2020, 8, CD013705. [Google Scholar]
- Paltiel, A.D.; Zheng, A.; Walensky, R.P. Assessment of SARS-CoV-2 Screening Strategies to Permit the Safe Reopening of College Campuses in the United States. JAMA Netw. Open 2020, 3, e2016818. [Google Scholar] [CrossRef]
- Watson, J.; Whiting, P.F.; Brush, J.E. Interpreting a COVID-19 test result. BMJ 2020, 369, m1808. [Google Scholar] [CrossRef] [PubMed]
- Larremore, D.B.; Wilder, B.; Lester, E.; Shehata, S.; Burke, J.M.; Hay, J.A.; Milind, T.; Mina, M.J.; Parker, R. Test sensitivity is secondary to frequency and turnaround time for COVID-19 surveillance. medRxiv 2020. [Google Scholar] [CrossRef]
- Van Elslande, J.; Decru, B.; Jonckheere, S.; Van Wijngaerden, E.; Houben, E.; Vandecandelaere, P.; Indevuyst, C.; Depypere, M.; Desmet, S.; André, E.; et al. Antibody response against SARS-CoV-2 spike protein and nucleoprotein evaluated by four automated immunoassays and three ELISAs. Clin. Microbiol. Infect. 2020, 26, 1557.e1–1557.e7. [Google Scholar] [CrossRef]
- Chan, K.; Beck, C.; Chauvin-Kimoff, L.; Gripp, K.; Krmpotic, K.; Thakore, S.; Trottier, E.D. Acute Care Committee Position Statement of The Canadian Paediatric Society. The Acute Management of Paediatric Coronavirus Disease 2019 (COVID-19). Available online: https://www.cps.ca/en/documents/position/the-acute-management-of-paediatric-coronavirus-disease-2019covid-19 (accessed on 12 December 2020).
- Venturini, E.; Montagnani, C.; Garazzino, S.; Donà, D.; Pierantoni, L.; Lo Vecchio, A.; Nicolini, G.; Bianchini, S.; Krzysztofiak, A.; Galli, L.; et al. Treatment of children with COVID-19: Position paper of the Italian Society of Pediatric Infectious Disease. Ital. J. Pediatr. 2020, 46, 139. [Google Scholar] [CrossRef] [PubMed]
- Bellino, S.; Rota, M.C.; Riccardo, F.; Andrianou, X.; Urdiales, A.M.; Manso, M.D.; Punzo, O.; Bella, A.; Villani, A.; Pezzotti, P.; et al. Pediatric COVID-19 Cases Pre- and Post-Lockdown in Italy. Pediatrics 2020. [Google Scholar] [CrossRef]
- Garazzino, S.; Montagnani, C.; Donà, D.; Meini, A.; Felici, E.; Vergine, G.; Bernardi, S.; Giacchero, R.; Lo Vecchio, A.; Marchisio, P.; et al. Multicentre Italian study of SARS-CoV-2 infection in children and adolescents, preliminary data as at 10 April 2020. Eurosurveillance 2020, 25, 2000600. [Google Scholar] [CrossRef] [PubMed]
- Vergine, G.; Fantini, M.; Marchetti, F.; Stella, M.; Valletta, E.; Biasucci, G.; Lanari, M.; Dodi, I.; Bigi, M.; Magista, A.M.; et al. Home Management of Children with COVID-19 in the Emilia-Romagna Region, Italy. Front. Pediatr. 2020, 8, 575290. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Bastard, P.; Liu, Z.; Le Pen, J.; Moncada-Velez, M.; Chen, J.; Ogishi, M.; Sabli, I.K.D.; Hodeib, S.; Korol, C.; et al. Inborn errors of type I IFN immunity in patients with life-threatening COVID-19. Science 2020, 370, eabd4570. [Google Scholar] [CrossRef]
- Marlais, M.; Wlodkowski, T.; Vivarelli, M.; Pape, L.; Tönshoff, B.; Schaefer, F.; Tullus, K. The severity of COVID-19 in children on immunosuppressive medication. Lancet Child Adolesc. Health 2020, 4, e17–e18. [Google Scholar] [CrossRef]
- Esposito, S.; Parma COVID-19 Pediatric Working Group (PaCoPed); Voccia, E.; Cantarelli, A.; Canali, A.; Principi, N.; Prati, A. Telemedicine for management of paediatric infectious diseases during COVID-19 outbreak. J. Clin. Virol. 2020, 129, 104522. [Google Scholar] [CrossRef] [PubMed]
- Paget, J.; Caini, S.; Cowling, B.; Esposito, S.; Falsey, A.R.; Gentile, A.; Kyncl, J.; MacIntyre, C.; Pitman, R.; Lina, B. The impact of influenza vaccination on the COVID-19 pandemic? Evidence and lessons for public health policies. Vaccine 2020, 38, 6485–6486. [Google Scholar] [CrossRef]
- Nicastro, E.; Di Giorgio, A.; Zambelli, M.; Ginammi, M.; Bravi, M.; Stroppa, P.; Casotti, V.; Palladino, R.; Colledan, M.; D’Antiga, L. Impact of the Severe Acute Respiratory Syndrome Coronavirus 2 Outbreak on Pediatric Liver Transplant Recipients in Lombardy, Northern Italy. Liver Transpl. 2020, 26, 1359–1362. [Google Scholar] [CrossRef]
- Arrigo, S.; Alvisi, P.; Banzato, C.; Bramuzzo, M.; Civitelli, F.; Corsello, A.; D’Arcangelo, G.; Lillo, A.D.; Dipasquale, V.; Felici, E.; et al. Management of paediatric IBD after the peak of COVID-19 pandemic in Italy: A position paper on behalf of the SIGENP IBD working group. Dig. Liver Dis. 2020. [Google Scholar] [CrossRef]
- Filocamo, G.; Minoia, F.; Carbogno, S.; Costi, S.; Romano, M.; Cimaz, R.; Pediatric Rheumatology Group of the Milan Area. Absence of severe complications from SARS-CoV-2 infection in children with rheumatic diseases treated with biologic drugs. J. Rheumatol. 2020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koker, O.; Demirkan, F.G.; Kayaalp, G.; Cakmak, F.; Tanatar, A.; Karadag, S.G.; Sonmez, H.E.; Omeroglu, R.; Aktay Ayaz, N. Does immunosuppressive treatment entail an additional risk for children with rheumatic diseases? A survey-based study in the era of COVID-19. Rheumatol. Int. 2020, 40, 1613–1623. [Google Scholar] [CrossRef] [PubMed]
- Vasudevan, A.; Mantan, M.; Krishnamurthy, S.; Pais, P.; Mathew, G.; Hari, P.; Kanitkar, M.; Gulati, S.; Bagga, A.; Mishra, O.P.; et al. Managing children with renal diseases during the COVID-19 pandemic. Indian Pediatr. 2020, 57, 641–651. [Google Scholar] [CrossRef] [PubMed]
- Abrams, E.M.; Szefler, S.J. Manging asthma during coronavirus disease-2019: An example for other chronic conditions in children and adolescents. J. Pediatr. 2020, 222, 221–226. [Google Scholar] [CrossRef]
- Bezzerri, V.; Lucca, F.; Volpi, S.; Cipolli, M. Does cystic fibrosis constitute an advantage in COVID-19 infection? Ital. J. Pediatr. 2020, 46, 143. [Google Scholar] [CrossRef]
- Balduzzi, A.; Brivio, E.; Rovelli, A.; Rizzari, C.; Gasperini, S.; Melzi, M.L.; Conter, V.; Biondi, A. Lessons after the early management of the COVID-19 outbreak in a pediatric transplant ad hemato-oncology center embedded within a COVID-19 dedicated hospital in Lombardia, Italy. Estote parati. Bone Marrow Transplant. 2020, 55, 1900–1905. [Google Scholar] [CrossRef] [Green Version]
