Sleeping Duration, Napping and Snoring in Association with Diabetes Control among Patients with Diabetes in Qatar
Abstract
:1. Introduction
2. Methods
2.1. Study Population
2.2. Study Variables
2.2.1. Dependent Variable (Glycemic Control)
2.2.2. Independent Variable (Sleep Duration and Quality)
2.3. Covariates
2.4. Statistical Analysis
3. Results
3.1. Sample Characteristics
3.1.1. Sleep Characteristic and Poor Glycemic Control
3.1.2. Sleep and Other Lifestyle Factors in Relation to with Poor Glycemic Control
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jia, G.; Aroor, A.R.; Martinez-Lemus, L.A.; Sowers, J.R. Overnutrition, mTOR signaling, and cardiovascular diseases. Am. J. Physiol. Regul Integr. Comp. Physiol. 2014, 307, R1198–R1206. [Google Scholar] [CrossRef] [Green Version]
- Farmanfarma, K.K.; Ansari-Moghaddam, A.; Zareban, I.; Adineh, H.A. Prevalence of type 2 diabetes in Middle–East: Systematic review& meta-analysis. Sci. Direct 2020, 14, 297–304. [Google Scholar]
- Al Abdulla, S.A.; Hassan, D.M.; Mohammed, A.M.; Bevington, J. SMART Population Screening and Management in Qatar. Int. J. Diabetes Clin. Res. 2019, 6, 99. [Google Scholar]
- Nickerson, H.D.; Dutta, S. Diabetic complications: Current challenges and opportunities. J. Cardiovasc. Transl. Res. 2012, 5, 375–379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- LeRoith, D.; Smith, D.O. Monitoring glycemic control: The cornerstone ofdiabetes care. Clin. Ther. 2005, 27, 1489–1499. [Google Scholar] [CrossRef] [PubMed]
- Gouda, M.; Matsukawa, M.; Iijima, H. Associations between eating habits and glycemic control and obesity in Japanese workers with type 2 diabetes mellitus. Diabetes Metab. Syndr. Obes. Targets Ther. 2018, 11, 647–658. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Yin, X.; Yu, D.; Li, H. Impact of physical activity on glycemic control and insulin resistance: A study of community-dwelling diabetic patients in Eastern China. Intern. Med. 2016, 55, 1055–1060. [Google Scholar] [CrossRef] [Green Version]
- Azharuddin, M.; Kapur, P.; Adil, M.; Ghosh, P.; Sharma, M. The impact of sleep duration and sleep quality on glycaemic control in Asian population with type 2 diabetes mellitus: A systematic literature review and meta-analysis of observational studies. Clin. Epidemiol. Glob. Health 2020, 8, 967–975. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.W.H.; Ng, K.Y.; Chin, W.K. The impact of sleep amount and sleep quality on glycemic control in type 2 diabetes: A systematic review and meta-analysis. Sleep Med. Rev. 2017, 31, 91–101. [Google Scholar] [CrossRef] [PubMed]
- Paruthi, S.; Brooks, L.J.; D’Ambrosio, C.; Hall, W.A.; Kotagal, S.; Lloyd, R.M.; Malow, B.A.; Maski, K.; Nichols, C.; Quan, S.F.; et al. Recommended Amount of Sleep for Pediatric Populations: A Consensus Statement of the American Academy of Sleep Medicine. J. Clin. Sleep Med. 2016, 12, 785–786. [Google Scholar] [CrossRef]
- Sleep Disorders and Sleep Deprivation: An. Unmet Public Health Problem; Colten, H.R.; Altevogt, B.M. (Eds.) National Academies Press: Washington, DC, USA, 2006. [Google Scholar] [CrossRef]
