Effects of Changes to Architectural Elements on Human Relaxation-Arousal Responses: Based on VR and EEG
Abstract
:1. Introduction
1.1. Background and Objectives
1.2. Scope
2. Application of VR-EEG in Architectural Research
2.1. Combining the Need for Virtual Reality with VR-EEG Technology
2.2. A Study on the Utilization of EEG in Architecture and Measurement of Relaxation-Awakening Response
2.3. Cognitive and Physiological Responses to Architectural Elements
3. Experiment and Analysis
3.1. Hypotheses
3.2. Participants
3.3. Selection of Architectural Elements and Production of Visual Stimuli
3.3.1. Grounds for Architectural Elements Selected
3.3.2. Production of Visual Stimuli in VR Space
3.4. Tools Used in the Experiment and EEG Data Analysis Indicators
3.5. Experimental Environment and Process
3.5.1. Experimental Environment
3.5.2. Experimental Process
3.6. EEG Data Collection and Processing
3.7. Statistical Analysis
4. Analysis Results
4.1. Questionnaire Survey Results
4.2. Verifying the Differences in RAB Indicators in Response to Architectural Elements and Analyzing Activated Brain Lobes
4.2.1. Aspect Ratio of Space—Type A
4.2.2. Aspect Ratio of Space—Type B
4.3. Comparative Analysis of Arousal Levels Relative to RAB Indicator Values in P3
4.3.1. Analysis of Arousal Levels Relative to Ceiling Heights—Aspect Ratios of Space Based on Window Ratios
4.3.2. Analysis of Arousal Levels Relative to Ceiling Heights-Window Ratios Based on Aspect Ratios of Space
4.4. Comparison of Survey Results and RAB Indicator Values
5. Discussion
- First, the recommended ceiling heights for Types A and B by window ratios are 2.3 and 3.0 m for the ratio of 60%, 2.7 and 3.0 m for the ratio of 80%, 2.7 and 2.3 m for the ratio of 100%.
- Second, the combinations of ceiling height and window ratio that induced the lowest level of arousal reaction were 2.3 m and 60% for Type A (1:1.6) and 2.3 m and 100% for Type B (1.6:1), and accordingly, we recommend these combinations.
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- DuBose, J.; MacAllister, L.; Hadi, K.; Sakallaris, B. Exploring the Concept of Healing Spaces. HERD Health Environ. Res. Amp Des. J. 2018, 11, 43–56. [Google Scholar] [CrossRef]
- Djimantoro, M.I. Multisensory experience for mental health in higher education classroom design. IOP Conf. Ser. Earth Environ. Sci. 2018, 195, 012081. [Google Scholar] [CrossRef]
- Lee, H.K. A Exploratory Study of the Concept and Theories of the Healing Environment for Mental Health Enhancement. Des. Converg. Study 2018, 17, 109–123. [Google Scholar] [CrossRef]
- Daelemans, B. Healing Space: The Synaesthetic Quality of Church Architecture. Religions 2020, 11, 635. [Google Scholar] [CrossRef]
- Esther, M. HEALING SPACES; The Quest Publishers: Seoul, Korea, 2013; pp. 193–344. [Google Scholar]
- Jeong, J. Neuroarchitecture: Is it a new vision or ad hoc solution? Design through Digital Fabrication. Archit. Inst. Korea Spec. Feature Rev. Archit. Build. Sci. 2014, 58, 12–15. [Google Scholar]
- Park, J.G.P. A Study on Healing Environments and Evidence-Based Design—Focused on Healthcare Environments in the United States. J. Korea Inst. Healthc. Archit. 2011, 2, 41–51. [Google Scholar]
- Hu, M.; Roberts, J. Built Environment Evaluation in Virtual Reality Environments—A Cognitive Neuroscience Approach. Urban Sci. 2020, 4, 48. [Google Scholar] [CrossRef]
- Škola, F.; Rizvić, S.; Cozza, M.; Barbieri, L.; Bruno, F.; Skarlatos, D.; Liarokapis, F. Virtual Reality with 360-Video Storytelling in Cultural Heritage: Study of Presence, Engagement, and Immersion. Sensors 2020, 20, 5851. [Google Scholar] [CrossRef]
