Identification of Vulnerable Populations and Areas at Higher Risk of COVID-19-Related Mortality during the Early Stage of the Epidemic in the United States
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Data Sources
2.2. Study Variables
2.3. Multivariate Analyses of Risk Factors for COVID-19-Related Death
3. Results
3.1. Sociodemographic and Socio-Environmental Variables
3.2. Multivariate Analyses of Risk Factors for COVID-19-Related Death
3.3. COVID-19 Disease Mapping
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- CDC COVID-19 Response Team. Geographic Differences in COVID-19 Cases, Deaths, and Incidence—United States, February 12–April 7, 2020. Morb. Mortal. Wkly. Rep. 2020, 69, 465–471. [Google Scholar] [CrossRef] [PubMed]
- Miller, I.F.; Becker, A.D.; Grenfell, B.T.; Metcalf, C.J.E. Disease and healthcare burden of COVID-19 in the United States. Nat. Med. 2020, 26, 1212–1217. [Google Scholar] [CrossRef]
- Richardson, S.; Hirsch, J.S.; Narasimhan, M.; Crawford, J.M.; McGinn, T.; Davidson, K.W. The Northwell COVID-19 Research Consortium. Presenting Characteristics, Comorbidities, and Outcomes among 5700 Patients Hospitalized with COVID-19 in the New York City Area. JAMA 2020. Available online: https://jamanetwork.com/journals/jama/fullarticle/2765184 (accessed on 20 April 2020). [CrossRef] [PubMed]
- Shi, S.; Qin, M.; Shen, B.; Cai, Y.; Liu, T.; Yang, F.; Gong, W.; Liu, X.; Liang, J.; Zhao, Q.; et al. Association of Cardiac Injury with Mortality in Hospitalized Patients with COVID-19 in Wuhan, China. JAMA Cardiol. 2020. Available online: https://jamanetwork.com/journals/jamacardiology/fullarticle/2763524 (accessed on 20 April 2020). [CrossRef]
- Grasselli, G.; Zangrillo, A.; Zanella, A.; Antonelli, M.; Cabrini, L.; Castelli, A.; Cereda, D.; Coluccello, A.; Foti, G.; Fumagalli, R.; et al. Baseline Characteristics and Outcomes of 1591 Patients Infected with SARS-CoV-2 Admitted to ICUs of the Lombardy Region, Italy. JAMA 2020, 323, 1574–1581. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Huang, S.; Liu, J.; Shu, Y.; Luo, Y.; Wang, L.; Li, M.; Wang, Y. Association between comorbidities and the risk of death in patients with COVID-19: Sex-specific differences. medRxiv 2020. Available online: https://www.medrxiv.org/content/10.1101/2020.05.22.20109579v1 (accessed on 29 May 2020). [CrossRef]
- Williamson, E.; Walker, A.J.; Bhaskaran, K.J.; Bacon, S.; Bates, C.; Morton, C.E.; Curtis, H.J.; Mehrkar, A.; Evans, D.; Inglesby, P.; et al. OpenSAFELY: Factors associated with COVID-19-related hospital death in the linked electronic health records of 17 million adult NHS patients. medRxiv 2020. Available online: https://www.medrxiv.org/content/10.1101/2020.05.06.20092999v1 (accessed on 10 May 2020). [CrossRef]
- Remuzzi, A.; Remuzzi, G. COVID-19 and Italy: What next? Lancet 2020, 395, 1225–1228. [Google Scholar] [CrossRef]
- Li, R.; Rivers, C.; Tan, Q.; Murray, M.B.; Toner, E.; Lipsitch, M. Estimated Demand for US Hospital Inpatient and Intensive Care Unit Beds for Patients with COVID-19 Based on Comparisons with Wuhan and Guangzhou, China. JAMA Netw. Open 2020, 3, e208297. [Google Scholar] [CrossRef] [PubMed]
- Schneider, E.C. Failing the Test—The Tragic Data Gap Undermining the U.S. Pandemic Response. N. Engl. J. Med. 2020, 383, 299–302. [Google Scholar] [CrossRef]
- CDC. COVID-19 Death Data and Resources. Available online: https://www.cdc.gov/nchs/nvss/covid-19.htm (accessed on 2 April 2021).
- Johns Hopkins University. 2019 Novel Coronavirus COVID-19 (2019-nCoV) Data Repository by Johns Hopkins CSSE. Available online: https://github.com/CSSEGISandData/COVID-19 (accessed on 24 April 2020).