- Gozashti, M.H.M.; Eslami, N.M.; Radfar, M.H.M.; Pakmanesh, H.M. Sleep Pattern, Duration and Quality in Relation with Glycemic Control in People with Type 2 Diabetes Mellitus. Iran. J. Med. Sci. 2016, 41, 531–538. [Google Scholar]
- Jemere, T.; Mossie, A.; Berhanu, H.; Yeshaw, Y. Poor sleep quality and its predictors among type 2 diabetes mellitus patients attending Jimma University Medical Center, Jimma, Ethiopia. BMC Res. Notes 2019, 12, 488. [Google Scholar] [CrossRef]
- Barone, M.T.; Menna-Barreto, L. Diabetes and sleep: A complex cause-and-effect relationship. Diabetes Res. Clin. Pract. 2011, 91, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Sochal, M.; Małecka-Panas, E.; Gabryelska, A.; Talar-Wojnarowska, R.; Szmyd, B.; Krzywdzińska, M.; Białasiewicz, P. Determinants of sleep quality in inflammatory bowel diseases. J. Clin. Med. 2020, 9, 2921. [Google Scholar] [CrossRef]
- Hui, L.; Benca, R. The Bidirectional Relationship Between Obstructive Sleep Apnea and Chronic Kidney Disease. J. Stroke Cerebrovasc. Dis. 2021, 105652. [Google Scholar] [CrossRef]
- Li, Y.; Xie, J.; Chen, B.; Basta, M.; Vgontzas, A. 1035 Sleep Duration and Metabolic Syndrome: An Updated Systematic Review and Meta-Analysis. Sleep 2020, 43, A393. [Google Scholar] [CrossRef]
- Wang, T.; Lu, J.; Wang, W.; Mu, Y.; Zhao, J.; Liu, C.; Chen, L.; Shi, L.; Li, Q.; Yang, T.; et al. Sleep duration and snoring associate with hypertension and glycaemic control in patients with diabetes. Diabet. Med. 2015, 32, 1001–1007. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Mei, H.; Jiang, Y.-R.; Sun, W.-Q.; Song, Y.-J.; Liu, S.-J.; Jiang, F. Relationship between duration of sleep and hypertension in adults: A meta-analysis. J. Clin. Sleep Med. 2015, 11, 1047–1056. [Google Scholar] [CrossRef] [PubMed]
- Chasens, E.R.; Luyster, F.S.J.D.S. Effect of sleep disturbances on quality of life, diabetes self-care behavior, and patient-reported outcomes. Diabetes Spectr. 2016, 29, 20–23. [Google Scholar] [CrossRef] [Green Version]
- Perez, K.M.; Hamburger, E.R.; Lyttle, M.; Williams, R.; Bergner, E.; Kahanda, S.; Cobry, E.; Jaser, S.S. Sleep in Type 1 Diabetes: Implications for Glycemic Control and Diabetes Management. Curr. Diabetes Rep. 2018, 18, 5. [Google Scholar] [CrossRef] [Green Version]
- Xu, Q.; Song, Y.; Hollenbeck, A.; Blair, A.; Schatzkin, A.; Chen, H. Day napping and short night sleeping are associated with higher risk of diabetes in older adults. Diabetes Care 2010, 33, 78–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, L.; Jiang, C.Q.; Lam, T.H.; Liu, B.; Jin, Y.L.; Zhu, T.; Zhang, W.S.; Cheng, K.K.; Thomas, G.N. Short or long sleep duration is associated with memory impairment in older Chinese: The Guangzhou Biobank Cohort Study. Sleep 2011, 34, 575–580. [Google Scholar] [CrossRef] [Green Version]
- Watson, N.F.; Badr, M.S.; Belenky, G.; Bliwise, D.L.; Buxton, O.M.; Buysse, D.; Dinges, D.F.; Gangwisch, J.; Grandner, M.A.; Kushida, C.; et al. Recommended Amount of Sleep for a Healthy Adult: A Joint Consensus Statement of the American Academy of Sleep Medicine and Sleep Research Society. Sleep 2015, 38, 843–844. [Google Scholar] [CrossRef]