- Laventhal, N.T.; Graham, R.J.; Rasmussen, S.A.; Urion, D.K.; Kang, P.B. Ethical decision-making for children with neuromuscular disorders in the COVID-19 crisis. Neurology 2020, 95, 260–265. [Google Scholar] [CrossRef]
- Barron, E.; Bakhai, C.; Kar, P.; Weaver, A.; Bradley, D.; Ismail, H.; Knighton, P.; Holman, N.; Khunti, K.; Sattar, N.; et al. Associations of type 1 and type 2 diabetes and COVID-19-related mortality in England: A whole population study. Lancet Diabetes Endocrinol. 2020, 11, 965. [Google Scholar] [CrossRef]
- Selvin, E.; Juraschek, S.P. Diabetes Epidemiology in the COVID-19 Pandemic. Diabetes Care 2020, 43, 1690–1694. [Google Scholar] [CrossRef]
- Kamrath, C.M.; Mönkemöller, K.; Biester, T.; Rohrer, T.R.; Warncke, K.; Hammersen, J.; Holl, E.W. Ketoacidosis in Children and Adolescents With Newly Diagnosed Type 1 Diabetes During the COVID-19 Pandemic in Germany. JAMA 2020, 324, 801–803. [Google Scholar] [CrossRef]
- Predieri, B.; Leo, F.; Candia, F.; Lucaccioni, L.; Madeo, S.; Pugliese, M.; Vivaccia, V.; Bruzzi, P.; Iughetti, L. Glycemic Control improvement in Italian Children and Adolescents with Type 1 Diabetes followed through Telemedicine during Lockdown due to the COVID-19 Pandemic. Front. Endocrinol. 2020, 11, 965. [Google Scholar] [CrossRef]
- Bornstein, S.R.; Rubino, F.; Khunti, K.; Mingrone, G.; Hopkins, D.; Birkenfeld, A.L.; Boehm, B.; Amiel, S.; Holt, R.I.G.; Skyler, J.S.; et al. Personal View Practical recommendations for the management of diabetes in patients with COVID-19. Lancet Diabetes Endocrinol. 2020, 8, 546–550. [Google Scholar] [CrossRef]
- Tresoldi, A.S.; Sumilo, D.; Perrins, M.; Toulis, K.A.; Prete, A.; Reddy, N.; Wass, J.A.H.; Arlt, W.; Nirantharakumar, K. Increased infection risk in Addison’s disease and congenital adrenal hyperplasia. J. Clin. Endocrinol. Metab. 2020, 105, 418–429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hahner, S.; Spinnler, C.; Fassnacht, M.; Burger-Stritt, S.; Lang, K.; Milovanovic, D.; Beuschlein, F.; Willenberg, H.S.; Quinkler, M.; Allolio, B. High incidence of adrenal crisis in educated patients with chronic adrenal insufficiency: A prospective study. J. Clin. Endocrinol. Metab. 2015, 100, 407–416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bornstein, S.R.; Allolio, B.; Arlt, W.; Barthel, A.; Don-Wauchope, A.; Hammer, G.D.; Husebye, E.S.; Merke, D.P.; Hassan Murad, M.; Stratakis, C.A.; et al. Diagnosis and treatment of primary adrenal insufficiency: An Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 2016, 101, 364–389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Royal College of Pediatrics and Child Health. Guidance: Paediatric Multisystem Inflammatory Syndrome Temporally Associated with COVID-19. Available online: https://www.rcpch.ac.uk/resources/guidancepaediatric-multisystem-inflammatory-syndrome-temporallyassociated-covid-19 (accessed on 12 December 2020).
- Center for Disease Control and Prevention. Multisystem Inflammatory Syndrome in Children (MIS-C). Available online: https://www.cdc.gov/mis-c (accessed on 12 December 2020).
- European Centre for Disease Prevention and Control. Paediatric Inflammatory Multisystem Syndrome and SARS-CoV-2 Infection in Children; ECDC: Stockholm, Sweden, 2020. [Google Scholar]
- Verdoni, L.; Mazza, A.; Gervasoni, A.; Martelli, L.; Ruggeri, M.; Ciuffreda, M.; Bonanomi, E.; D’Antiga, L. An outbreak of severe Kawasaki-like disease at the Italian epicentre of the SARSCoV- 2 epidemic: An observational cohort study. Lancet 2020, 6736, 1–8. [Google Scholar]
- Riphagen, S.; Gomez, X.; Gonzalez-Martinez, C.; Wilkinson, N.; Theocharis, P. Hyperinflammatory shock in children during COVID-19 pandemic. Lancet 2020, 395, 1607–1608. [Google Scholar] [CrossRef]
- World Health Organization. Multisystem Inflammatory Syndrome in Children and Adolescents with COVID-19. Available online: https://www.who.int/news-room/commentaries/detail/multisystem-inflammatory-syndrome-in-children-and-adolescents-with-covid-19 (accessed on 12 December 2020).
- Radia, T.; Williams, N.; Agrawal, P.; Harman, K.; Weale, J.; Cook, J.; Gupta, A. Multi-system inflammatory syndrome in children & adolescents (MIS-C): A systematic review of clinical features and presentation. Paediatr. Respir. Rev. 2020. [Google Scholar] [CrossRef]
- Greene, A.G.; Saleh, M.; Roseman, E.; Sinert, R. Toxic shock-like syndrome and COVID-19: A case report of multisystem m inflammatory syndrome in children (MIS-C). Am. J. Emerg. Med. 2020, 1207, 5–6. [Google Scholar] [CrossRef]
- Chiotos, K.; Bassiri, H.; Behrens, E.M.; Blatz, E.M.; Chang, J.; Diorio, C.; Fitzgerald, J.C.; Topjian, A.; Odom John, A.R. Multisystem inflammatory syndrome in children during the COVID-19 pandemic: A case series. J. Pediatr. Infect. Dis. 2020, 9, 393–398. [Google Scholar] [CrossRef]
- Toubiana, J.; Poirault, C.; Corsia, A.; Bajolle, F.; Fourgeaud, J.; Angoulvant, F.; Debray, A.; Basmaci, R.; Salvador, E.; Biscardi, S.; et al. Kawasaki-like multisystem inflammatory syndrome in children during the COVID-19 pandemic in Paris, France: Prospective observational study. Br. Med. J. 2020, 369. [Google Scholar] [CrossRef]
- Cheung, E.W.; Zachariah, P.; Gorelik, M.; Boneparth, A.; Kernie, S.G.; Orange, J.S.; Milner, J.D. Multisystem inflammatory syndrome related to COVID-19 in previously healthy children and adolescents in New York city. JAMA 2020, 324, 294–296. [Google Scholar] [CrossRef] [PubMed]
- Whittaker, E.; Bamford, A.; Kenny, J.; Kaforou, M.; Jones, C.E.; Shah, P.; Ramnarayan, P.; Fraisse, A.; Miller, O.; Davies, P.; et al. Clinical characteristics of 58 children with a pediatric inflammatory multisystem syndrome temporally associated with SARS-CoV-2. JAMA 2020, 324, 259–269. [Google Scholar] [CrossRef]