- Bureau, U.S.C. American Community Survey 2014–2018 5-Year Estimates. Available online: https://www.census.gov/data/developers/data-sets/acs-5year.2018.html (accessed on 20 April 2020).
- Gregory, E.W.; Hallisey, E.; Heitgerd, J.L.; Lewis, B. A Social Vulnerability Index for Disaster Management. J. Homel. Secur. Emerg. Manag. 2011, 8, 3. [Google Scholar]
- Centers for Disease Control and Prevention, National Center for Health Statistics. Underlying Cause of Death 1999–2018 on CDC WONDER Online Database, Released in 2020. Available online: http://wonder.cdc.gov/ucd-icd10.html (accessed on 26 April 2020).
- van Donkelaar, A.; Martin, R.V.; Li, C.; Burnett, R.T. Regional Estimates of Chemical Composition of Fine Particulate Matter Using a Combined Geoscience-Statistical Method with Information from Satellites, Models, and Monitors. Environ. Sci. Technol. 2019, 53, 2595–2611. [Google Scholar] [CrossRef] [PubMed]
- Bureau, C. Race & Ethnicity. Available online: https://bber.unm.edu/media/files/race-ethnicity-onepager.pdf (accessed on 20 April 2020).
- CDC COVID-19 Response Team. Preliminary Estimates of the Prevalence of Selected Underlying Health Conditions among Patients with Coronavirus Disease 2019. Morb. Mortal. Wkly. Rep. 2020, 69, 382–386. [Google Scholar]
- Hsu, H.E.; Ashe, E.M.; Silverstein, M.; Hofman, M.; Lange, S.J.; Razzaghi, H.; Mishuris, R.G.; Davidoff, R.; Parker, E.M.; Penman-Aguilar, A.; et al. Race/Ethnicity, Underlying Medical Conditions, Homelessness, and Hospitalization Status of Adult Patients with COVID-19 at an Urban Safety-Net Medical Center—Boston, Massachusetts, 2020. Morb. Mortal. Wkly. Rep. 2020, 69, 864–869. [Google Scholar] [CrossRef] [PubMed]
- Von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gotzche, P.C.; Vandenbroucke, J.P. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: Guidelines for Reporting Observational Studies. Epidemiology 2007, 18, 800–804. [Google Scholar] [CrossRef]
- Niedzwiedz, C.L.; Donnell, C.A.; Jani, B.D.; Demou, E.; Ho, F.K.; Celis-Morales, C.; Nicholl, B.I.; Mair, F.; Welsh, P.; Sattar, N.; et al. Ethnic and socioeconomic differences in SARS-CoV-2 infection: Prospective cohort study using UK Biobank. medRxiv 2020, 18, 1–14. [Google Scholar] [CrossRef]
- Halpin, D.M.G.; Faner, R.; Sibila, O.; Badia, J.R.; Agusti, A. Do chronic respiratory diseases or their treatment affect the risk of SARS-CoV-2 infection? Lancet Respir. Med. 2020, 8, 436–438. [Google Scholar] [CrossRef]
- Pansini, R.; Fornacca, D. Initial evidence of higher morbidity and mortality due to SARS-CoV-2 in regions with lower air quality. medRxiv 2020. Available online: https://www.medrxiv.org/content/medrxiv/early/2020/04/07/2020.04.04.20053595.full.pdf (accessed on 10 May 2020). [CrossRef]
- Fattorini, D.; Regoli, F. Role of the atmospheric pollution in the Covid-19 outbreak risk in Italy. medRxiv 2020, 264, 114732. [Google Scholar] [CrossRef]
- Hernán, M.A.; Hernández-Díaz, S.; Robins, J.M. A Structural Approach to Selection Bias. Epidemiology 2004, 15, 615–625. [Google Scholar] [CrossRef] [PubMed]
- Besag, J.; York, J.; Mollié, A. Bayesian image restoration, with two applications in spatial statistics. Ann. Inst. Stat. Math. 1991, 43, 1–20. [Google Scholar] [CrossRef]
- Lu, Z. Handbook of Spatial Statistics; Gelfand, A.E., Diggle, P.J., Montserrat Fuentes and Peter Guttorp, Eds.; Chapman & Hall/CRC: Boca Raton, FL, USA, 2010; p. xii+607. ISBN 978-1-4200-7287-7. [Google Scholar] [CrossRef]
- Healthcare, D. USA Hospital Beds. Available online: https://coronavirus-resources.esri.com/datasets/1044bb19da8d4dbfb6a96eb1b4ebf629_0?geometry=80.507%2C-16.820%2C-105.469%2C72.123 (accessed on 5 May 2020).