- Gabryelska, A.; Karuga, F.F.; Szmyd, B.; Białasiewicz, P. HIF-1α as a mediator of insulin resistance, T2DM, and its complications: Potential links with obstructive sleep apnea. Front. Physiol. 2020, 11, 1035. [Google Scholar] [CrossRef] [PubMed]
- Nicholl, D.D.; Ahmed, S.B.; Loewen, A.H.; Hemmelgarn, B.R.; Sola, D.Y.; Beecroft, J.M.; Turin, T.C.; Hanly, P.J. Declining kidney function increases the prevalence of sleep apnea and nocturnal hypoxia. Chest 2012, 141, 1422–1430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, T.; Lin, B.M.; Stampfer, M.J.; Tworoger, S.S.; Hu, F.B.; Redline, S. A population-based study of the bidirectional association between obstructive sleep apnea and type 2 diabetes in three prospective US cohorts. Diabetes Care 2018, 41, 2111–2119. [Google Scholar] [CrossRef] [Green Version]
- Whitaker, K.M.; Lutsey, P.L.; Ogilvie, R.P.; Pankow, J.S.; Bertoni, A.; Michos, E.D.; Punjabi, N.; Redline, S. Associations between polysomnography and actigraphy-based sleep indices and glycemic control among those with and without type 2 diabetes: The Multi-Ethnic Study of Atherosclerosis. Sleep 2018, 41, zsy172. [Google Scholar] [CrossRef]
- Gottlieb, D.J.; Punjabi, N.M.; Newman, A.B.; Resnick, H.E.; Redline, S.; Baldwin, C.M.; Nieto, F.J. Association of sleep time with diabetes mellitus and impaired glucose tolerance. Arch. Intern. Med. 2005, 165, 863–867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reutrakul, S.; Thakkinstian, A.; Anothaisintawee, T.; Chontong, S.; Borel, A.L.; Perfect, M.M.; Janovsky, C.C.; Kessler, R.; Schultes, B.; Harsch, I.A.; et al. Sleep characteristics in type 1 diabetes and associations with glycemic control: Systematic review and meta-analysis. Sleep Med. 2016, 23, 26–45. [Google Scholar] [CrossRef] [Green Version]
- Dorcely, B.; Katz, K.; Jagannathan, R.; Chiang, S.S.; Oluwadare, B.; Goldberg, I.J.; Bergman, M. Novel biomarkers for prediabetes, diabetes, and associated complications. Diabetes Metab. Syndr. Obes. 2017, 10, 345–361. [Google Scholar] [CrossRef] [Green Version]
- Al Kuwari, H.; Al Thani, A.; Al Marri, A.; Al Kaabi, A.; Abderrahim, H.; Afifi, N.; Qafoud, F.; Chan, Q.; Tzoulaki, I.; Downey, P.; et al. The Qatar Biobank: Background and methods. BMC Public Health 2015, 15, 1208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, X.; Liu, Q.; Wei, J.; Meng, X.; Jia, C. Association of daytime napping with prediabetes and diabetes in a Chinese population: Results from the baseline survey of the China Health and Retirement Longitudinal Study. J. Diabetes 2018, 10, 302–309. [Google Scholar] [CrossRef] [PubMed]
- Lam, K.B.; Jiang, C.Q.; Thomas, G.N.; Arora, T.; Zhang, W.S.; Taheri, S.; Adab, P.; Lam, T.H.; Cheng, K.K. Napping is associated with increased risk of type 2 diabetes: The Guangzhou Biobank Cohort Study. Sleep 2010, 33, 402–407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laposky, A.D.; Bass, J.; Kohsaka, A.; Turek, F.W. Sleep and circadian rhythms: Key components in the regulation of energy metabolism. FEBS Lett. 2008, 582, 142–151. [Google Scholar] [CrossRef] [Green Version]