- Grimaud, M.; Starck, J.; Levy, M.; Marais, C.; Chareyre, J.; Khraiche, D.; Leruez-Ville, M.; Quartier, P.; Léger, P.L.; Geslain, G.; et al. Acute myocarditis and multisystem inflammatory emerging disease following SARS-CoV-2 infection in critically ill children. Ann. Intensive Care 2020, 10, 69. [Google Scholar] [CrossRef]
- Ahmed, M.; Advani, S.; Moreira, A.; Zoretic, S.; Martinez, J.; Chorath, K.; Acosta, S.; Naqvi, R.; Burmeister-Morton, F.; Burmeister, F.; et al. Multisystem inflammatory syndrome in children: A systematic review. EClinicalMedicine 2020, 26, 100527. [Google Scholar] [CrossRef] [PubMed]
- Garazzino, S.; Lo Vecchio, A.; Pierantoni, L.; Calò Carducci, F.I.; Marchetti, F.; Meini, A.; Castagnola, E.; Vergine, G.; Donà, D.; Bosis, S.; et al. Epidemiology, Clinical Features and Prognostic Factors of Pediatric SARS-CoV-2 Infection: Results from an Italian Multicenter Study. Front Pediatr. 2021, 9, 649358. [Google Scholar]
- Ramcharan, T.; Nolan, O.; Lai, C.Y.; Prabhu, N.; Krishnamurthy, R.; Richter, A.G.; Jyothish, D.; Krishnan, K.H.; Welch, S.B.; Hackett, S.; et al. Paediatric inflammatory multisystem syndrome: Temporally associated with SARSCoV-2 (PIMS-TS): Cardiac features, management and short-term outcomes at a UK tertiary paediatric hospital. Pediatr. Cardiol. 2020, 41, 1391–1401. [Google Scholar] [CrossRef]
- Pouletty, M.; Borocco, C.; Ouldali, N.; Caseris, M.; Basmaci, R.; Lachaume, N.; Bensaid, P.; Pichard, S.; Kouider, H.; Morelle, G.; et al. Paediatric multisystem inflammatory syndrome temporally associated with SAR-SCoV- 2 mimicking Kawasaki disease (Kawa-COVID-19): A multicentre cohort. Ann. Rheum. Dis. 2020, 79, 999–1006. [Google Scholar] [CrossRef] [PubMed]
- Kaushik, S.; Aydin, S.I.; Derespina, K.R.; Bansal, P.B.; Kowalsky, S.; Trachtman, R.; Gillen, J.K.; Perez, M.M.; Soshnick, S.H.; Conway, E.E.; et al. Multisystem inflammatory syndrome in children (MIS-C) associated with SARSCoV- 2 infection: A multi-institutional study from New York City. J. Pediatr. 2020, 224, 24–29. [Google Scholar] [CrossRef] [PubMed]
- Esposito, S.; Principi, N. Multisystem Inflammatory Syndrome in Children Related to SARS-CoV-2. Paediatr Drugs 2021, 23, 119–129. [Google Scholar]
- Cusenza, F.; Davino, G.; D’Alvano, T.; Argentiero, A.; Fainardi, V.; Pisi, G.; Principi, N.; Esposito, S. Silence of the Lambs: The Immunological and Molecular Mechanisms of COVID-19 in Children in Comparison with Adults. Microorganisms. 2021, 9, 330. [Google Scholar] [CrossRef]
- Aski, B.H.; Anari, A.M.; Choobdar, F.A.; Mahmoudabadi, R.Z.; Sakhaie, M. Cardiac abnormalities due to multisystem inflammatory syndrome temporally associated with Covid-19 among children: A systematic review and meta-analysis. Int. J. Cardiol. Heart Vasc. 2021, 100764. [Google Scholar] [CrossRef]
- Godfred-Cato, S.; Bryant, B.; Leung, J.; Oster, M.E.; Conklin, L.; Abrams, J.; Roguski, K.; Wallace, B.; Prezzato, E.; Koumans, E.H.; et al. COVID-19-Associated Multisystem Inflammatory Syndrome in Children—United States, March–July 2020. MMWR Morb. Mortal Wkly Rep. 2020, 69, 1074–1080. [Google Scholar] [CrossRef]
- Davies, P.; Evans, C.; Kanthimathinathan, H.K.; Lillie, J.; Brierley, J.; Waters, G.; Johnson, M.; Griffiths, B.; du Pré, P.; Mohammad, Z.; et al. Intensive care admissions of children with paediatric inflammatory multisystem syndrome temporally associated with SARS-CoV-2 (PIMS-TS) in the UK: A multicentre observational study. Lancet Child Adolesc. Health 2020, 4, 669–677. [Google Scholar] [CrossRef]
- Lee, P.Y.; Day-Lewis, M.; Henderson, L.A.; Friedman, K.G.; Lo, J.; Roberts, J.E.; Lo, M.S.; Platt, C.D.; Chou, J.; Hoyt, K.J.; et al. Distinct clinical and immunological features of SARS-CoV-2-induced multisystem inflammatory syndrome in children. J. Clin. Investig. 2020, 130, 5942–5950. [Google Scholar] [CrossRef] [PubMed]
- Deza Leon, M.P.; Redzepi, A.; McGrath, E.; Abdel-Haq, N.; Shawaqfeh, A.; Sethuraman, U.; Tilford, B.; Chopra, T.; Arora, H.; Ang, J.; et al. COVID-19-Associated Pediatric Multisystem Inflammatory Syndrome. J. Pediatric Infect. Dis. Soc. 2020, 9, 407–408. [Google Scholar] [CrossRef]
- Rauf, A.; Vijayan, A.; John, S.T.; Krishnan, R.; Latheef, A. Multisystem Inflammatory Syndrome with Features of Atypical Kawasaki Disease during COVID-19 Pandemic. Indian J. Pediatr. 2020, 87, 745–747. [Google Scholar] [CrossRef]
- Ravelli, A.; Minoia, F.; Davì, S.; Horne, A.; Bovis, F.; Pistorio, A.; Aricò, M.; Avcin, T.; Behrens, E.M.; De Benedetti, F.; et al. 2016 Classification Criteria for Macrophage Activation Syndrome Complicating Systemic Juvenile Idiopathic Arthritis: A European League Against Rheumatism/American College of Rheumatology/Paediatric Rheumatology International Trials Organisation Collaborative Initiative. Ann. Rheum. Dis. 2016, 75, 481–489. [Google Scholar]
- European Medicines Agency. EMA Gives Advice on the Use of Non-Steroidal Anti-Inflammatories for COVID-19. Available online: https://www.ema.europa.eu/en/news/ema-gives-advice-use-non-steroidal-anti-inflammatories-covid-19 (accessed on 12 December 2020).
- WHO. The use of Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) in Patients with COVID-19. Available online: https://www.who.int/publications/i/item/the-use-of-non-steroidal-anti-inflammatory-drugs-(nsaids)-in-patients-with-covid-19 (accessed on 21 April 2020).
- Martins-Filho, P.R.; do Nascimento-Júnior, E.M.; Santos, V.S. No current evidence supporting risk of using Ibuprofen in patients with COVID-19. Int. J. Clin. Pract. 2020, 74, e13576. [Google Scholar] [CrossRef]
- Sodhi, M.; Etminan, M. Safety of Ibuprofen in Patients with COVID-19: Causal or Confounded? Chest 2020, 158, 55–56. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Modes of Transmission of virus Causing COVID-19: Implication for IPC Precaution Recommendation. 2020. Available online: https://www.who.int/news-room/commentaries/detail/modes-of-transmission-of-virus-causing-covid-19-implications-for-ipc-precaution-recommendations (accessed on 21 April 2020).
