Chemical Characterization and Quantification of Silver Nanoparticles (Ag-NPs) and Dissolved Ag in Seafood by Single Particle ICP-MS: Assessment of Dietary Exposure
Abstract
:1. Introduction
2. Materials and Method
2.1. Sample Collection, Handling and Preparation
2.2. Alkaline Digestion and spICP-MS Analysis of Silver Nanoparticles (AgNPs) and Dissolved Silver (Ag)
2.3. Acid Digestion and ICP-MS Analysis of Total Silver (Ag)
2.4. Dietary Exposure
2.5. Determination of Packaging Composition
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Akaighe, N.; MacCuspie, R.I.; Navarro, D.A.; Aga, D.S.; Banerjee, S.; Sohn, M.; Sharma, V.K. Humic acid-induced silver nanoparticle formation under environmentally relevant conditions. Environ. Sci. Technol. 2011, 45, 3895–3901. [Google Scholar] [CrossRef]
- Asharani, P.V.; Hande, M.P.; Valiyaveettil, S. Anti-proliferative activity of silver nanoparticles. BMC Cell Biol. 2009, 10, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Avigliano, E.; Monferrán, M.V.; Sánchez, S.; Wunderlin, D.A.; Gastaminza, J.; Volpedo, A.V. Distribution and bioaccumulation of 12 trace elements in water, sediment and tissues of the main fishery from different environments of the La Plata basin (South America): Risk assessment for human consumption. Chemosphere 2019, 236, 124394. [Google Scholar] [CrossRef]
- Beer, C.; Foldbjerg, R.; Hayashi, Y.; Sutherland, D.S.; Autrup, H. Toxicity of silver nanoparticles—Nanoparticle or silver ion? Toxicol. Lett. 2012, 208, 286–292. [Google Scholar] [CrossRef]
- Boudreau, M.D.; Imam, M.S.; Paredes, A.M.; Bryant, M.S.; Cunningham, C.K.; Felton, R.P.; Jones, M.Y.; Davis, K.J.; Olson, G.R. Differential Effects of Silver Nanoparticles and Silver Ions on Tissue Accumulation, Distribution, and Toxicity in the Sprague Dawley Rat Following Daily Oral Gavage Administration for 13 Weeks. Toxicol. Sci. 2016, 150, 131–160. [Google Scholar] [CrossRef]
- Bubach, D.F.; Catán, S.P.; Baez, V.H.; Arribére, M.A. Elemental composition in rainbow trout tissues from a fish farm from Patagonia, Argentina. Environ. Sci. Pollut. Res. 2017, 25, 6340–6351. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, M.; Barbosa, R.D.F.; Torrente-Vilara, G.; Guanaz, G.; De Jesus, E.F.O.; Mársico, E.T.; Ribeiro, R.D.O.R.; Gusmão, F. Multielemental composition and consumption risk characterization of three commercial marine fish species. Environ. Pollut. 2019, 252, 1026–1034. [Google Scholar] [CrossRef]
- Chalghmi, H.; Zrafi, I.; Gourves, P.-Y.; Bourdineaud, J.-P.; Saidane-Mosbahi, D. Combined effects of metal contamination and abiotic parameters on biomarker responses in clam Ruditapes decussatus gills: An integrated approach in biomonitoring of Tunis lagoon. Environ. Sci. Process. Impacts 2016, 18, 895–907. [Google Scholar] [CrossRef] [PubMed]
- Copat, C.; Rizzo, M.; Zuccaro, A.; Grasso, A.; Zuccarello, P.; Fiore, M.; Mancini, G.; Ferrante, M. Metals/Metalloids and Oxidative Status Markers in Saltwater Fish from the Ionic Coast of Sicily, Mediterranean Sea. Int. J. Environ. Res. 2020, 14, 15–27. [Google Scholar] [CrossRef]
- Das, B.; Tripathy, S.; Adhikary, J.; Chattopadhyay, S.; Mandal, D.; Dash, S.K.; Das, S.; Dey, A.; Dey, S.K.; Das, D.; et al. Surface modification minimizes the toxicity of silver nanoparticles: An in vitro and in vivo study. J. Biol. Inorg. Chem. 2017, 22, 893–918. [Google Scholar] [CrossRef] [PubMed]