- Smolensky, M.H.; Hermida, R.C.; Castriotta, R.J.; Portaluppi, F. Role of sleep-wake cycle on blood pressure circadian rhythms and hypertension. Sleep Med. 2007, 8, 668–680. [Google Scholar] [CrossRef]
- Li, X.; Pang, X.; Zhang, Q.; Qu, Q.; Hou, Z.; Liu, Z.; Lv, L.; Na, G.; Zhang, W.; Sun, C.; et al. Long-Term Single and Joint Effects of Excessive Daytime Napping on the HOMA-IR Index and Glycosylated Hemoglobin: A Prospective Cohort Study. Medicine 2016, 95, e2734. [Google Scholar] [CrossRef]
- Makino, S.; Hirose, S.; Kakutani, M.; Fujiwara, M.; Nishiyama, M.; Terada, Y.; Ninomiya, H. Association between nighttime sleep duration, midday naps, and glycemic levels in Japanese patients with type 2 diabetes. Sleep Med. 2018, 44, 4–11. [Google Scholar] [CrossRef]
- Spiegel, K.; Knutson, K.; Leproult, R.; Tasali, E.; Van Cauter, E. Sleep loss: A novel risk factor for insulin resistance and Type 2 diabetes. J. Appl. Physiol. 2005, 99, 2008–2019. [Google Scholar] [CrossRef]
- Spiegel, K.; Leproult, R.; Van Cauter, E. Impact of sleep debt on metabolic and endocrine function. Lancet 1999, 354, 1435–1439. [Google Scholar] [CrossRef]
- Rasch, B.; Dodt, C.; Molle, M.; Born, J. Sleep-stage-specific regulation of plasma catecholamine concentration. Psychoneuroendocrinology 2007, 32, 884–891. [Google Scholar] [CrossRef]
- Papandreou, C.; Diaz-Lopez, A.; Babio, N.; Martinez-Gonzalez, M.A.; Bullo, M.; Corella, D.; Fito, M.; Romaguera, D.; Vioque, J.; Alonso-Gomez, A.M.; et al. Long Daytime Napping Is Associated with Increased Adiposity and Type 2 Diabetes in an Elderly Population with Metabolic Syndrome. J. Clin. Med. 2019, 8, 1053. [Google Scholar] [CrossRef] [Green Version]
- Song, Q.; Liu, X.; Zhou, W.; Wang, X.; Wu, S. Short-term changes in sleep duration and risk of type 2 diabetes: Kailuan prospective study. Medicine 2016, 95, e5363. [Google Scholar] [CrossRef]
- Milner, C.E.; Cote, K.A. Benefits of napping in healthy adults: Impact of nap length, time of day, age, and experience with napping. J. Sleep Res. 2009, 18, 272–281. [Google Scholar] [CrossRef] [PubMed]
- Lovato, N.; Lack, L. The effects of napping on cognitive functioning. Prog. Brain Res. 2010, 185, 155–166. [Google Scholar] [CrossRef]
- Lim, J.; Lo, J.C.; Chee, M.W. Assessing the benefits of napping and short rest breaks on processing speed in sleep-restricted adolescents. J. Sleep Res. 2017, 26, 219–226. [Google Scholar] [CrossRef]
- Sakamoto, R.; Yamakawa, T.; Takahashi, K.; Suzuki, J.; Shinoda, M.M.; Sakamaki, K.; Danno, H.; Tsuchiya, H.; Waseda, M.; Takano, T.; et al. Association of usual sleep quality and glycemic control in type 2 diabetes in Japanese: A cross sectional study. Sleep and Food Registry in Kanagawa (SOREKA). PLoS ONE 2018, 13, e0191771. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.; Wang, A.; Pan, C.; Lu, J.; Dou, J.; Lu, Z.; Ba, J.; Wang, B.; Mu, Y. Impact of night sleep duration on glycemic and triglyceride levels in Chinese with different glycemic status. J. Diabetes 2015, 7, 24–30. [Google Scholar] [CrossRef]