- Leis, J.A.; Born, K.B.; Theriault, G.; Ostrow, O.; Grill, A.; Johnston, K.B. Using antibiotics wisely for respiratory tract infection in the era of COVID-19. BMJ 2020, 371, m4125. [Google Scholar] [CrossRef]
- Langford, B.J.; So, M.; Raybardhan, S.; Leung, V.; Westwood, D.; MacFadden, D.R.; Soucy, J.R.; Daneman, N. Bacterial co-infection and secondary infection in patients with COVID-19: A living rapid review and meta-analysis. Clin. Microbiol. Infect. 2020, 26, 1622–1629. [Google Scholar] [CrossRef]
- Furtado, R.H.M.; Berwanger, O.; Fonseca, H.A.; Corrêa, T.D.; Ferraz, L.R.; Lapa, M.G.; Zampieri, F.G.; Veiga, V.C.; Azevedo, L.C.P.; Rosa, R.G.; et al. Azithromycin in addition to standard of care versus standard of care alone in the treatment of patients admitted to the hospital with severe COVID-19 in Brazil (COALITION II): A randomised clinical trial. Lancet 2020, 396, 959–967. [Google Scholar] [CrossRef]
- Oldenburg, C.E.; Doan, T. Azithromycin for severe COVID-19. Lancet 2020, 396, 936–937. [Google Scholar] [CrossRef]
- Lamontagne, F.; Agoritsas, T.; Macdonald, H.; Leo, Y.S.; Diaz, J.; Agarwal, A.; Appiah, J.A.; Arabi, Y.; Blumberg, L.; Calfee, C.S.; et al. A living WHO guideline on drugs for COVID-19. BMJ 2020, 370, m3379. [Google Scholar] [CrossRef] [PubMed]
- WHO Rapid Evidence Appraisal for COVID-19 Therapies (REACT) Working Group; Sterne, J.A.C.; Murthy, S.; Diaz, J.V.; Slutsky, A.S.; Villar, J.; Angus, D.C.; Annane, D.; Azevedo, L.C.P.; Berwanger, O.; et al. Association Between Administration of Systemic Corticosteroids and Mortality Among Critically Ill Patients With COVID-19: A Meta-analysis. JAMA 2020, 324, 1330–1341. [Google Scholar] [PubMed]
- RECOVERY Collaborative Group; Horby, P.; Lim, W.S.; Emberson, J.R.; Mafham, M.; Bell, J.L.; Linsell, L.; Staplin, N.; Brightling, C.; Ustianowski, A.; et al. Dexamethasone in Hospitalized Patients with Covid-19—Preliminary Report. N. Engl. J. Med. 2020. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Corticosteroids for COVID-19. Living Guidance. 2020. Available online: https://apps.who.int/iris/handle/10665/334125 (accessed on 21 April 2020).
- Mishra, G.P.; Mulani, J. Corticosteroids for COVID-19: The search for an optimum duration of therapy. Lancet Respir. Med. 2020. [Google Scholar] [CrossRef]
- Parr, J.B. Time to Reassess Tocilizumab’s Role in COVID-19 Pneumonia. JAMA Intern. Med. 2020. [Google Scholar] [CrossRef] [PubMed]
- Hermine, O.; Mariette, X.; Tharaux, P.L.; Resche-Rigon, M.; Porcher, R.; Ravaud, P.; CORIMUNO-19 Collaborative Group. Effect of Tocilizumab vs Usual Care in Adults Hospitalized with COVID-19 and Moderate or Severe Pneumonia: A Randomized Clinical Trial. JAMA Intern. Med. 2021, 181, 32–40. [Google Scholar] [CrossRef]
- Pain, C.E.; Felsenstein, S.; Cleary, G.; Mayell, S.; Conrad, K.; Harave, S.; Duong, P.; Sinha, I.; Porter, D.; Hedrich, C.M. Novel paediatric presentation of COVID-19 with ARDS and cytokine storm syndrome without respiratory symptoms. Lancet Rheumatol. 2020, 2, e376–e379. [Google Scholar] [CrossRef]
- Chen, P.; Nirula, A.; Heller, B.; Gottlieb, R.L.; Boscia, J.; Morris, J.; Huhn, G.; Cardona, J.; Mocherla, B.; Stosor, V.; et al. SARS-CoV-2 Neutralizing Antibody LY-CoV555 in Outpatients with Covid-19. N. Engl. J. Med. 2020. [Google Scholar] [CrossRef]
- U.S. Food & Drug Administration. Available online: https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-authorizes-monoclonal-antibody-treatment-covid-19 (accessed on 12 December 2020).
- Boulware, D.R.; Pullen, M.F.; Bangdiwala, A.S.; Pastick, K.A.; Lofgren, S.M.; Okafor, E.C.; Skipper, C.P.; Nascene, A.A.; Nicol, M.R.; Abassi, M.; et al. A Randomized Trial of Hydroxychloroquine as Postexposure Prophylaxis for COVID-19. N. Engl. J. Med. 2020, 383, 517–525. [Google Scholar] [CrossRef]
- Mitjà, O.; Corbacho-Monné, M.; Ubals, M.; Alemany, A.; Suñer, C.; Tebé, C.; Tobias, A.; Peñafiel, J.; Ballana, E.; Pérez, C.A.; et al. A Cluster-Randomized Trial of Hydroxychloroquine for Prevention of Covid-19. N. Engl. J. Med. 2021, 84, 417–427. [Google Scholar] [CrossRef] [PubMed]
- Fiolet, T.; Guihur, A.; Rebeaud, M.E.; Mulot, M.; Peiffer-Smadja, N.; Mahamat-Saleh, Y. Effect of hydroxychloroquine with or without azithromycin on the mortality of coronavirus disease 2019 (COVID-19) patients: A systematic review and meta-analysis. Clin. Microbiol. Infect. 2020. [Google Scholar] [CrossRef]
- WHO Solidarity Trial Consortium; Pan, H.; Peto, R.; Henao-Restrepo, A.M.; Preziosi, M.P.; Sathiyamoorthy, V.; Abdool Karim, Q.; Alejandria, M.M.; Hernández García, C.; Kieny, M.P.; et al. Repurposed Antiviral Drugs for Covid-19—Interim WHO Solidarity Trial Results. N. Engl. J. Med. 2021, 384, 497–511. [Google Scholar]
- Simonovich, V.A.; Burgos Pratx, L.D.; Scibona, P.; Beruto, M.V.; Vallone, M.G.; Vázquez, C.; Savoy, N.; Giunta, D.H.; Pérez, L.G.; Sánchez, M.D.L.; et al. A Randomized Trial of Convalescent Plasma in Covid-19 Severe Pneumonia. N. Engl. J. Med. 2021, 384, 619–629. [Google Scholar] [CrossRef]
- Barnes, G.D.; Burnett, A.; Allen, A.; Blumenstein, M.; Clark, N.P.; Cuker, A.; Dager, W.E.; Deitelzweig, S.B.; Ellsworth, S.; Garcia, D.; et al. Thromboembolism and anticoagulant therapy during the COVID-19 pandemic: Interim clinical guidance from the anticoagulation forum. J. Thromb. Thrombolysis 2020, 50, 72–81. [Google Scholar] [CrossRef] [PubMed]
- Al-Ghafry, M.; Aygun, B.; Appiah-Kubi, A.; Vlachos, A.; Ostovar, G.; Capone, C.; Sweberg, T.; Palumbo, N.; Goenka, P.; Wolfe, L.W.; et al. Are children with SARS-CoV-2 infection at high risk for thrombosis? Viscoelastic testing and coagulation profiles in a case series of pediatric patients. Pediatr. Blood Cancer 2020, 67, e28737. [Google Scholar] [CrossRef] [PubMed]
- Loi, M.; Branchford, B.; Kim, J.; Self, C.; Nuss, R. COVID-19 anticoagulation recommendations in children. Pediatr. Blood Cancer 2020, 67, e28485. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharyya, R.; Iyer, P.; Phua, G.C.; Lee, J.H. The Interplay between Coagulation and Inflammation Pathways in COVID-19-Associated Respiratory Failure: A Narrative Review. Pulm. Ther. 2020, 6, 215–231. [Google Scholar] [CrossRef]
- Goldenberg, N.A.; Sochet, A.; Albisetti, M.; Biss, T.; Bonduel, M.; Jaffray, J.; MacLaren, G.; Monagle, P.; O’Brien, S.; Raffini, L.; et al. Consensus-based clinical recommendations and research priorities for anticoagulant thromboprophylaxis in children hospitalized for COVID-19-related illness. J. Thromb. Haemost. 2020, 18, 3099–3105. [Google Scholar] [CrossRef]
- Chiotos, K.; Hayes, M.; Kimberlin, D.W.; Jones, S.B.; James, S.H.; Pinninti, S.G.; Yarbrough, A.; Abzug, M.J.; MacBrayne, C.E.; Soma, V.L.; et al. Multicenter initial guidance on use of antivirals for children with COVID-19/SARS-CoV-2. J. Pediatric Infect. Dis. Soc. 2020, 9, 701–715. [Google Scholar] [CrossRef]
- National Institute of Health. Coronavirus Disease 2019 (COVID-19) Treatment Guidelines. Available online: https://files.covid19treatmentguidelines.nih.gov/guidelines/covid19treatmentguidelines.pdf (accessed on 18 November 2020).