- De Matteis, V.; Cascione, M.; Toma, C.C.; Leporatti, S. Silver Nanoparticles: Synthetic Routes, In Vitro Toxicity and Theranostic Applications for Cancer Disease. Nanomaterials 2018, 8, 319. [Google Scholar] [CrossRef] [Green Version]
- Dobrzyńska, M.M.; Gajowik, A.; Radzikowska, J.; Lankoff, A.; Dušinská, M.; Kruszewski, M. Genotoxicity of silver and titanium dioxide nanoparticles in bone marrow cells of rats in vivo. Toxicology 2014, 315, 86–91. [Google Scholar] [CrossRef] [PubMed]
- EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS). Scientific opinion on the re-evaluation of silver (E 174) as food additive. EFSA J. 2016, 14, 4364. [Google Scholar] [CrossRef]
- Ferrante, M.; Pappalardo, A.M.; Ferrito, V.; Pulvirenti, V.; Fruciano, C.; Grasso, A.; Sciacca, S.; Tigano, C.; Copat, C. Bioaccumulation of metals and biomarkers of environmental stress in Parablennius sanguinolentus (Pallas, 1814) sampled along the Italian coast. Mar. Pollut. Bull. 2017, 122, 288–296. [Google Scholar] [CrossRef] [PubMed]
- Fontecha-Umaña, F.; Ríos-Castillo, A.G.; Ripolles-Avila, C.; Rodríguez-Jerez, J.J. Antimicrobial Activity and Prevention of Bacterial Biofilm Formation of Silver and Zinc Oxide Nanoparticle-Containing Polyester Surfaces at Various Concentrations for Use. Foods 2020, 9, 442. [Google Scholar] [CrossRef] [Green Version]
- Gaillet, S.; Rouanet, J.-M. Silver nanoparticles: Their potential toxic effects after oral exposure and underlying mechanisms—A review. Food Chem. Toxicol. 2015, 77, 58–63. [Google Scholar] [CrossRef]
- Gan, J.; Sun, J.; Chang, X.; Li, W.; Li, J.; Niu, S.; Kong, L.; Zhang, T.; Wu, T.; Tang, M.; et al. Biodistribution and organ oxidative damage following 28 days oral administration of nanosilver with/without coating in mice. J. Appl. Toxicol. 2020, 40, 815–831. [Google Scholar] [CrossRef] [PubMed]
- Garcia, T.; Lafuente, D.; Blanco, J.; Sánchez, D.J.; Sirvent, J.J.; Domingo, J.L.; Gómez, M. Oral subchronic exposure to silver nanoparticles in rats. Food Chem. Toxicol. 2016, 92, 177–187. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, M.; Manivannan, J.; Sinha, S.; Chakraborty, A.; Mallick, S.K.; Bandyopadhyay, M.; Mukherjee, A. In vitro and in vivo genotoxicity of silver nanoparticles. Mutat. Res. Toxicol. Environ. Mutagen. 2012, 749, 60–69. [Google Scholar] [CrossRef] [PubMed]
- Ghosn, M.; Mahfouz, C.; Chekri, R.; Khalaf, G.; Guérin, T.; Jitaru, P.; Amara, R. Seasonal and Spatial Variability of Trace Elements in Livers and Muscles of Three Fish Species from the Eastern Mediterranean. Environ. Sci. Pollut. Res. 2020, 27, 12428–12438. [Google Scholar] [CrossRef]
- Grasso, A.; Ferrante, M.; Zuccarello, P.; Filippini, T.; Arena, G.; Fiore, M.; Cristaldi, A.; Conti, G.O.; Copat, C. Chemical Characterization and Quantification of Titanium Dioxide Nanoparticles (TiO2-NPs) in Seafood by Single-Particle ICP-MS: Assessment of Dietary Exposure. Int. J. Environ. Res. Public Health 2020, 17, 9547. [Google Scholar] [CrossRef]