- Hijmans, R.J. Raster: Geographic Data Analysis and Modeling. 2019. Available online: https://rdrr.io/cran/raster/#vignettes (accessed on 1 April 2020).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018. [Google Scholar]
- Bürkner, P.-C. brms: An R Package for Bayesian Multilevel Models Using Stan. J. Stat. Softw. 2017, 80, 1–28. [Google Scholar] [CrossRef]
- Kim, A.Y.; Jon, W. SpatialEpi: Methods and Data for Spatial Epidemiology; R Package Version 1.2.3; University of Washington: Seatle, WA, USA, 2018. [Google Scholar]
- Owen, W.F., Jr.; Carmona, R.; Pomeroy, C. Failing Another National Stress Test on Health Disparities. JAMA 2020, 323, 1905–1906. [Google Scholar] [CrossRef]
- NYC Department of Health and Mental Hygiene. COVID-19: Data. Available online: https://www1.nyc.gov/site/doh/covid/covid-19-data.page (accessed on 17 May 2020).
- Hernandez, A.; Correa-Agudelo, E.; Kim, H.; Branscum, A.J.; Miller, F.D.; MacKinnon, N.; Cuadros, D.F. On the impact of early non-pharmaceutical interventions as containment strategies against the COVID-19 pandemic. medRxiv 2020. Available online: https://www.medrxiv.org/content/10.1101/2020.05.05.20092304v1 (accessed on 10 May 2020). [CrossRef]
- United States Environmental Protection Agency. Revised Air Quality Standards for Particle Pollution and Updates to the Air Quality Index (AQI). Available online: https://www.epa.gov/sites/production/files/2016-04/documents/2012_aqi_factsheet.pdf (accessed on 28 March 2021).
- Kelly, F.J.; Fussell, J.C. Air pollution and airway disease. Clin. Exp. Allergy 2011, 41, 1059–1071. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Ni, Y.; Li, H.; Pan, L.; Yang, D.; Baccarelli, A.A.; Deng, F.; Chen, Y.; Shima, M.; Guo, X. Short-term exposure to high ambient air pollution increases airway inflammation and respiratory symptoms in chronic obstructive pulmonary disease patients in Beijing, China. Environ. Int. 2016, 94, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Minelli, C.; Wei, I.; Sagoo, G.; Jarvis, D.; Shaheen, S.; Burney, P. Interactive effects of antioxidant genes and air pollution on respiratory function and airway disease: A HuGE review. Am. J. Epidemiol. 2011, 173, 603–620. [Google Scholar] [CrossRef] [PubMed]
- Viegi, G.; Simoni, M.; Scognamiglio, A.; Baldacci, S.; Pistelli, F.; Carrozzi, L.; Annesi-Maesano, I. Indoor air pollution and airway disease. Int. J. Tuberc. Lung Dis. 2004, 8, 1401–1415. [Google Scholar] [PubMed]
- Ulmer, W.T. Air pollution and airway disease. Der Internist 1985, 26, 233–240. [Google Scholar] [PubMed]
- Karakatsani, A.; Analitis, A.; Perifanou, D.; Ayres, J.G.; Harrison, R.M.; Kotronarou, A.; Kavouras, I.G.; Pekkanen, J.; Hameri, K.; Kos, G.P.; et al. Particulate matter air pollution and respiratory symptoms in individuals having either asthma or chronic obstructive pulmonary disease: A European multicentre panel study. Environ. Health 2012, 11, 75. [Google Scholar] [CrossRef] [PubMed]
- Vineis, P.; Hoek, G.; Krzyzanowski, M.; Vigna-Taglianti, F.; Veglia, F.; Airoldi, L.; Autrup, H.; Dunning, A.; Garte, S.; Hainaut, P.; et al. Air pollution and risk of lung cancer in a prospective study in Europe. Int. J. Cancer 2006, 119, 169–174. [Google Scholar] [CrossRef] [PubMed]
- Raaschou-Nielsen, O.; Vineis, P.; Brunekreef, B.; Nieuwenhuijsen, M.; Hoffmann, B.; Forastiere, F.; Oudin, A.; Hoek, G.; Katsouyanni, K.; Schwarze, P.; et al. Air pollution and lung cancer in Europe—Authors’ reply. Lancet Oncol. 2013, 14, e440. [Google Scholar] [CrossRef]
- Sax, S.N.; Zu, K.; Goodman, J.E. Air pollution and lung cancer in Europe. Lancet Oncol. 2013, 14, e439–e440. [Google Scholar] [CrossRef]
- Nawrot, T.S.; Nackaerts, K.; Hoet, P.H.; Nemery, B. Lung cancer mortality and fine particulate air pollution in Europe. Int. J. Cancer 2007, 120, 1825–1826. [Google Scholar] [CrossRef] [PubMed]
- Nature. Coronavirus: The First Three Months As It Happened. Available online: https://www.nature.com/articles/d41586-020-00154-w (accessed on 19 May 2020).