- Eghbali, A.; Shokrollahi, S.; Mahdavi, N.S.; Mahdavi, S.A.; Dabbagh, A. COVID-19 in pediatric patients: A case series. J. Cell Mol. Anesth. 2020, 5, 3. [Google Scholar]
- Wang, M.; Cao, R.; Zhang, L.; Yang, X.; Liu, J.; Xu, M.; Shi, Z.; Hu, Z.; Zhong, W.; Xiao, G. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020, 30, 269–271. [Google Scholar] [CrossRef] [PubMed]
- Remdesivir. Food and Drug Administration. 2020. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/214787Orig1s000lbl.pdf (accessed on 12 December 2020).
- Dong, L.; Hu, S.; Gao, J. Discovering drugs to treat coronavirus disease 2019 (COVID-19). Drug Discov. Ther. 2020, 14, 58–60. [Google Scholar] [CrossRef] [Green Version]
- Gao, J.; Tian, Z.; Yang, X. Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci. Trends 2020, 14, 72–73. [Google Scholar] [CrossRef] [Green Version]
- Yao, X.; Ye, F.; Zhang, M.; Cui, C.; Huang, B.; Niu, P.; Liu, X.; Zhao, L.; Dong, E.; Song, C.; et al. In Vitro Antiviral Activity and Projection of Optimized Dosing Design of Hydroxychloroquine for the Treatment of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Clin. Infect. Dis. 2020, 71, 732–739. [Google Scholar] [CrossRef] [Green Version]
- European Medicines Agency. COVID-19: Reminder of Risk of Serious Side Effects with Chloroquine and Hydroxychloroquine. Available online: https://www.ema.europa.eu/en/news/covid-19-reminder-risk-serious-side-effects-chloroquine-hydroxychloroquine (accessed on 12 December 2020).
- Harwood, R.; Allin, B.; Jones, C.E.; Whittaker, E.; Ramnarayan, P.; Ramanan, A.V.; Kaleem, M.; Tulloh, R.; Peters, M.J.; Almond, S.; et al. A national consensus management pathway for paediatric inflammatory multisystem syndrome temporally associated with COVID-19 (PIMS-TS): Results of a national Delphi process. Lancet Child Adolesc. Health 2020. [Google Scholar] [CrossRef]
- Henderson, L.A.; Canna, S.W.; Friedman, K.G.; Gorelik, M.; Lapidus, S.K.; Bassiri, H.; Behrens, E.M.; Ferris, A.; Kernan, K.F.; Schulert, G.S.; et al. American College of Rheumatology Clinical Guidance for Multisystem Inflammatory Syndrome in Children Associated With SARS-CoV-2 and Hyperinflammation in Pediatric COVID-19: Version 1. Arthritis Rheumatol. 2020, 72, 1791–1805. [Google Scholar] [CrossRef]
- Belhadjer, Z.; Méot, M.; Bajolle, F.; Khraiche, D.; Legendre, A.; Abakka, S.; Auriau, J.; Grimaud, M.; Oualha, M.; Beghetti, M.; et al. Acute Heart Failure in Multisystem Inflammatory Syndrome in Children in the Context of Global SARS-CoV-2 Pandemic. Circulation 2020, 142, 429–436. [Google Scholar] [CrossRef]
- Dufort, E.M.; Koumans, E.H.; Chow, E.J.; Rosenthal, E.M.; Muse, A.; Rowlands, J.; Barranco, M.A.; Maxted, A.M.; Rosenberg, E.S.; Easton, D.; et al. Multisystem Inflammatory Syndrome in Children in New York State. N. Engl. J. Med. 2020, 383, 347–358. [Google Scholar] [CrossRef]
- Feldstein, L.R.; Rose, E.B.; Horwitz, S.M.; Collins, J.P.; Newhams, M.M.; Son, M.B.F.; Newburger, J.W.; Kleinman, L.C.; Heidemann, S.M.; Martin, A.A.; et al. Multisystem Inflammatory Syndrome in U.S. Children and Adolescents. N. Engl. J. Med. 2020, 383, 334–346. [Google Scholar] [CrossRef]
- Kobayashi, T.; Saji, T.; Otani, T.; Takeuchi, K.; Nakamura, T.; Arakawa, H.; Kato, T.; Hara, T.; Hamaoka, K.; Ogawa, S.; et al. Efficacy of immunoglobulin plus prednisolone for prevention of coronary artery abnormalities in severe Kawasaki disease (RAISE study): A randomised, open-label, blinded-endpoints trial. Lancet 2012, 379, 1613–1620. [Google Scholar] [CrossRef]
- Chen, S.; Dong, Y.; Kiuchi, M.G.; Wang, J.; Li, R.; Ling, Z.; Zhou, T.; Wang, Z.; Martinek, M.; Pürerfellner, H.; et al. Coronary Artery Complication in Kawasaki Disease and the Importance of Early Intervention: A Systematic Review and Meta-analysis. JAMA Pediatr. 2016, 170, 1156–1163. [Google Scholar] [CrossRef]
- Waltuch, T.; Gill, P.; Zinns, L.E.; Whitney, R.; Tokarski, J.; Tsung, J.W.; Sanders, J.E. Features of COVID-19 post-infectious cytokine release syndrome in children presenting to the emergency department. Am. J. Emerg. Med. 2020, 38, 2246.e3–2246.e6. [Google Scholar] [CrossRef] [PubMed]
- Capone, C.A.; Subramony, A.; Sweberg, T.; Schneider, J.; Shah, S.; Rubin, L.; Schleien, C.; Northwell Health COVID-19 Research Consortium; Epstein, S.; Johnson, J.C.; et al. Characteristics, Cardiac Involvement, and Outcomes of Multisystem Inflammatory Syndrome of Childhood Associated with severe acute respiratory syndrome coronavirus 2 Infection. J. Pediatr. 2020, 224, 141–145. [Google Scholar] [CrossRef] [PubMed]
- Kone-Paut, I.; Cimaz, R.; Herberg, J.; Bates, O.; Carbasse, A.; Saulnier, J.P.; Maggio, M.C.; Anton, J.; Piram, M. The use of interleukin 1 receptor antagonist (anakinra) in Kawasaki disease: A retrospective cases series. Autoimmun. Rev. 2018, 17, 768–774. [Google Scholar] [CrossRef] [Green Version]
- Marchesi, A.; Tarissi de Jacobis, I.; Rigante, D.; Rimini, A.; Malorni, W.; Corsello, G.; Bossi, G.; Buonuomo, S.; Cardinale, F.; Cortis, E.; et al. Kawasaki disease: Guidelines of Italian Society of Pediatrics, part II—Treatment of resistant forms and cardiovascular complications, follow-up, lifestyle and prevention of cardiovascular risks. Ital. J. Pediatr. 2018, 44, 103. [Google Scholar] [CrossRef] [Green Version]
- Ferrara, G.; Giani, T.; Caparello, M.C.; Farella, C.; Gamalero, L.; Cimaz, R. Anakinra for Treatment-Resistant Kawasaki Disease: Evidence from a Literature Review. Paediatr. Drugs 2020, 22, 645–652. [Google Scholar] [CrossRef] [PubMed]