- Denic-Roberts, H.; Costacou, T.; Orchard, T.J. Subjective sleep disturbances and glycemic control in adults with long-standing type 1 diabetes: The Pittsburgh’s Epidemiology of Diabetes Complications study. Diabetes Res. Clin. Pract. 2016, 119, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Spiegel, K.; Leproult, R.; L’Hermite-Balériaux, M.; Copinschi, G.; Penev, P.D.; Van Cauter, E. Leptin Levels Are Dependent on Sleep Duration: Relationships with Sympathovagal Balance, Carbohydrate Regulation, Cortisol, and Thyrotropin. J. Clin. Endocrinol. Metab. 2004, 89, 5762–5771. [Google Scholar] [CrossRef] [Green Version]
- Katsumata, K.; Okada, T.; Miyao, M.; Katsumata, Y. High incidence of sleep apnea syndrome in a male diabetic population. Diabetes Res. Clin. Pract. 1991, 13, 45–51. [Google Scholar] [CrossRef]
- Norton, P.G.; Dunn, E.V. Snoring as a risk factor for disease: An epidemiological survey. Br. Med. J. 1985, 291, 630–632. [Google Scholar] [CrossRef] [Green Version]
- Yaggi, H.K.; Araujo, A.B.; McKinlay, J.B. Sleep duration as a risk factor for the development of type 2 diabetes. Diabetes Care 2006, 29, 657–661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, X.; Benedict, C. Sleep characteristics and HbA1c in patients with type 2 diabetes on glucose-lowering medication. BMJ Open Diabetes Res. Care 2020, 8, e001702. [Google Scholar] [CrossRef] [PubMed]
- Borel, A.L.; Pepin, J.L.; Nasse, L.; Baguet, J.P.; Netter, S.; Benhamou, P.Y. Short sleep duration measured by wrist actimetry is associated with deteriorated glycemic control in type 1 diabetes. Diabetes Care 2013, 36, 2902–2908. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, S.M.J.; Lee, H.; Shim, J.S.; Kim, H.C. Association of Snoring with Prediabetes and Type 2 Diabetes Mellitus: The Cardiovascular and Metabolic Diseases Etiology Research Center Cohort. Diabetes Metab. J. 2020, 45, 687. [Google Scholar] [CrossRef]
- Zhang, S.X.; Khalyfa, A.; Wang, Y.; Carreras, A.; Hakim, F.; Neel, B.A.; Brady, M.J.; Qiao, Z.; Hirotsu, C.; Gozal, D. Sleep fragmentation promotes NADPH oxidase 2-mediated adipose tissue inflammation leading to insulin resistance in mice. Int. J. Obes. 2014, 38, 619–624. [Google Scholar] [CrossRef] [Green Version]
- Alam, I.; Lewis, K.; Stephens, J.W.; Baxter, J.N. Obesity, metabolic syndrome and sleep apnoea: All pro-inflammatory states. Obes. Rev. 2007, 8, 119–127. [Google Scholar] [CrossRef]
- Follenius, M.; Brandenberger, G.; Bandesapt, J.J.; Libert, J.P.; Ehrhart, J. Nocturnal cortisol release in relation to sleep structure. Sleep 1992, 15, 21–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bloch-Damti, A.; Bashan, N. Proposed mechanisms for the induction of insulin resistance by oxidative stress. Antioxid. Redox Signal. 2005, 7, 1553–1567. [Google Scholar] [CrossRef]