- American Lung Association. State of the Air 2020; American Lung Association: Chicago, IL, USA, 2020. [Google Scholar]
- Institute for Health Metrics and Evaluation. New COVID-19 Forecasts: US Hospitals Could Be Overwhelmed in the Second Week of April by Demand for ICU Beds, and US Deaths Could Total 81,000 by July. Available online: www.healthdata.org/news-release/new-covid-19-forecasts-us-hospitals-could-be-overwhelmed-second-week-april-demand-icu (accessed on 10 May 2020).
- Achakulwisut, P.; Brauer, M.; Hystad, P.; Anenberg, S.C. Global, national, and urban burdens of paediatric asthma incidence attributable to ambient NO2 pollution: Estimates from global datasets. Lancet Planet. Health 2019, 3, e166–e178. [Google Scholar] [CrossRef]
COVID-19 | n | |
---|---|---|
Confirmed Cases | 5,958,655 | |
Confirmed Deaths | 181,937 | |
Sociodemographic | Mean | (SD) |
Age (years) | ||
Percent under 25 | 31.2 | (4.8) |
Percent 25–34 | 11.8 | (2.3) |
Percent 35–44 | 11.6 | (1.5) |
Percent 45–59 | 20.2 | (2.2) |
Percent 60–74 | 17.4 | (3.7) |
Percent 75+ | 7.8 | (2.4) |
Percent of population in poverty | 15.6 | (6.5) |
Race | ||
Percent of white population | 83.1 | (16.9) |
Percent of black population | 9.1 | (14.5) |
Percent of other races | 7.9 | (10.2) |
Ethnicity | ||
Percent of not Hispanic or Latino population | 90.7 | (13.8) |
Percent of Hispanic or Latino population | 9.3 | (13.8) |
Crude mortality rates | Mean | (SD) |
Chronic lower respiratory disease | 69.9 | (26.0) |
Diabetes mellitus | 33.5 | (14.7) |
Hypertension | 27.1 | (16.9) |
Ischemic heart disease | 151.2 | (57.2) |
Environment | Mean | (SD) |
Long-term PM2.5 exposure | 8.0 | (2.4) |
Connectivity Index (n) | ||
Counties with no airport/highway | 1200 | |
Counties crossed by a highway | 629 | |
Counties next to airport | 1047 | |
Counties with an airport | 232 |
County-Level Covariates | RR | CrI: [2.5%, 97.5%] | |
---|---|---|---|
Sociodemographic | |||
Age | |||
Under 25 | Ref | Ref | |
25–34 | 0.98 | (0.96 | 1.01) |
35–44 | 1.01 | (0.97 | 1.04) |
45–59 | 1.02 | (1.00 | 1.05) |
60–74 | 0.98 | (0.96 | 1.00) |
75+ | 1.05 | (1.01 | 1.08) |
Percentage of population in poverty | 1.01 | (1.00 | 1.02) |
Race | |||
Percent of white population | Ref | Ref | |
Percent of black population | 1.01 | (1.01 | 1.02) |
Percent of other races | 1.02 | (1.01 | 1.02) |
Ethnicity | |||
Percent of non-Hispanic or Latino population | Ref | Ref | |
Percent of Hispanic or Latino population | 1.02 | (1.02 | 1.03) |
Crude mortality rates | |||
Chronic lower respiratory disease | 1.00 | (1.00 | 1.00) |
Diabetes mellitus | 1.00 | (1.00 | 1.00) |
Hypertension | 1.00 | (1.00 | 1.01) |
Ischemic heart disease | 1.00 | (1.00 | 1.00) |
Environment | |||
Long-term exposure to PM2.5 | 1.14 | (1.08 | 1.20) |
Connectivity Index | |||
Counties with no airport/highway | Ref | Ref | |
Counties crossed by a highway | 1.10 | (1.00 | 1.20) |
Counties next to airport | 1.13 | (1.03 | 1.24) |
Counties with an airport | 1.31 | (1.14 | 1.51) |