- Gunsolus, I.L.; Mousavi, M.P.S.; Hussein, K.; Bühlmann, P.; Haynes, C.L. Effects of Humic and Fulvic Acids on Silver Nanoparticle Stability, Dissolution, and Toxicity. Environ. Sci. Technol. 2015, 49, 8078–8086. [Google Scholar] [CrossRef] [Green Version]
- Han, W.; Yu, Y.; Li, N.; Wang, L. Application and safety assessment for nano-composite materials in food packaging. Chin. Sci. Bull. 2011, 56, 1216–1225. [Google Scholar] [CrossRef] [Green Version]
- Huang, Z.; Zeng, Z.; Chen, A.; Zeng, G.; Xiao, R.; Xu, P.; He, K.; Song, Z.; Hu, L.; Peng, M.; et al. Differential behaviors of silver nanoparticles and silver ions towards cysteine: Bioremediation and toxicity to Phanerochaete chrysosporium. Chemosphere 2018, 203, 199–208. [Google Scholar] [CrossRef] [PubMed]
- Jha, P.K.; Jha, R.K.; Rout, D.; Gnanasekar, S.; Rana, S.V.S.; Hossain, M. Potential targetability of multi-walled carbon nanotube loaded with silver nanoparticles photosynthesized from Ocimum tenuiflorum (tulsi extract) in fertility diagnosis. J. Drug Target. 2017, 25, 616–625. [Google Scholar] [CrossRef]
- Jiang, H.; Qin, D.; Mou, Z.; Zhao, J.; Tang, S.; Wu, S.; Gao, L. Trace elements in farmed fish (Cyprinus carpio, Ctenopharyngodon idellaandOncorhynchus mykiss) from Beijing: Implication from feed. Food Addit. Contam. Part B 2016, 9, 132–141. [Google Scholar] [CrossRef]
- Jiravova, J.; Tomankova, K.B.; Harvanova, M.; Malina, L.; Malohlava, J.; Luhova, L.; Panacek, A.; Manisova, B.; Kolarova, H. The effect of silver nanoparticles and silver ions on mammalian and plant cells in vitro. Food Chem. Toxicol. 2016, 96, 50–61. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.S.; Song, K.S.; Sung, J.H.; Ryu, H.R.; Gil Choi, B.; Cho, H.S.; Lee, J.K.; Yu, I.J. Genotoxicity, acute oral and dermal toxicity, eye and dermal irritation and corrosion and skin sensitisation evaluation of silver nanoparticles. Nanotoxicology 2013, 7, 953–960. [Google Scholar] [CrossRef]
- Kim, W.-Y.; Kim, J.; Park, J.D.; Ryu, H.Y.; Yu, I.J. Histological Study of Gender Differences in Accumulation of Silver Nanoparticles in Kidneys of Fischer 344 Rats. J. Toxicol. Environ. Health Part. A 2009, 72, 1279–1284. [Google Scholar] [CrossRef] [PubMed]
- Kovvuru, P.; Mancilla, P.E.; Shirode, A.B.; Murray, T.M.; Begley, T.J.; Reliene, R. Oral ingestion of silver nanoparticles induces genomic instability and DNA damage in multiple tissues. Nanotoxicology 2014, 9, 162–171. [Google Scholar] [CrossRef] [PubMed]
- Kowalska, M.; Skrzypek, M.; Kowalski, M.; Cyrys, J. Effect of NOx and NO2 Concentration Increase in Ambient Air to Daily Bronchitis and Asthma Exacerbation, Silesian Voivodeship in Poland. Int. J. Environ. Res. Public Health 2020, 17, 754. [Google Scholar] [CrossRef] [Green Version]
- Lebedová, J.; Hedberg, Y.S.; Wallinder, I.O.; Karlsson, H.L. Size-dependent genotoxicity of silver, gold and platinum nanoparticles studied using the mini-gel comet assay and micronucleus scoring with flow cytometry. Mutagen. 2017, 33, 77–85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.; Bi, X.; Reed, R.B.; Ranville, J.F.; Herckes, P.; Westerhoff, P. Nanoparticle Size Detection Limits by Single Particle ICP-MS for 40 Elements. Environ. Sci. Technol. 2014, 48, 10291–10300. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Yang, X.-Q.; Zhang, M.-Z.; Song, Y.-Y.; Cheng, K.; An, J.; Zhang, X.-S.; Xuan, Y.; Liu, B.; Zhao, Y.