- Alberti, A.; Sarchielli, P.; Gallinella, E.; Floridi, A.; Floridi, A.; Mazzotta, G.; Gallai, V. Plasma cytokine levels in patients with obstructive sleep apnea syndrome: A preliminary study. J. Sleep Res. 2003, 12, 305–311. [Google Scholar] [CrossRef] [Green Version]
- Nonogaki, K. New insights into sympathetic regulation of glucose and fat metabolism. Diabetologia 2000, 43, 533–549. [Google Scholar] [CrossRef]
- Al-Rasheedi, A.A. The Role of Educational Level in Glycemic Control among Patients with Type II Diabetes Mellitus. Int. J. Health Sci. 2014, 8, 177–187. [Google Scholar] [CrossRef] [PubMed]
- Nayak, B.S.; Khan, K.; Kidney, C.; Knowles, V.; Koo, A.; Lakhan, A.; Lalla, D.; Lalloo, C.; Lallo, S.A.; Singh, S. Demographic and lifestyle factors that affect HbA1c awareness amongst type II diabetic patients in Trinidad. Arch. Physiol. Biochem. 2018, 124, 397–400. [Google Scholar] [CrossRef] [PubMed]
- Asmelash, D.; Abdu, N.; Tefera, S.; Baynes, H.W.; Derbew, C. Knowledge, Attitude, and Practice towards Glycemic Control and Its Associated Factors among Diabetes Mellitus Patients. J. Diabetes Res. 2019, 2019, 2593684. [Google Scholar] [CrossRef] [Green Version]
- Alemayehu, A.M.; Dagne, H.; Dagnew, B. Knowledge and associated factors towards diabetes mellitus among adult non-diabetic community members of Gondar city, Ethiopia 2019. PLoS ONE 2020, 15, e0230880. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dupre, M.E.; Silberberg, M.; Willis, J.M.; Feinglos, M.N. Education, glucose control, and mortality risks among U.S. older adults with diabetes. Diabetes Res. Clin. Pract. 2015, 107, 392–399. [Google Scholar] [CrossRef]
- Bukhsh, A.; Khan, T.M.; Sarfraz Nawaz, M.; Sajjad Ahmed, H.; Chan, K.G.; Goh, B.H. Association of diabetes knowledge with glycemic control and self-care practices among Pakistani people with type 2 diabetes mellitus. Diabetes Metab. Syndr. Obes. 2019, 12, 1409–1417. [Google Scholar] [CrossRef] [Green Version]
- Parimalakrishnan, S.; Dussa, K.; Sahay, R. Assessment of diabetes knowledge using diabetes knowledge questionnaire among people with type 2 diabetes mellitus. Asian J. Pharm. Clin. Res. 2015, 8, 254–256. [Google Scholar]
- Bae, J.P.; Lage, M.J.; Mo, D.; Nelson, D.R.; Hoogwerf, B.J. Obesity and glycemic control in patients with diabetes mellitus: Analysis of physician electronic health records in the US from 2009–2011. J. Diabetes Complicat. 2016, 30, 212–220. [Google Scholar] [CrossRef] [Green Version]
- Mut-Vitcu, G.; Hudrea, I.C.; Mosteoru, S.; Gaita, L.; Gaita, D. Body Mass Index and Glycaemic Control in Patients with Diabetes Mellitus: A Case-Control Study. Rom. J. Diabetes Nutr. Metab. Dis. 2017, 24, 119–125. [Google Scholar] [CrossRef] [Green Version]
- Richter, E.A.; Hargreaves, M. Exercise, GLUT4, and skeletal muscle glucose uptake. Physiol. Rev. 2013, 93, 993–1017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duarte, F.G.; da Silva Moreira, S.; Almeida, M.; de Souza Teles, C.A.; Andrade, C.S.; Reingold, A.L.; Moreira, E.D., Jr. Sex differences and correlates of poor glycaemic control in type 2 diabetes: A cross-sectional study in Brazil and Venezuela. BMJ Open 2019, 9, e023401. [Google Scholar] [CrossRef] [Green Version]