- De Graeff, N.; Groot, N.; Ozen, S.; Eleftheriou, D.; Avcin, T.; Bader-Meunier, B.; Dolezalova, P.; Feldman, B.M.; Kone-Paut, I.; Lahdenne, P.; et al. European consensus-based recommendations for the diagnosis and treatment of Kawasaki disease—The SHARE initiative. Rheumatol. Oxf. 2019, 58, 672–682. [Google Scholar] [CrossRef]
- Mahajan, R.; Lipton, M.; Broglie, L.; Jain, N.G.; Uy, N.S. Eculizumab treatment for renal failure in a pediatric patient with COVID-19. J. Nephrol. 2020, 33, 1373–1376. [Google Scholar] [CrossRef]
- Nakra, N.A.; Blumberg, D.A.; Herrera-Guerra, A.; Lakshminrusimha, S. Multi-System Inflammatory Syndrome in Children (MIS-C) Following SARS-CoV-2 Infection: Review of Clinical Presentation, Hypothetical Pathogenesis, and Proposed Management. Children 2020, 7, 69. [Google Scholar] [CrossRef] [PubMed]
- Chiang, M.H.; Liu, H.E.; Wang, J.L. Low-dose or no aspirin administration in acute-phase Kawasaki disease: A meta-analysis and systematic review. Arch. Dis. Child. 2020. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, D.I.; Moss, M.M.; American College of Critical Care Medicine of the Society of Critical Care Medicine. Guidelines and levels of care for pediatric intensive care units. Crit. Care Med. 2004, 32, 2117–2127. [Google Scholar] [CrossRef]
- De Lange, S.; Van Aken, H.; Burchardi, H.; European Society of Intensive Care Medicine. Multidisciplinary Joint Committee of Intensive Care Medicine of the European Union of Medical Specialists. European Society of Intensive Care Medicine statement: Intensive care medicine in Europe—Structure, organisation and training guidelines of the Multidisciplinary Joint Committee of Intensive Care Medicine (MJCICM) of the European Union of Medical Specialists (UEMS). Intensive Care Med. 2002, 28, 1505–1511. [Google Scholar] [PubMed]
- Guidelines for developing admission and discharge policies for the pediatric intensive care unit. Pediatric Section Task Force on Admission and Discharge Criteria, Society of Critical Care Medicine in conjunction with the American College of Critical Care Medicine and the Committee on Hospital Care of the American Academy of Pediatrics. Crit. Care Med. 1999, 27, 843–845.
- Paediatric Section of the European Union of Medical Specialists (UEMS). European Syllabus of Pediatric Intensive Care. 2015. Available online: http://eapaediatrics.eu/wp-content/uploads/2015/12/Paediatric-Emergency-Medicine-syllabus.pdf (accessed on 12 December 2020).
- Nates, J.L.; Nunnally, M.; Kleinpell, R.; Blosser, S.; Goldner, J.; Birriel, B.; Fowler, C.S.; Byrum, D.; Miles, W.S.; Bailey, H.; et al. ICU Admission, Discharge, and Triage Guidelines: A Framework to Enhance Clinical Operations, Development of Institutional Policies, and Further Research. Crit. Care Med. 2016, 44, 1553–1602. [Google Scholar] [CrossRef] [Green Version]
- The European Parliament. European Charter for Children in Hospital A.1. Off. J. Eur. Commun. 1986, 1, 37–38. [Google Scholar]
- Kache, S.; Chisti, M.J.; Gumbo, F.; Mupere, E.; Zhi, X.; Nallasamy, K.; Nakagawa, S.; Lee, J.H.; Di Nardo, M.; de la Oliva, P.; et al. COVID-19 PICU guidelines: For high- and limited-resource settings. Pediatr. Res. 2020, 88, 705–716. [Google Scholar] [CrossRef]
- Walker, D.M.; Tolentino, V.R. COVID-19: The impact on pediatric emergency care. Pediatr. Emerg. Med. Pract. 2020, 17, 1–27. [Google Scholar] [PubMed]
- World Health Organization. Pocket Book for Hospital Care of Children: Guidelines for the Management of Common Illness with Limited Resources; World Health Organization: Geneva, Switzerland, 2013. [Google Scholar]
- Khemani, R.G.; Smith, L.S.; Zimmerman, J.J.; Erickson, S.; Pediatric Acute Lung Injury Consensus Conference Group. Pediatric acute respiratory distress syndrome: Definition, incidence, and epidemiology: Proceedings from the Pediatric Acute Lung Injury Consensus Conference. Pediatr. Crit. Care Med. 2015, 16, S23–S40. [Google Scholar] [CrossRef]
- Davis, A.L.; Carcillo, J.A.; Aneja, R.K.; Deymann, A.J.; Lin, J.C.; Nguyen, T.C.; Okhuysen-Cawley, R.S.; Relvas, M.S.; Rozenfeld, R.A.; Skippen, P.W.; et al. The American College of Critical Care Medicine Clinical Practice Parameters for Hemodynamic Support of Pediatric and Neonatal Septic Shock: Executive Summary. Pediatr. Crit. Care Med. 2017, 18, 884–890. [Google Scholar] [CrossRef]
- Workman, J.K.; Ames, S.G.; Reeder, R.W.; Korgenski, E.K.; Masotti, S.M.; Bratton, S.L.; Larsen, G.Y. Treatment of Pediatric Septic Shock with the Surviving Sepsis Campaign Guidelines and PICU Patient Outcomes. Pediatr. Crit. Care Med. 2016, 17, e451–e458. [Google Scholar] [CrossRef] [Green Version]
- Health Advisory CDC. Multisystem Inflammatory Syndrome in Children (MIS-C) Associated with Coronavirus Disease 2019 (COVID-19); CDC: Atlanta, GA, USA, 2020. Available online: https://emergency.cdc.gov/han/2020/han00432.asp?deliveryName=USCDC_511-DM28431 (accessed on 12 December 2020).
- Pediartric Acute Lung Injury Consensus Conference Group. Pediatric acute respiratory distress syndrome: Consensus recommendations from the Pediartric Acute Lung Injury Consensus Conference. Pediatr. Crit. Care Med. 2015, 16, 428–439. [Google Scholar] [CrossRef] [Green Version]
- Kneyber, M.C.J.; Medina, A.; Alapont, V.M.; Blokpoel, R.; Brierley, J.; Chidini, G.; Cuscó, M.G.; Hammer, J.; Lopez Fernandez, Y.M.; Camilo, C.; et al. Practice recommendations for the management of children with suspected or proven COVID-19 infections from the Paediatric Mechanical Ventilation Consensus Conference (PEMVECC) and the Section Respiratory Failure from the European Society for Paediatric and Neonatal Intensive Care (ESPNIC). Available online: https://espnic-online.org/Media/Files/2020-ESPNIC-PEMVECC-COVID-19-practice-recommendations (accessed on 12 December 2020).