-D. In vivo Imaging-Guided Nanoplatform for Tumor Targeting Delivery and Combined Chemo-, Gene- and Photothermal Therapy. Theranostics 2018, 8, 5662–5675. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Qin, T.; Ingle, T.; Yan, J.; He, W.; Yin, J.-J.; Chen, T. Differential genotoxicity mechanisms of silver nanoparticles and silver ions. Arch. Toxicol. 2016, 91, 509–519. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Hurt, R.H. Ion Release Kinetics and Particle Persistence in Aqueous Nano-Silver Colloids. Environ. Sci. Technol. 2010, 44, 2169–2175. [Google Scholar] [CrossRef] [PubMed]
- Lodeiro, P.; Achterberg, E.P.; Pampín, J.; Affatati, A.; El-Shahawi, M.S. Silver nanoparticles coated with natural polysaccharides as models to study AgNP aggregation kinetics using UV-Visible spectrophotometry upon discharge in complex environments. Sci. Total. Environ. 2016, 539, 7–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loeschner, K.; Hadrup, N.; Qvortrup, K.; Larsen, A.; Gao, X.; Vogel, U.; Mortensen, A.; Lam, H.R.; Larsen, E.H. Distribution of silver in rats following 28 days of repeated oral exposure to silver nanoparticles or silver acetate. Part. Fibre Toxicol. 2011, 8, 18. [Google Scholar] [CrossRef] [Green Version]
- Mangalagiri, P.; Bikkina, A.; Sundarraj, D.K.; Thatiparthi, B.R. Bioaccumulation of heavy metals in Rastrelliger kanagurta along the coastal waters of Visakhapatnam, India. Mar. Pollut. Bull. 2020, 160, 111658. [Google Scholar] [CrossRef]
- Marchiore, N.G.; Manso, I.J.; Kaufmann, K.C.; Lemes, G.F.; Pizolli, A.P.D.O.; Droval, A.A.; Bracht, L.; Gonçalves, O.H.; Leimann, F.V. Migration evaluation of silver nanoparticles from antimicrobial edible coating to sausages. LWT-Food Sci. Technol. 2017, 76, 203–208. [Google Scholar] [CrossRef]
- Metian, M.; Warnau, M.; Chouvelon, T.; Pedraza, F.; Baena, A.M.R.Y.; Bustamante, P. Trace element bioaccumulation in reef fish from New Caledonia: Influence of trophic groups and risk assessment for consumers. Mar. Environ. Res. 2013, 87-88, 26–36. [Google Scholar] [CrossRef] [Green Version]
- Mille, T.; Cresson, P.; Chouvelon, T.; Bustamante, P.; Brach-Papa, C.; Bruzac, S.; Rozuel, E.; Bouchoucha, M.; Tiphaine, M.; Pierre, C.; et al. Trace metal concentrations in the muscle of seven marine species: Comparison between the Gulf of Lions (North-West Mediterranean Sea) and the Bay of Biscay (North-East Atlantic Ocean). Mar. Pollut. Bull. 2018, 135, 9–16. [Google Scholar] [CrossRef] [Green Version]
- Mwilu, S.K.; El Badawy, A.M.; Bradham, K.; Nelson, C.; Thomas, D.; Scheckel, K.G.; Tolaymat, T.; Ma, L.; Rogers, K.R. Changes in silver nanoparticles exposed to human synthetic stomach fluid: Effects of particle size and surface chemistry. Sci. Total. Environ. 2013, 447, 90–98. [Google Scholar] [CrossRef]
- Nallanthighal, S.; Chan, C.; Bharali, D.J.; Mousa, S.A.; Vásquez, E.; Reliene, R. Particle coatings but not silver ions mediate genotoxicity of ingested silver nanoparticles in a mouse model. NanoImpact 2017, 5, 92–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orr, S.E.; Gokulan, K.; Boudreau, M.; Cerniglia, C.E.; Khare, S. Alteration in the mRNA expression of genes associated with gastrointestinal permeability and ileal TNF-α secretion due to the exposure of silver nanoparticles in Sprague–Dawley rats. J. Nanobiotechnol. 2019, 17, 63. [Google Scholar] [CrossRef]