- Chen, Y.; Huang, A.X.; Faber, I.; Makransky, G.; Perez-Cueto, F.J.A. Assessing the Influence of Visual-Taste Congruency on Perceived Sweetness and Product Liking in Immersive VR. Foods 2020, 9, 465. [Google Scholar] [CrossRef] [Green Version]
- Vaquero-Blasco, M.A.; Perez-Valero, E.; Lopez-Gordo, M.A.; Morillas, C. Virtual Reality as a Portable Alternative to Chromotherapy Rooms for Stress Relief: A Preliminary Study. Sensors 2020, 20, 6211. [Google Scholar] [CrossRef]
- Mutua, J.; Kigamwa, P.; Ng’ang’a, P.; Tele, A.; Kumar, M. A comparative study of postpartum anxiety and depression in mothers with pre-term births in Kenya. J. Affect. Disord. Rep. 2020, 2, 100043. [Google Scholar] [CrossRef]
- Milovanovic, J.; Moreau, G.; Siret, D.; Miguet, F. Virtual and Augmented Reality in Architectural Design and Education. In Proceedings of the 17th International Conference, CAAD Futures 2017, Istanbul, Turkey, 12–14 July 2017. [Google Scholar]
- Banaei, M.; Hatami, J.; Yazdanfar, A.; Gramann, K. Walking through Architectural Spaces: The Impact of Interior Forms on Human Brain Dynamics. Front. Hum. Neurosci. 2017, 11, 477. [Google Scholar] [CrossRef] [PubMed]
- Bangcuyo, R.G.; Smith, K.J.; Zumach, J.L.; Pierce, A.M.; Guttman, G.A.; Simons, C.T. The use of immersive technologies to improve consumer testing: The role of ecological validity, context and engagement in evaluating coffee. Food Qual. Prefer. 2015, 41, 84–95. [Google Scholar] [CrossRef]
- Sinesio, F.; Saba, A.; Peparaio, M.; Civitelli, E.S.; Paoletti, F.; Moneta, E. Capturing consumer perception of vegetable freshness in a simulated real-life taste situation. Food Res. Int. 2018, 105, 764–771. [Google Scholar] [CrossRef] [PubMed]
- Freina, L.; Ott, M. A Literature Review on Immersive Virtual Reality in Education: State of The Art and Perspectives. Int. Sci. Conf. Elearning Softw. Educ. 2015, 1, 133–141. [Google Scholar]
- Skarlatos, D.; Agrafiotis, P.; Balogh, T.; Bruno, F.; Castro, F.; Petriaggi, B.D.; Demesticha, S.; Doulamis, A.; Drap, P.; Georgopoulos, A.; et al. Project iMARECULTURE: Advanced VR, iMmersive Serious Games and Augmented REality as Tools to Raise Awareness and Access to European Underwater CULTURal heritagE. Digital Heritage. Progress in Cultural Heritage: Documentation, Preservation, and Protection; Ioannides, M., Fink, E., Moropoulou, A., Hagedorn-Saupe, M., Fresa, A., Liest∅l, G., Rajcic, V., Grussenmeyer, P., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 805–813. [Google Scholar]
- Bruno, F.; Lagudi, A.; Gallo, A.; Petriaggi, B.D.; Passaro, S. 3D Documentation of Archeological Remains in the Underwater Park of Baiae. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, 40, 41. [Google Scholar] [CrossRef] [Green Version]
- Bruno, F.; Lagudi, A.; Barbieri, L.; Muzzupappa, M.; Ritacco, G.; Cozza, A.; Cozza, M.; Peluso, R.; Lupia, M.; Cario, G. Virtual and Augmented Reality Tools to Improve the Exploitation of Underwater Archaeological Sites by Diver and Non-diver Tourists. Digital Heritage. Progress in Cultural Heritage: Documentation, Preservation, and Protection; Springer International Publishing: Cham, Switzerland, 2016; pp. 269–280. [Google Scholar]
- Bruno, F.; Barbieri, L.; Lagudi, A.; Cozza, M.; Cozza, A.; Peluso, R.; Muzzupappa, M. Virtual dives into the underwater archaeological treasures of South Italy. Virtual Real. 2018, 22, 91–102. [Google Scholar] [CrossRef]