- Hall, D.; Steel, A.; Heij, R.; Eley, A.; Young, P. Videolaryngoscopy increases ‘mouth-to-mouth’ distance compared with direct laryngoscopy. Anaesthesia 2020, 75, 822–823. [Google Scholar] [CrossRef]
- Matava, C.T.; Kovatsis, P.G.; Lee, J.K.; Castro, P.; Denning, S.; Yu, J.; Park, R.; Lockman, J.L.; Von Ungern-Sternberg, B.; Sabato, S.; et al. Pediatric Airway Management in COVID-19 Patients: Consensus Guidelines from the Society for Pediatric Anesthesia’s Pediatric Difficult Intubation Collaborative and the Canadian Pediatric Anesthesia Society. Anesth. Analg. 2020, 131, 61–73. [Google Scholar] [CrossRef]
- Rimensberger, P.C.; Cheifetz, I.M.; Pediatric Acute Lung Injury Consensus Conference Group. Ventilatory support in children with pediatric acute respiratory distress syndrome: Proceedings from the Pediatric Acute Lung Injury Consensus Conference. Pediatr. Crit. Care Med. 2015, 16, S51–S60. [Google Scholar] [CrossRef]
- Guérin, C.; Reignier, J.; Richard, J.C.; Beuret, P.; Gacouin, A.; Boulain, T.; Mercier, E.; Badet, M.; Mercat, A.; Baudin, O.; et al. Prone positioning in severe acute respiratory distress syndrome. N. Engl. J. Med. 2013, 368, 2159–2168. [Google Scholar] [CrossRef]
- Weiss, S.L.; Peters, M.J.; Alhazzani, W.; Agus, M.S.D.; Flori, H.R.; Inwald, D.P.; Nadel, S.; Schlapbach, L.J.; Tasker, R.C.; Argent, A.C.; et al. Surviving Sepsis Campaign International Guidelines for the Management of Septic Shock and Sepsis-Associated Organ Dysfunction in Children. Pediatr. Crit. Care Med. 2020, 21, e52–e106. [Google Scholar] [CrossRef] [PubMed]
- Loades, M.E.; Chatburn, E.; Higson-Sweeney, N.; Reynolds, S.; Shafran, R.; Brigden, A.; Linney, C.; McManus, M.N.; Borwick, C.; Crawley, E. Rapid Systematic Review: The Impact of Social Isolation and Loneliness on the Mental Health of Children and Adolescents in the Context of COVID-19. J. Am. Acad. Child Adolesc. Psychiatry 2020, 59, 1218–1239. [Google Scholar] [CrossRef] [PubMed]
- Bignardi, G.; Dalmaijer, E.S.; Anwyl-Irvine, A.L.; Smith, T.A.; Siugzdaite, R.; Uh, S.; Astle, D.E. Longitudinal increases in childhood depression symptoms during the COVID-19 lockdown. Arch. Dis. Child. 2020. [Google Scholar] [CrossRef] [PubMed]
- Wade, M.; Prime, H.; Browne, D.T. Why we need longitudinal mental health research with children and youth during (and after) the COVID-19 pandemic. Psychiatry Res. 2020, 290, 113143. [Google Scholar] [CrossRef] [PubMed]
- Primari di Pediatria dell’Emilia-Romagna. Cinque Raccomandazioni della Società Italiana di Pediatria (SIP) sull’Infezione da SARS-CoV-2 in Età Pediatrica–Adolescenziale. Available online: https://www.buonepratichesicurezzasanita.it/index.php/component/judirectory/16-prevenzione-e-controllo-delle-infezioni-ipc/310-cinque-raccomandazioni-della-societa-italiana-di-pediatria-sip-sull-infezione-da-sars-cov-2-in-eta-pediatrica-adolescenziale?Itemid=101 (accessed on 26 March 2021).
Viral Transmission Mode | Prevention | Level of Assistance |
---|---|---|
Interhuman (for close contact) | Social distancing of various degrees until the general closure | Blocking the transmission routes of the virus |
Direct (respiratory secretions) | Physical distancing (interpersonal distance of at least one meter even during recreational/sports activity) Face mask (nose and mouth cover) in crowded or poorly ventilated environments and whenever it is not possible to maintain distancing, of adequate size. The WHO recommends its use from the age of 5 years, and the CDC already from 2 years of age in the absence of disability, considering it effective and safe | |
Indirect (contamination of surface objects, aerosolization) | Proper and regular hand washing with soap and water or an alcoholic product Frequently cleaning surfaces Frequent aeration | |
Infected (symptomatic and asymptomatic) | IsolationTracking close contacts (from 48 h before symptoms appear) | Control of the source of infection |
Close contacts of infected subjects | Quarantine and active surveillance | Protection of the sensitive population |
All susceptible subjects | Vaccination (as soon as available) |
Usefulness of Serological Tests | Usefulness of Antigen Testing |
Evaluation of patients with a high clinical suspicion of COVID-19 when the molecular test is negative and at least two weeks have passed since the onset of symptoms Monitoring of multisystemic inflammatory syndrome in children Conducting serosurveillance studies Potential utility to track the course of the SARS-CoV-2 pandemic in the community | Use as a screening test in high-risk environments Use in contexts where a rapid response time is required Use in environments with reduced ability to perform RT-PCR tests for logistical or economic reasons, being less expensive and easier to use |
Limits of Serological Tests | Limits of Antigen Testing |
Poor diagnostic utility in acute phase of infection Inability to be used in determining immunological status due to lack of data on efficacy and duration of anti-SARS-CoV-2 antibody response | Overall sensitivity lower than RT-PCR-based tests Poor diagnostic utility after 5 days of onset of symptoms |
World Health Organization (WHO) | Royal College of Pediatrics and Child Health (RCPCH) | Center for Disease Control and Prevention (CDC) |
---|---|---|
Child or adolescent aged 0–19 years with fever >3 days and 2 of the following characteristics:
Elevation of inflammation indices such as CRP, PCT or ESR AND Exclusion of other microbiological causes of inflammation including bacterial sepsis, staphylococcal or streptococcal toxic shock syndrome: AND Evidence of SARS-CoV-2 infection (antigenic test or positive serology) or contact with COVID-19 patient Consider MIS-C in patients with typical/atypical Kawasaki disease or toxic shock syndrome | Patient with persistent fever (>38.5 °C), systemic inflammation (neutrophilia, PCR elevation and lymphopenia) and evidence of single or multiple organ dysfunction (shock, heart, kidney, gastrointestinal or neurological disorders) with additional characteristics * Patients with symptomatology partially or wholly meeting the criteria of Kawasaki’s disease may be included Exclusion of any other microbiological cause including bacterial sepsis, staphylococcal or streptococcal toxic shock syndrome, other infectious causes of myocarditis Searching for SARS-CoV-2 using PCR can be positive or negative* Additional features: Clinical: Many: O2 request, hypotension Some: abdominal pain, confusion, conjunctivitis, cough, diarrhea, headache, lymphadenopathy, changes in the mucous membranes, nuchal stiffness, rash, respiratory symptoms, pharyngitis, edema of the feet and hands, syncope, vomiting Laboratory: All: alteration of fibrinogen, high D-dimer, high ferritin, hypoalbuminemia Many: acute kidney damage, anemia, thrombocytopenia, coagulopathy, elevation IL- 10, -6, proteinuria, CK and LDH elevation, triglyceride elevation, troponin and liver transaminases Imaging: Echocardiography and ECG: myocarditis, valvulitis, pericardial effusion, dilation of the coronary arteries Radiography: Symmetrical pulmonary infiltrations, pleural effusion Abdomen echo: colitis, ileitis, lymphadenopathy, ascites, hepatosplenomegaly Pulmonary CT with contrast may show coronary aneurysms | Patients aged <21 years who have fever, laboratory evidence of inflammation and clinical evidence of severe prostration that requires hospitalization and the presence of two or more affected organs/apparatuses (heart, kidney, respiratory system, hematopoietic, gastrointestinal, dermatological or neurological) Fever >38 °C for ≥24 h or subjective fever reported for more than 24 h Laboratory positivity of more than 1 of the following indices: CRP, ESR, PCT, fibrinogen, D-dimer, ferritin, LDH or IL-6; neutrophilia, lymphopenia and hypoalbuminemia AND No other plausible diagnoses AND Laboratory positivity for recent or ongoing infection for SARS-CoV-2 (positivity of molecular, antigenic or serological investigations or contact with a certain case of COVID-19 in the previous 4 weeks) Comment Patients who partially or wholly meet the criteria of Kawasaki’s disease should be reported if they meet the MIS-C criteria Consider MIS-C in pediatric death cases with evidence of SARS-CoV-2 infection |