- Pappalardo, A.M.; Copat, C.; Ferrito, V.; Grasso, A.; Ferrante, M. Heavy metal content and molecular species identification in canned tuna: Insights into human food safety. Mol. Med. Rep. 2017, 15, 3430–3437. [Google Scholar] [CrossRef] [Green Version]
- Pappalardo, A.M.; Copat, C.; Raffa, A.; Rossitto, L.; Grasso, A.; Fiore, M.; Ferrante, M.; Ferrito, V. Fish-Based Baby Food Concern—From Species Authentication to Exposure Risk Assessment. Molecules 2020, 25, 3961. [Google Scholar] [CrossRef] [PubMed]
- Park, E.-J.; Bae, E.; Yi, J.; Kim, Y.; Choi, K.; Lee, S.H.; Yoon, J.; Lee, B.C.; Park, K. Repeated-dose toxicity and inflammatory responses in mice by oral administration of silver nanoparticles. Environ. Toxicol. Pharmacol. 2010, 30, 162–168. [Google Scholar] [CrossRef]
- Pasricha, A.; Jangra, S.L.; Singh, N.; Dilbaghi, N.; Sood, K.; Arora, K.; Pasricha, R. Comparative study of leaching of silver nanoparticles from fabric and effective effluent treatment. J. Environ. Sci. 2012, 24, 852–859. [Google Scholar] [CrossRef]
- Pecoraro, R.; Salvaggio, A.; Scalisi, E.M.; Iaria, C.; Lanteri, G.; Copat, C.; Ferrante, M.; Fragalà, G.; Zimbone, M.; Impellizzeri, G.; et al. Evaluation of the effects of silver nanoparticles on Danio rerio cornea: Morphological and ultrastructural analysis. Microsc. Res. Tech. 2019, 82, 1297–1301. [Google Scholar] [CrossRef]
- Qin, G.; Tang, S.; Li, S.; Lu, H.; Wang, Y.; Zhao, P.; Li, B.; Zhang, J.; Peng, L. Toxicological evaluation of silver nanoparticles and silver nitrate in rats following 28 days of repeated oral exposure. Environ. Toxicol. 2016, 32, 609–618. [Google Scholar] [CrossRef] [PubMed]
- Rai, M.; Yadav, A.; Gade, A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv. 2009, 27, 76–83. [Google Scholar] [CrossRef]
- Reidy, B.; Haase, A.; Luch, A.; Dawson, K.A.; Lynch, I. Mechanisms of Silver Nanoparticle Release, Transformation and Toxicity: A Critical Review of Current Knowledge and Recommendations for Future Studies and Applications. Material 2013, 6, 2295–2350. [Google Scholar] [CrossRef] [Green Version]
- Rogers, K.R.; Bradham, K.; Tolaymat, T.; Thomas, D.J.; Hartmann, T.; Ma, L.; Williams, A. Alterations in physical state of silver nanoparticles exposed to synthetic human stomach fluid. Sci. Total. Environ. 2012, 420, 334–339. [Google Scholar] [CrossRef]
- Joo, H.S.; Kalbassi, M.R.; Yu, I.J.; Lee, J.H.; Johari, S.A. Bioaccumulation of silver nanoparticles in rainbow trout (Oncorhynchus mykiss): Influence of concentration and salinity. Aquat. Toxicol. 2013, 140-141, 398–406. [Google Scholar] [CrossRef]
- Salvaggio, A.; Tiralongo, F.; Krasakopoulou, E.; Marmara, D.; Giovos, I.; Crupi, R.; Messina, G.; Lombardo, B.M.; Marzullo, A.; Pecoraro, R.; et al. Biomarkers of Exposure to Chemical Contamination in the Commercial Fish Species Lepidopus caudatus (Euphrasen, 1788): A Particular Focus on Plastic Additives. Front. Physiol. 2019, 10, 905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, V.K.; Filip, J.; Zboril, R.; Varma, R.S. Natural inorganic nanoparticles-formation, fate, and toxicity in the environment. Chem. Soc. Rev. 2015, 44, 8410–8423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shimabuku, Q.L.; Arakawa, F.S.; Silva, M.F.; Coldebella, P.F.; Ueda-Nakamura, T.; Fagundes-Klen, M.R.; Bergamasco, R. Water treatment with exceptional virus inactivation using activated carbon modified with silver (Ag) and copper oxide (CuO) nanoparticles. Environ. Technol. 2016, 38, 2058–2069. [Google Scholar] [CrossRef]