- Barbieri, L.; Peluso, R.; Bruno, F.; Petriaggi, B.D.; Cozza, M.; Rizvic, S.; Skarlatos, D.; Cozza, A.; Petriaggi, R.; Lagudi, A. Virtual tour in the Sunken “villa ingresso a protiro” within the underwater archaeological park of baiae. ISPRS J. Photogramm. Remote Sens. 2019, 42. [Google Scholar] [CrossRef] [Green Version]
- Tcha-Tokey, K.; Christmann, O.; Loup-Escande, E.; Richir, S. Proposition and Validation of a Questionnaire to Measure the User Experience in Immersive Virtual Environments. Int. J. Virtual Real. 2016, 16, 33–48. [Google Scholar] [CrossRef]
- Csikszentmihalyi, M. Flow and the Foundations of Positive Psychology: The Collected Works of Mihaly Csikszentmihalyi; Springer: Dordrecht, The Netherlands, 2014; pp. 1–298. [Google Scholar]
- Hettinger, L.J.; Riccio, G.E. Visually Induced Motion Sickness in Virtual Environments. Presence Teleoperators Virtual Environ. 1992, 1, 306–310. [Google Scholar] [CrossRef]
- Sanei, S.; Chambers, J. EEG Signal Processing; John Wiley & Sons: Chichester, UK; Hoboken, NJ, USA, 2007; p. 288. [Google Scholar]
- Ray, W.; Cole, H. EEG alpha activity reflects attentional demands, and beta activity reflects emotional and cognitive processes. Science 1985, 228, 750–752. [Google Scholar] [CrossRef] [PubMed]
- Laufs, H.; Kleinschmidt, A.; Beyerle, A.; Eger, E.; Salek-Haddadi, A.; Preibisch, C.; Krakow, K. EEG-correlated fMRI of human α activity. NeuroImage 2003, 19, 1463–1476. [Google Scholar] [CrossRef]
- van den Bosch, M.; Jönsson, P.; Wallergård, M.; Johansson, G.; Karlson, B.; Grahn, P.; Hansen, Å.M.; Währborg, P. Inducing physiological stress recovery with sounds of nature in a virtual reality forest—Results from a pilot study. Physiol. Behav. 2013, 118, 240–250. [Google Scholar]
- Gerber, S.; Jeitziner, M.M.; Wyss, P.; Chesham, A.; Urwyler, P.; Müri, R.; Jakob, S.; Nef, T. Visuo-acoustic stimulation that helps you to relax: A virtual reality setup for patients in the intensive care unit. Sci. Rep. 2017, 7. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.; Zhu, Y.; Mehta, R.K.; Du, J. A neurophysiological approach to assess training outcome under stress: A virtual reality experiment of industrial shutdown maintenance using Functional Near-Infrared Spectroscopy (fNIRS). Adv. Eng. Inform. 2020, 46, 101153. [Google Scholar] [CrossRef]
- Worldwide Augmented and Virtual Reality Spending Guide; IDC Corporate USA: Needham, MA, USA, 2020; pp. 1–2.
- Gramann, K.; Ferris, D.P.; Gwin, J.; Makeig, S. Imaging natural cognition in action. Int. J. Psychophysiol. 2014, 91, 22–29. [Google Scholar] [CrossRef] [Green Version]
- Soufineyestani, M.; Dowling, D.; Khan, A. Electroencephalography (EEG) Technology Applications and Available Devices. Appl. Sci. 2020, 10, 7453. [Google Scholar] [CrossRef]
- Nanda, U.; Pati, D.; Ghamari, H.; Bajema, R. Lessons from neuroscience: Form follows function, emotions follow form. Intell. Build. Int. 2013, 5, 61–78. [Google Scholar] [CrossRef]
- Shemesh, A.; Talmon, R.; Karp, O.; Amir, I.; Bar, M.; Grobman, Y.J. Affective response to architecture—Investigating human reaction to spaces with different geometry. Archit. Sci. Rev. 2017, 60, 116–125. [Google Scholar] [CrossRef]
- Shin, Y.B.; Woo, S.H.; Kim, D.H.; Kim, J.; Kim, J.J.; Park, J.Y. The effect on emotions and brain activity by the direct/indirect lighting in the residential environment. Neurosci. Lett. 2015, 584, 28–32. [Google Scholar] [CrossRef]