Location | Observed Counts | Expected Counts | Connectivity Index | PM25 (u/gml) | Poverty (%) | |
---|---|---|---|---|---|---|
Bronx, NY | 4912 | 810 | Next to airport | 11.7 | 29.1 | |
McKinley, NM | 243 | 41 | Crossed by a highway | 3.0 | 36 | |
Queens, NY | 7224 | 1295 | Airport | 11.2 | 13 | |
Kings, NY | 7290 | 1465 | Next to airport | 11.5 | 21.1 | |
Essex, NJ | 2116 | 447 | Airport | 11.2 | 16.4 | |
Passaic, NJ | 1245 | 284 | Next to airport | 9.6 | 16.7 | |
Union, NJ | 1351 | 312 | Next to airport | 11.4 | 9.8 | |
Richmond, NY | 1083 | 267 | Next to airport | 11.3 | 12.8 | |
Hudson, NJ | 1508 | 377 | Next to airport | 12.3 | 16.3 | |
Bergen, NJ | 2035 | 524 | Next to airport | 11.3 | 7 | |
Location | ICU Per 100,000 | White (%) | Black (%) | Other Races (%) | Latino (%) | RR CI: [2.5%, 97.5%] |
Bronx, NY | 19.1 | 21.3 | 34.1 | 44.6 | 55.9 | 6.07 [5.90, 6.24] |
McKinley, NM | 35.7 | 15 | 0.7 | 84.3 | 14.3 | 5.85 [5.13, 6.61] |
Queens, NY | 6.4 | 39 | 18.3 | 42.7 | 28 | 5.58 [5.45, 5.71] |
Kings, NY | 10.8 | 43.5 | 32.6 | 23.9 | 19.2 | 4.98 [4.86, 5.09] |
Essex, NJ | 28.5 | 42.1 | 39.8 | 18.1 | 22.7 | 4.74 [4.54, 4.94] |
Passaic, NJ | 10.5 | 62.2 | 11.4 | 26.4 | 40.9 | 4.39 [4.15, 4.63] |
Union, NJ | 13.9 | 56.2 | 21.2 | 22.6 | 31.1 | 4.33 [4.11, 4.57] |
Richmond, NY | 15.2 | 74.3 | 10.2 | 15.5 | 18.3 | 4.06 [3.82, 4.3] |
Hudson, NJ | 13.3 | 55.1 | 12.4 | 32.5 | 43.2 | 4.0 [3.80, 4.21] |
Bergen, NJ | 13.1 | 71.4 | 6.0 | 22.6 | 19.4 | 3.88 [3.72, 4.05] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Correa-Agudelo, E.; Mersha, T.B.; Branscum, A.J.; MacKinnon, N.J.; Cuadros, D.F. Identification of Vulnerable Populations and Areas at Higher Risk of COVID-19-Related Mortality during the Early Stage of the Epidemic in the United States. Int. J. Environ. Res. Public Health 2021, 18, 4021. https://doi.org/10.3390/ijerph18084021
Correa-Agudelo E, Mersha TB, Branscum AJ, MacKinnon NJ, Cuadros DF. Identification of Vulnerable Populations and Areas at Higher Risk of COVID-19-Related Mortality during the Early Stage of the Epidemic in the United States. International Journal of Environmental Research and Public Health. 2021; 18(8):4021. https://doi.org/10.3390/ijerph18084021
Chicago/Turabian StyleCorrea-Agudelo, Esteban, Tesfaye B. Mersha, Adam J. Branscum, Neil J. MacKinnon, and Diego F. Cuadros. 2021. "Identification of Vulnerable Populations and Areas at Higher Risk of COVID-19-Related Mortality during the Early Stage of the Epidemic in the United States" International Journal of Environmental Research and Public Health 18, no. 8: 4021. https://doi.org/10.3390/ijerph18084021
APA StyleCorrea-Agudelo, E., Mersha, T. B., Branscum, A. J., MacKinnon, N. J., & Cuadros, D. F. (2021). Identification of Vulnerable Populations and Areas at Higher Risk of COVID-19-Related Mortality during the Early Stage of the Epidemic in the United States. International Journal of Environmental Research and Public Health, 18(8), 4021. https://doi.org/10.3390/ijerph18084021