- Shipley, O.N.; Lee, C.-S.; Fisher, N.S.; Sternlicht, J.K.; Kattan, S.; Staaterman, E.R.; Hammerschlag, N.; Gallagher, A.J. Metal concentrations in coastal sharks from The Bahamas with a focus on the Caribbean Reef shark. Sci. Rep. 2021, 11, 1–11. [Google Scholar] [CrossRef]
- Simbine, E.O.; Rodrigues, L.D.C.; Lapa-Guimarães, J.; Kamimura, E.S.; Corassin, C.H.; De Oliveira, C.A.F. Application of silver nanoparticles in food packages: A review. Food Sci. Technol. 2019, 39, 793–802. [Google Scholar] [CrossRef] [Green Version]
- Song, M.-F.; Li, Y.-S.; Kasai, H.; Kawai, K. Metal nanoparticle-induced micronuclei and oxidative DNA damage in mice. J. Clin. Biochem. Nutr. 2012, 50, 211–216. [Google Scholar] [CrossRef] [Green Version]
- Taboada-López, M.V.; Iglesias-López, S.; Herbello-Hermelo, P.; Bermejo-Barrera, P.; Moreda-Piñeiro, A. Ultrasound assisted enzymatic hydrolysis for isolating titanium dioxide nanoparticles from bivalve mollusk before sp-ICP-MS. Anal. Chim. Acta 2018, 1018, 16–25. [Google Scholar] [CrossRef]
- Tigano, C.; Tomasello, B.; Pulvirenti, V.; Ferrito, V.; Copat, C.; Carpinteri, G.; Mollica, E.; Sciacca, S.; Renis, M. Assessment of environmental stress in Parablennius sanguinolentus (Pallas, 1814) of the Sicilian Ionian coast. Ecotoxicol. Environ. Saf. 2009, 72, 1278–1286. [Google Scholar] [CrossRef]
- Tiwari, R.; Singh, R.D.; Khan, H.; Gangopadhyay, S.; Mittal, S.; Singh, V.; Arjaria, N.; Shankar, J.; Roy, S.K.; Singh, D.; et al. Oral subchronic exposure to silver nanoparticles causes renal damage through apoptotic impairment and necrotic cell death. Nanotoxicology 2017, 11, 671–686. [Google Scholar] [CrossRef]
- US EPA. Risk Assessment [WWW Document]. 2013. Available online: https://www.epa.gov/risk (accessed on 28 January 2021).
- Bigler, J. Guidance for Assessing Chemical Contamination Data for Use in Fish Advisorie: Risk Assessment and Fish Consumption Limits EPA/823-B94-004. Available online: https://www.epa.gov/sites/production/files/2015-06/documents/volume2.pdf (accessed on 28 January 2021).
- Silver CASRN 7440-22-4|DTXSID4024305|IRIS|US EPA, ORD [WWW Document]. 2021. Available online: https://cfpub.epa.gov/ncea/iris2/chemicalLanding.cfm?substance_nmbr=99 (accessed on 13 January 2021).
- Valsalam, S.; Agastian, P.; Esmail, G.A.; Ghilan, A.-K.M.; Al-Dhabi, N.A.; Arasu, M.V. Biosynthesis of silver and gold nanoparticles using Musa acuminata colla flower and its pharmaceutical activity against bacteria and anticancer efficacy. J. Photochem. Photobiol. B Biol. 2019, 201, 111670. [Google Scholar] [CrossRef]
- Van Der Zande, M.; Vandebriel, R.J.; Van Doren, E.; Kramer, E.; Rivera, Z.H.; Serrano-Rojero, C.S.; Gremmer, E.R.; Mast, J.; Peters, R.J.B.; Hollman, P.C.H.; et al. Distribution, Elimination, and Toxicity of Silver Nanoparticles and Silver Ions in Rats after 28-Day Oral Exposure. ACS Nano 2012, 6, 7427–7442. [Google Scholar] [CrossRef] [PubMed]