- Vecchiato, G.; Tieri, G.; Jelic, A.; De Matteis, F.; Maglione, A.G.; Babiloni, F. Electroencephalographic Correlates of Sensorimotor Integration and Embodiment during the Appreciation of Virtual Architec- tural Environments. Front. Psychol. 2015, 6, 1944. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.Y.; Chen, P.K. Human Response to Window Views and Indoor Plants in the Workplace. HortSci. Publ. Am. Soc. Hortic. Sci. 2005, 40, 1354–1359. [Google Scholar] [CrossRef] [Green Version]
- Ergan, S.; Radwan, A.; Zou, Z.; Tseng, H.; Han, X. Quantifying Human Experience in Architectural Spaces with Integrated Virtual Reality and Body Sensor Networks. J. Comput. Civ. Eng. 2019, 33, 04018062. [Google Scholar] [CrossRef]
- Olszewska-Guizzo, A.; Escoffier, N.; Chan, J.; Yok, T.P. Window View and the Brain: Effects of Floor Level and Green Cover on the Alpha and Beta Rhythms in a Passive Exposure EEG Experiment. Int. J. Environ. Res. Public Health 2018, 15, 2358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ha, J.M.; Park, S. Assessment of Color Affect on the Indoor Color Schemes and Illuminance Change—Focused on Prefrontal EEG Alpha and Beta Signal Analysis. J. Archit. Inst. Korea Plan. Des. 2017, 33, 57–65. [Google Scholar]
- Zhang, R.; Yang, Y.; Fang, Q.; Liu, Y.; Zhu, X.; Wang, M.; Su, L. Effect of Indoors Artificial Lighting Conditions on Computer-Based Learning Performance. Int. J. Environ. Res. Public Health 2020, 17, 2537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shin, J.; Chun, S.; Lee, C. Effect of Indoors Artificial Lighting Conditions on Computer-Based Learning PerformanceEffect of Indoors Artificial Lighting Conditions on Computer-Based Learning Performancegnal. J. Korean Inst. Illum. Electr. Install. Eng. 2013, 27, 9–17. [Google Scholar]
- Kim, T. Perception Analysis with Composing of Simulation and Measuring of Human Brain Electroencephalogram in Interior Space. J. Korean Inst. Inter. Des. 2003, 36, 128–135. [Google Scholar]
- Sayorwan, W.; Siripornpanich, V.; Piriyapunyaporn, T.; Hongratanaworakit, T.; Kotchabhakdi, N.; Ruangrungsi, N. The Effects of Lavender Oil Inhalation on Emotional States, Autonomic Nervous System, and Brain Electrical Activity. J. Med. Assoc. Thail. Chotmaihet Thangphaet 2012, 95, 598–606. [Google Scholar]
- Puthankattil, S.D.; Joseph, P.; Acharya, U.R.; Lim, C. EEG signal analysis: A survey. J. Med. Syst. 2010, 34, 195–212. [Google Scholar]
- Soroush, M.Z.; Maghooli, K.; Setarehdan, K.; Nasrabadi, A.M. A Review on EEG Signals Based Emotion Recognition. Int. Clin. Neurosci. J. 2017, 4, 118–129. [Google Scholar] [CrossRef]
- Griffiths, B.; Mayhew, S.; Mullinger, K.; Jorge, J.; Charest, I.; Wimber, M.; Hanslmayr, S. Alpha/beta power decreases track the fidelity of stimulus-specific information. eLife 2019, 8. [Google Scholar] [CrossRef]
- Tee, Y.W.; Aris, S.A.M. Electroencephalogram (EEG) stress analysis on alpha/beta ratio and theta/beta ratio. Indones. J. Electr. Eng. Comput. Sci. 2020, 17, 175. [Google Scholar]
- Tiago-Costa, E.; Costa, E.; Baptista, J. Changes in EEG amplitude (Alpha and Beta waves) with Thermal environment. Dyna 2016, 83, 87–93. [Google Scholar] [CrossRef]
- Hwang, M. A study on EEG arousal effect on stimulation of color. J. Integr. Des. Res. 2017, 17, 63–72. [Google Scholar] [CrossRef]
- Kim, Y.; Shin, D.; Kim, J. A study on the characteristics on brain wave of indoor space lighting by EEG experiment. J. Korean Inst. Spat. Des. 2019, 14, 71–80. [Google Scholar]