- Reynolds, D.B.; Walker, R.J.; Campbell, J.A.; Egede, L.E. Differential effect of race, education, gender, and language discrimination on glycemic control in adults with type 2 diabetes. Diabetes Technol. 2015, 17, 243–247. [Google Scholar] [CrossRef] [Green Version]
- Śliwińska-Mossoń, M.; Milnerowicz, H. The impact of smoking on the development of diabetes and its complications. Diabetes Vasc. Dis. Res. 2017, 14, 265–276. [Google Scholar] [CrossRef] [Green Version]
- Yoshikawa, H.; Hellström-Lindahl, E.; Grill, V. Evidence for functional nicotinic receptors on pancreatic beta cells. Metab. Clin. Exp. 2005, 54, 247–254. [Google Scholar] [CrossRef]
- Afroz, A.; Ali, L.; Karim, M.N.; Alramadan, M.J.; Alam, K.; Magliano, D.J.; Billah, B. Glycaemic Control for People with Type 2 Diabetes Mellitus in Bangladesh—An urgent need for optimization of management plan. Sci. Rep. 2019, 9, 10248. [Google Scholar] [CrossRef]
- DeFronzo, R.A. Pharmacologic therapy for type 2 diabetes mellitus. Ann. Intern. Med. 1999, 131, 281–303. [Google Scholar] [CrossRef]
Total | <5 h | 5–7 h | 7–8 h | ≥8 h | p-Value | |
---|---|---|---|---|---|---|
N = 2448 | N = 406 | N = 1182 | N = 617 | N = 243 | ||
Poor glycemic control | 1250 (51.1%) | 204 (50.2%) | 598 (50.6%) | 311 (50.4%) | 137 (56.4%) | 0.38 |
Age | 51.6 (11.9) | 52.1 (11.5) | 51.6 (11.7) | 51.8 (11.8) | 50.5 (13.4) | 0.43 |
Gender | <0.001 | |||||
Men | 1000 (40.8%) | 153 (37.7%) | 531 (44.9%) | 219 (35.5%) | 97 (39.9%) | |
Women | 1448 (59.2%) | 253 (62.3%) | 651 (55.1%) | 398 (64.5%) | 146 (60.1%) | |
Education | <0.001 | |||||
Low | 982 (40.1%) | 193 (47.5%) | 442 (37.4%) | 245 (39.7%) | 102 (42.0%) | |
Medium | 461 (18.8%) | 91 (22.4%) | 218 (18.5%) | 108 (17.5%) | 44 (18.1%) | |
High | 1004 (41.0%) | 122 (30.0%) | 521 (44.1%) | 264 (42.8%) | 97 (39.9%) | |
Smoking | 0.20 | |||||
Non | 1820 (74.3%) | 301 (74.1%) | 857 (72.5%) | 484 (78.4%) | 178 (73.3%) | |
Smoker | 296 (12.1%) | 53 (13.1%) | 149 (12.6%) | 62 (10.0%) | 32 (13.2%) | |
Ex-smoker | 332 (13.6%) | 52 (12.8%) | 176 (14.9%) | 71 (11.5%) | 33 (13.6%) | |
Leisure time physical activity (MET hours/week) | 0.0 (0.0–12.0) | 0.0 (0.0–8.0) | 1.5 (0.0–15.0) | 0.0 (0.0–10.5) | 0.0 (0.0–12.0) | <0.001 |
Intake of fruit (times/week) | 7.5 (4.0–14.0) | 7.5 (4.0–14.0) | 7.5 (4.0–14.0) | 7.5 (4.0–14.0) | 7.5 (4.0–14.5) | 0.83 |
Intake of vegetable (times/week) | 18.0 (9.5–27.0) | 17.0 (8.5–28.0) | 18.0 (9.5–27.0) | 19.0 (10.5–27.5) | 18.0 (10.0–27.5) | 0.42 |
Leisure time physical activity (MET hours/week) | 12.6 (36.4) | 12.3 (56.9) | 13.7 (33.9) | 10.9 (22.4) | 12.3 (32.2) | 0.50 |
Intake of fruit (times/week) | 9.7 (7.9) | 10.3 (9.2) | 9.5 (7.6) | 9.7 (7.4) | 9.6 (7.9) | 0.33 |
Intake of vegetable (times/week) | 20.6 (15.6) | 21.0 (18.0) | 20.4 (14.7) | 21.3 (16.0) | 19.9 (14.5) | 0.55 |
BMI (kg/m2) | 32.1 (6.0) | 32.5 (6.7) | 31.9 (5.7) | 32.1 (5.8) | 32.3 (6.3) | 0.31 |
BMI categories | 0.67 | |||||
Normal | 212 (8.7%) | 40 (9.9%) | 103 (8.7%) | 49 (8.0%) | 20 (8.2%) | |