- Vines, J.B.; Lim, D.-J.; Park, H. Contemporary Polymer-Based Nanoparticle Systems for Photothermal Therapy. Polymers 2018, 10, 1357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wimmer, A.; Urstoeger, A.; Funck, N.C.; Adler, F.P.; Lenz, L.; Doeblinger, M.; Schuster, M. What happens to silver-based nanoparticles if they meet seawater? Water Res. 2020, 171, 115399. [Google Scholar] [CrossRef]
- Xu, L.; Wang, Z.; Zhao, J.; Lin, M.; Xing, B. Accumulation of metal-based nanoparticles in marine bivalve mollusks from offshore aquaculture as detected by single particle ICP-MS. Environ. Pollut. 2020, 260, 114043. [Google Scholar] [CrossRef]
- Zhang, W.; Ke, S.; Sun, C.; Xu, X.; Chen, J.; Yao, L. Fate and toxicity of silver nanoparticles in freshwater from laboratory to realistic environments: A review. Environ. Sci. Pollut. Res. 2019, 26, 7390–7404. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Nebulizer, Flow | Meinhard, 1 mL/min |
Spray chamber | Glass cyclonic |
Sample uptake rate | 0.26–0.28 mL/min |
RF power | 1600 W |
Analysis mode | Standard |
Quadrupole settling time | 0 µs |
Analyte | Ag 107 |
Dwell time | 50 µs |
Data acquisition time | 60 sec |
Density | 10.49 g/cm3 |
Ag mass fraction | 100% |
Parameter | Value |
---|---|
Nebulizer, Flow | Meinhard, 0.89 mL/min |
Spray chamber | Glass cyclonic |
RF power | 1600 W |
Analogic phase voltage | −1950 V |
Pulses voltage | 1300 V |
Discriminator threshold | 12 |
Deflector voltage | −12 V |
Analysis mode | Standard |
Analyte | Ag 107 |
Internal standard | Y |
Canned Tuna | Most Frequent Size AgNPs (nm) | Mean Diameter AgNPs (nm) | Number of AgNPs/g | AgNPs mg/Kg | Dissolved Ag a mg/kg | Total Ag b mg/kg | |
Mean | 27.7 | 35.8 | 2.28 × 107 | 0.0014 | 0.0455 | 0.0594 | |
S.D. | 4.76 | 5.13 | 0.88 × 107 | 0.0008 | 0.0119 | 0.0409 | |
Min. | <20 | 26.0 | 0.46 × 107 | 0.0005 | 0.0251 | 0.0521 | |
Max. | 35.0 | 45.1 | 3.13 × 107 | 0.0028 | 0.0652 | 0.0781 | |
Canned Mackerel | Most Frequent Size AgNPs (nm) | Mean Diameter AgNPs (nm) | Number of AgNPs/g | AgNPs mg/Kg | Dissolved Ag a mg/kg | Total Ag b mg/kg | |
Mean | 26.2 | 34.1 | 1.86 × 107 | 0.0012 | 0.0245 | 0.0374 | |
S.D. | 5.13 | 3.65 | 0.69 × 107 | 0.0007 | 0.0219 | 0.0316 | |
Min. | <20 | 31.2 | 1.18 × 107 | 0.0005 | <0.012 | <0.012 | |
Max. | 39.3 | 42.3 | 3.04 × 107 | 0.003 | 0.0850 | 0.0990 | |
Canned Anchovy | Most Frequent Size AgNPs (nm) | Mean Diameter AgNPs (nm) | Number of AgNPs/g | AgNPs mg/Kg | Dissolved Aga mg/kg | Total Ag b mg/kg | |
Mean | 26.4 | 31.1 | 0.91 × 107 | 0.0005 | 0.0346 | 0.0480 | |
S.D. | 3.81 | 4.37 | 0.31 × 107 | 0.0008 | 0.0129 | 0.0228 | |
Min. | 21.2 | 27.4 | 0.49 × 107 | 0.0001 | <0.012 | <0.012 | |
Max. | 35.4 | 41.5 | 1.40 × 107 | 0.0028 | 0.0550 | 0.0810 | |
Canned Clam | Most Frequent Size AgNPs (nm) | Mean Diameter AgNPs (nm) | Number of AgNPs/g | AgNPs mg/Kg | Dissolved Aga mg/kg | Total Ag b mg/kg | |
Mean | 26.6 | 32.9 | 0.44 × 107 | 0.0004 | 0.0148 | 0.0206 | |
S.D. | 2.72 | 1.76 | 0.17 × 107 | 0.0001 | 0.0024 | 0.0133 | |
Min. | 23.2 | 31.2 | 0.14 × 107 | 0.0002 | <0.012 | <0.012 | |
Max. | 31.4 | 36.3 | 0.64 × 107 | 0.0006 | 0.0190 | 0.0321 |