- Larson, M.J.; Carbine, K.A. Sample size calculations in human electrophysiology (EEG and ERP) studies: A systematic review and recommendations for increased rigor. Int. J. Psychophysiol. 2017, 111, 33–41. [Google Scholar] [CrossRef]
- Subklew, F. Architecture and Perceived Control: Role of Architectural Elements in Consumers Perception of Retail Environments; University of Twente: Enschede, The Netherlands, 2009. [Google Scholar]
- Meyers-Levy, J.; Zhu, R.J. The Influence of Ceiling Height: The Effect of Priming on the Type of Processing That People Use. J. Consum. Res. 2007, 34, 174–186. [Google Scholar] [CrossRef]
- Vartanian, O.; Navarrete, G.; Chatterjee, A.; Fich, L.B.; Gonzalez-Mora, J.L.; Leder, H.; Modroño, C.; Nadal, M.; Rostrup, N.; Skov, M. Architectural Design and the Brain: Effects of Ceiling Height and Perceived Enclosure on Beauty Judgments and Approach-avoidance Decisions. J. Environ. Psychol. 2015, 41, 10–18. [Google Scholar] [CrossRef]
- Mofrad, M.N. The Impact of Floor-To-Ceiling Height on Human Comfort. Asian J. Civ. Eng. Build. Hous. 2014, 15, 277–287. [Google Scholar]
- Ulrich, R. View through a Window May Influence Recovery from Surgery. Science 1984, 224, 420–421. [Google Scholar] [CrossRef] [Green Version]
- Matusiak, B. The Impact of Window Form on the Size Impression of the Room—Full-Scale Studies. Archit. Sci. Rev. 2006, 49, 43–51. [Google Scholar] [CrossRef]
- Astrid, S. Evaluation and Development of Stress Measurement Tools: Development of a Questionnaire (PWI) for Stress Measurement in the General Public; Yonsei University Institute for Social Development: Seoul, Korea, 1994; pp. 71–114. [Google Scholar]
- Stankovic, D.; Kostic, A.; Nikolic, V.; Cvetanovic, A. Form in architecture and principles of design. Archit. Constr. Educ. 2018, 1, 57–63. [Google Scholar] [CrossRef]
- Bae, D. A study on the proper ceiling height of living space in apartment housing. J. Korea Inst. Spat. Des. 2019, 14, 143–149. [Google Scholar]
- Ah-young, Y. Pangyo’s’last sale’ look… Living Room Ceiling Height 3 m; Korean Economic News: Seoul, Korea, 2016. [Google Scholar]
- Gao, J.; Kim, I. Development of the Healing Environment Design Checklist for Geriatric Hospital Bedrooms focusing on the patients’ Mental Health. Korean Inst. Inter. Des. J. 2020, 29, 57–68. [Google Scholar] [CrossRef]
- Kim, I.; Kang, Y.; Hwa, N.; Do, K. A Study on the Changes of Openness in Relation to Different Window to Wall Ratio of Buildings in Coastal areas. J. Reg. Assoc. Archit. Inst. Korea 2014, 16, 235–243. [Google Scholar]
- Maruyama, Y.; Ogata, Y.; Martinez-Tejada, L.; Koike, Y.; Yoshimura, N. Independent Components of EEG Activity Correlating with Emotional State. Brain Sci. 2020, 10, 669. [Google Scholar] [CrossRef] [PubMed]
- Chang, W.-Y.; Lo, M.-T.; Huang, C.-F. The Influence of Emotional Environmental Pictures on Behavior Intentions: The Evidence of Neuroscience Technology. Int. J. Environ. Res. Public Health 2019, 16, 5142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Küller, R.; Mikellides, B.; Janssens, J. Color, Arousal, and Performance—A Comparison of Three Experiments. Color Res. Appl. 2009, 34, 141–152. [Google Scholar] [CrossRef]
- Arthur, E.S. On shape and spaciousness. Environ. Behav. 2009, 41, 526–548. [Google Scholar]
- Arthur, E.S. Effects of Area, Height, Elongation, and Color on Perceived Spaciousness. Environ. Behav. 2011, 43, 252–273. [Google Scholar]
- Arthur, E.S. Effects of boundary height and horizontal size within boundary on perceived enclosure. Percept. Motor Skills 2011, 113, 995–998. [Google Scholar]