Blood Tests | Hemochrome with formula: leukocytosis with lymphopenia. In case of leukopenia, platelets or anemia, consider the hypothesis of sHLH/MAS CRP, ESR and PCT: highFerritin: high. In case of low ESR with high CRP or hyperferritinemia, consider the sHLH/MAS hypothesis Coagulation: high fibrinogen, high D-dimer. Evaluate PT and PTT for any pro-thrombotic alterations. In case of hypofibrinogenemia, consider the hypothesis of sHLH/MAS. Electrolytes: possible hyponatremia Liver function: in case of hypertransaminasemia, consider the hypothesis of sHLH/MAS. Cases of MIS-C with gallbladder hydrops are described, which may occur with hyperbilirubinemia Kidney function: cases of MIS-C with kidney failure are described Troponin and ProBNP: high in case of heart attack. Total protein, Seric albumin: hypoalbuminemia may be present Triglycerides: in case of hypertriglyceridemia, consider sHLH/MAS CPK, LDH: they can be increased, highlight the possible cytolysisIL- 6: high C3, C4: hypocomplementemia may be present for consumption γGT: in combination with the other liver function tests (first level) may testify to any hepatopathy Pancreatic functionality: cases with increased lipase and amilase are described Urine examination: leukocyturia may be present in the absence of typical elements for urinary tract infection, signs of tubular damage. Hemogasanalysis: metabolic acidosis. Increase in infants Peripheral smear: the presence of schistocytes or Burr cells, which testify to microangiopathy, is described. |
Microbiological Examinations In most cases, the main differential diagnosis is sepsis. | Hemoculture, urinoculture, coproculture Serologies In case of positive serology, where available, confirmation with CRP Nasopharyngeal aspirate for influenza A and B, RSV and adenovirus is useful |
Instrumental Examinations | ECG + Echocardiogram: hypokinesis in case of myocarditis, valve failure from myocarditis, pericarditis, coronary artery changes. In case of a patient with shock, it can also be useful to evaluate the state of hydration. RX chest: interstitial pneumonia. Pleurisy and increased pericardial effusion heart shadow may be present. Abdomen ultrasound: presence of organomegaly, peritoneal effusion, hydrops of the gallbladder Chest CT: in case an in-depth study of lung, locating is necessary Cardiac MRI: it can be useful, where available, in case of proven myocarditis Colonoscopy: in selected cases with severe intestinal involvement |
IMMUNOGLOBULINS First-line therapy | IVIG 2 gr/kg (calculation based on ideal weight) in a single administration in at least 12 h. In the case of a patient with pump deficiency/alteration of the water balance, the IVIG should be administered in at least 16–24 h, or alternatively the hypothesis of splitting the total dose into two administrations should be considered. In the event of ineffectiveness/poor response, the appropriateness of administering a second dose should be considered. |
GLUCOCORTICOIDS Recommended in combination with the first line of high-risk therapy according to the protocol of Kawasaki disease (age < 12 months, heart failure, coronary artery change). Second line of therapy in case of failure of the first line of therapy together with 2° bolus of IVIG. The association between IVIG and corticosteroids (2 mg/kg methylprednisolone) may be an option to consider for all cases of MIS-C, taking into account that in similar models, the combination of the two treatments seems to reduce the risk of complications. | (A) Methylprednisolone 2 mg/kg i.v. in 3 doses/day with decalage in 2–3 weeks (B) Methylprednisolone 10–30 mg/kg up to a maximum of 1 g in bolus i.v. once a day for 1–3 days, followed by methylprednisolone/prednisone 2 mg/Kg/day with decalage in 2–3 weeks The choice of A or B should be assessed on the basis of the severity of the clinical picture and/or laboratory picture. In particular, in the case of clinical/laboratory elements of sHLH/MAS or in case of shock, the use of high-dose iv steroids seems reasonable. In case of signs of CNS involvement, it is useful to consider the use of dexamethasone (10 mg/m2/die) |
BIOLOGICAL DRUGS (anakinra, tocilizumab, infliximab) Third line of therapy: in case of poor response to IVIG and steroid therapy First/second line of therapy: in case of a particularly severe clinical picture even at onset (e.g., signs of sHLH/MAS, shock or myocarditis with severe pump deficiency) in clinical judgment | Anakinra (Kineret: 2 mg/kg × 4/day max 100 mg i.v.) diluted in physiological solution and administered at max 1 h from the preparation-vd appendix or in continuous infusion at the dose of 2 mg/kg attack dose (in bolus) followed by a total dose of up to 12 mg/kg/day (anakinra vial has a stability of about 6 h) for a maximum daily dose of 400 mg. Anakinra s.c.: 2–6 mg/kg/day Tocilizumab i.v.: <30 kg 12 mg/kg ev, >30 kg: 8 mg/kg Infliximab: 5 mg/kg/day in 200–500 mL of physiological solution in 2 h i.v. |
COMPLEMENTARY THERAPIES |
* Coronary aneurysms are given treatment guidance according to the American Heart Association
|
|
D-dimer ≥5 Times Normal Values | Additional Risk Factors | Suggested Anticoagulation | |
---|---|---|---|
Patient with MIS-C | YES | NO/ND | YES |
NO | One or more | YES | |
NO | NO | NO |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Esposito, S.; Marchetti, F.; Lanari, M.; Caramelli, F.; De Fanti, A.; Vergine, G.; Iughetti, L.; Fornaro, M.; Suppiej, A.; Zona, S.; et al. COVID-19 Management in the Pediatric Age: Consensus Document of the COVID-19 Working Group in Paediatrics of the Emilia-Romagna Region (RE-CO-Ped), Italy. Int. J. Environ. Res. Public Health 2021, 18, 3919. https://doi.org/10.3390/ijerph18083919
Esposito S, Marchetti F, Lanari M, Caramelli F, De Fanti A, Vergine G, Iughetti L, Fornaro M, Suppiej A, Zona S, et al. COVID-19 Management in the Pediatric Age: Consensus Document of the COVID-19 Working Group in Paediatrics of the Emilia-Romagna Region (RE-CO-Ped), Italy. International Journal of Environmental Research and Public Health. 2021; 18(8):3919. https://doi.org/10.3390/ijerph18083919
Chicago/Turabian StyleEsposito, Susanna, Federico Marchetti, Marcello Lanari, Fabio Caramelli, Alessandro De Fanti, Gianluca Vergine, Lorenzo Iughetti, Martina Fornaro, Agnese Suppiej, Stefano Zona, and et al. 2021. "COVID-19 Management in the Pediatric Age: Consensus Document of the COVID-19 Working Group in Paediatrics of the Emilia-Romagna Region (RE-CO-Ped), Italy" International Journal of Environmental Research and Public Health 18, no. 8: 3919. https://doi.org/10.3390/ijerph18083919
APA StyleEsposito, S., Marchetti, F., Lanari, M., Caramelli, F., De Fanti, A., Vergine, G., Iughetti, L., Fornaro, M., Suppiej, A., Zona, S., Pession, A., Biasucci, G., & on behalf of the Working Group on COVID-19 in Pediatrics of the Emilia-Romagna Region (RE-CO-Ped). (2021). COVID-19 Management in the Pediatric Age: Consensus Document of the COVID-19 Working Group in Paediatrics of the Emilia-Romagna Region (RE-CO-Ped), Italy. International Journal of Environmental Research and Public Health, 18(8), 3919. https://doi.org/10.3390/ijerph18083919