Canned Tuna | EMI Adult AgNPs | EMI Child AgNPs | EMI Adult Dissolved Ag | THQ Adult Dissolved Ag | EMI Child Dissolved Ag | THQ Child Dissolved Ag |
Mean | 0.0047 | 0.0102 | 0.1474 | 1.58 × 10−3 | 0.3238 | 6.92 × 10−3 |
S.D. | 0.0026 | 0.0056 | 0.0391 | / | 0.0861 | / |
Min. | 0.0021 | 0.0040 | 0.0802 | / | 0.1752 | / |
Max. | 0.0092 | 0.0202 | 0.2113 | / | 0.4641 | / |
Canned Mackerel | EMI Adult AgNPs | EMI Child AgNPs | EMI Adult Dissolved Ag | THQ Adult Dissolved Ag | EMI Child Dissolved Ag | THQ Child Dissolved Ag |
Mean | 0.0037 | 0.0082 | 0.0781 | 8.51 × 10−4 | 0.1713 | 3.72 × 10−3 |
S.D. | 0.0023 | 0.0054 | 0.0717 | / | 0.1574 | / |
Min. | 0.0022 | 0.0030 | <0.038 | / | <0.085 | / |
Max. | 0.0100 | 0.0221 | 0.2752 | / | 0.6034 | / |
Canned Anchovy | EMI Adult AgNPs | EMI Child AgNPs | EMI Adult Dissolved Ag | THQ Adult Dissolved Ag | EMI Child Dissolved Ag | THQ Child Dissolved Ag |
Mean | 0.0016 | 0.0036 | 0.1108 | 1.20 × 10−3 | 0.2435 | 5.26 × 10−3 |
S.D. | 0.0028 | 0.0061 | 0.0431 | / | 0.0946 | / |
Min. | 0.0004 | 0.0009 | <0.038 | / | <0.085 | / |
Max. | 0.0092 | 0.0197 | 0.1769 | / | 0.3887 | / |
Canned Clam | EMI Adult AgNPs | EMI Child AgNPs | EMI Adult Dissolved Ag | THQ Adult Dissolved Ag | EMI Child Dissolved Ag | THQ Child Dissolved Ag |
Mean | 0.0017 | 0.0033 | 0.0467 | 5.22 × 10−4 | 0.1024 | 2.28 × 10−3 |
S.D. | 0.0005 | 0.0011 | 0.0084 | / | 0.0188 | / |
Min. | 0.0010 | 0.0013 | <0.038 | / | <0.085 | / |
Max. | 0.0022 | 0.0042 | 0.0601 | / | 0.1332 | / |
Descriptive Statistics | %C | %Fe | %Zn | %Sn | %O |
---|---|---|---|---|---|
Mean | 25.1 | 5.18 | 0.10 | 0.40 | 68.9 |
SD | 2.22 | 6.61 | 0.13 | 0.29 | 4.25 |
Min | 22.7 | 0.20 | 0.00 | 0.00 | 64.2 |
Max | 27.0 | 12.4 | 0.24 | 0.68 | 72.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grasso, A.; Ferrante, M.; Arena, G.; Salemi, R.; Zuccarello, P.; Fiore, M.; Copat, C. Chemical Characterization and Quantification of Silver Nanoparticles (Ag-NPs) and Dissolved Ag in Seafood by Single Particle ICP-MS: Assessment of Dietary Exposure. Int. J. Environ. Res. Public Health 2021, 18, 4076. https://doi.org/10.3390/ijerph18084076
Grasso A, Ferrante M, Arena G, Salemi R, Zuccarello P, Fiore M, Copat C. Chemical Characterization and Quantification of Silver Nanoparticles (Ag-NPs) and Dissolved Ag in Seafood by Single Particle ICP-MS: Assessment of Dietary Exposure. International Journal of Environmental Research and Public Health. 2021; 18(8):4076. https://doi.org/10.3390/ijerph18084076
Chicago/Turabian StyleGrasso, Alfina, Margherita Ferrante, Giovanni Arena, Rossella Salemi, Pietro Zuccarello, Maria Fiore, and Chiara Copat. 2021. "Chemical Characterization and Quantification of Silver Nanoparticles (Ag-NPs) and Dissolved Ag in Seafood by Single Particle ICP-MS: Assessment of Dietary Exposure" International Journal of Environmental Research and Public Health 18, no. 8: 4076. https://doi.org/10.3390/ijerph18084076
APA StyleGrasso, A., Ferrante, M., Arena, G., Salemi, R., Zuccarello, P., Fiore, M., & Copat, C. (2021). Chemical Characterization and Quantification of Silver Nanoparticles (Ag-NPs) and Dissolved Ag in Seafood by Single Particle ICP-MS: Assessment of Dietary Exposure. International Journal of Environmental Research and Public Health, 18(8), 4076. https://doi.org/10.3390/ijerph18084076