Overweight | 751 (30.7%) | 113 (27.9%) | 369 (31.3%) | 186 (30.2%) | 83 (34.2%) | |
Obese | 1481 (60.6%) | 252 (62.2%) | 708 (60.0%) | 381 (61.9%) | 140 (57.6%) | |
Insulin use | 621 (25.4%) | 96 (23.6%) | 305 (25.8%) | 155 (25.1%) | 65 (26.7%) | 0.80 |
Diabetes medication other than insulin | 1705 (69.6%) | 266 (65.5%) | 831 (70.3%) | 443 (71.8%) | 165 (67.9%) | 0.16 |
Hypertension medication use | 844 (34.5%) | 146 (36.0%) | 407 (34.4%) | 202 (32.7%) | 89 (36.6%) | 0.63 |
Snore | 1253 (51.3%) | 214 (53.1%) | 605 (51.3%) | 308 (50.1%) | 126 (51.9%) | 0.82 |
Nap | <0.001 | |||||
Never/rarely | 474 (19.4%) | 113 (27.8%) | 221 (18.7%) | 106 (17.2%) | 34 (14.0%) | |
Sometimes | 1030 (42.1%) | 187 (46.1%) | 523 (44.2%) | 239 (38.7%) | 81 (33.3%) | |
Frequently | 470 (19.2%) | 48 (11.8%) | 236 (20.0%) | 147 (23.8%) | 39 (16.0%) | |
Always | 474 (19.4%) | 58 (14.3%) | 202 (17.1%) | 125 (20.3%) | 89 (36.6%) |
Sleep Duration | <5 h | 5–7 h | 7–8 h | >8 h | p for Linear Trend |
Model 1 | 0.98 (0.76–1.26) | 0.97 (0.80–1.18) | 1.00 | 1.30 (0.96–1.75) | 0.13 |
Model 2 | 0.93 (0.72–1.20) | 0.98 (0.80–1.20) | 1.00 | 1.28 (0.94–1.74) | 0.09 |
Model 3 | 1.06 (0.80–1.40) | 0.98 (0.79–1.22) | 1.00 | 1.34 (0.96–1.88) | 0.28 |
Napping | Never/Rarely | Sometimes | Frequently | Always | p for Linear Trend |
Model 1 | 1.00 | 1.37 (1.10–1.71) | 1.32 (1.02–1.72) | 1.37 (1.05–1.78) | 0.058 |
Model 2 | 1.00 | 1.38 (1.10–1.73) | 1.36 (1.04–1.77) | 1.37 (1.05–1.78) | 0.055 |
Model 3 | 1.00 | 1.29 (1.01–1.66) | 1.38 (1.04–1.85) | 1.26 (0.94–1.69) | 0.14 |
Snoring | No | Yes | p Values | ||
Model 1 | 1.00 | 0.96 (0.82–1.13) | 0.61 | ||
Model 2 | 1.00 | 0.93 (0.79–1.10) | 0.40 | ||
Model 3 | 1.00 | 0.97 (0.81–1.16) | 0.71 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bawadi, H.; Al Sada, A.; Al Mansoori, N.; Al Mannai, S.; Hamdan, A.; Shi, Z.; Kerkadi, A. Sleeping Duration, Napping and Snoring in Association with Diabetes Control among Patients with Diabetes in Qatar. Int. J. Environ. Res. Public Health 2021, 18, 4017. https://doi.org/10.3390/ijerph18084017
Bawadi H, Al Sada A, Al Mansoori N, Al Mannai S, Hamdan A, Shi Z, Kerkadi A. Sleeping Duration, Napping and Snoring in Association with Diabetes Control among Patients with Diabetes in Qatar. International Journal of Environmental Research and Public Health. 2021; 18(8):4017. https://doi.org/10.3390/ijerph18084017
Chicago/Turabian StyleBawadi, Hiba, Asma Al Sada, Noof Al Mansoori, Sharifa Al Mannai, Aya Hamdan, Zumin Shi, and Abdelhamid Kerkadi. 2021. "Sleeping Duration, Napping and Snoring in Association with Diabetes Control among Patients with Diabetes in Qatar" International Journal of Environmental Research and Public Health 18, no. 8: 4017. https://doi.org/10.3390/ijerph18084017
APA StyleBawadi, H., Al Sada, A., Al Mansoori, N., Al Mannai, S., Hamdan, A., Shi, Z., & Kerkadi, A. (2021). Sleeping Duration, Napping and Snoring in Association with Diabetes Control among Patients with Diabetes in Qatar. International Journal of Environmental Research and Public Health, 18(8), 4017. https://doi.org/10.3390/ijerph18084017