- Gilwon, Y.; Jaeseok, H. EEG Studies on Physical Discomforts Induced by Virtual Reality Gaming. J. Electr. Eng. Technol. 2020, 15, 1323–1329. [Google Scholar]
- Kosslyn, S. Seeing and Imagining in the Cerebral Hemispheres: A Computational Approach. Psychol. Rev. 1987, 94, 148–175. [Google Scholar] [CrossRef] [PubMed]
- Monaco, S.; Chen, Y.; Medendorp, W.P.; Crawford, J.D.; Fiehler, K.; Henriques, D.Y. Functional magnetic resonance imaging adaptation reveals the cortical networks for processing grasp-relevant object properties. Cereb. Cortex. 2014, 24, 1540–1554. [Google Scholar] [CrossRef] [Green Version]
- Juha, S.; Enrico, G.; Iiro, P.J.; Juha, M.L.; Juho, K.; Jouko, L.; Pia, T.; Mikko, S. Posterior parietal cortex activity reflects the significance of others’ actions during natural viewing. Hum. Brain Mapp. 2014, 35, 4767–4776. [Google Scholar]
- Baciu, M.; Koenig, O.; Vernier, M.P.; Bedoin, N.; Rubin, C.; Segebarth, C. Categorical and coordinate spatial relations: fMRI evidence for hemispheric specialization. Neuroreport 1999, 10, 1373–1378. [Google Scholar] [CrossRef]
- Suegami, T.; Laeng, B. A left cerebral hemisphere’s superiority in processing spatial-categorical information in a non-verbal semantic format. Brain Cogn. 2013, 81, 294–302. [Google Scholar] [CrossRef]
Item | Mean | SD | t-Value | p-Value | ||
---|---|---|---|---|---|---|
Health Group (n = 6) | Potential Stress Group (n = 25) | Health Group (n = 6) | Potential Stress Group (n = 25) | |||
Fp1 | 0.109 | 0.115 | 0.069 | 0.087 | −0.143 | 0.888 |
Fp2 | 0.112 | 0.099 | 0.081 | 0.076 | 0.384 | 0.704 |
F3 | 0.740 | 0.261 | 1.180 | 0.307 | 0.985 | 0.368 |
F4 | 0.656 | 0.385 | 1.363 | 0.511 | 0.479 | 0.651 |
P3 | 1.018 | 0.976 | 1.228 | 1.002 | 0.088 | 0.930 |
P4 | 1.041 | 1.039 | 1.525 | 1.527 | 0.003 | 0.998 |
O1 | 0.367 | 0.358 | 0.352 | 0.265 | 0.075 | 0.941 |
O2 | 0.318 | 1.043 | 0.419 | 2.266 | −0.771 | 0.447 |
Item | Details | Frequency | % |
---|---|---|---|
Age | 30 s | 26 | 78.79 |
40 s | 7 | 21.21 | |
Education | High school graduate | 1 | 3.03 |
Bachelor | 27 | 81.82 | |
Master/PhD | 5 | 15.15 | |
Occupation | Student | 1 | 3.03 |
Housewife | 23 | 69.70 | |
Employee | 8 | 24.24 | |
Self-employed | 1 | 3.03 | |
Used postpartum care centers | <1 year ago | 5 | 15.15 |
1~2 years ago | 2 | 6.06 | |
2~3 years ago | 11 | 33.33 | |
3~4 years ago | 5 | 15.15 | |
4~5 years ago | 4 | 12.12 | |
5~10 years ago | 6 | 18.18 | |
PWI-SF stress scores | ≤8 (healthy group) | 6 | 18.18 |
9~26 (potential stress group) | 27 | 81.82 |
Item | Mean (M) | SD | Ranking | |
---|---|---|---|---|
Aspect Ratio | Window Ratio | |||
Type A | 20% | 1.55 | 0.675 | 5 |
40% | 2.87 | 1.118 | 3 | |
60% | 4.03 | 0.836 | 1 | |
80% | 3.45 | 1.091 | 2 | |
100% | 2.10 | 0.978 | 4 | |
Type B | 20% | 1.71 | 0.938 | 5 |
40% | 3.58 | 1.025 | 2 | |
60% | 4.0 | 0.894 | 1 | |
80% | 2.87 | 1.204 | 3 | |
100% | 1.94 | 1.124 | 4 |
Channel | 2.3 m | 2.7 m | 3.0 m | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
A Type | B Type | A Type | B Type | A Type | B Type | |||||||
Difference | p- Value | Difference | p- Value | Difference | p- Value | Difference | p- Value | Difference | p- Value | Difference | p- Value | |
20% | −0.323 | 0.009 * | −0.384 | 0.001 * | −0.365 | 0.000 * | −0.406 | 0.001 * | −0.358 | 0.002 * | −0.382 | 0.000 * |
40% | −0.335 | 0.007 * | −0.384 | 0.001 * | −0.321 | 0.025 * | −0.406 | 0.001 * | −0.331 | 0.002 * | −0.382 | 0.000 * |
60% | −0.138 | 0.126 | −0.333 | 0.004 * | −0.357 | 0.004 * | −0.441 | 0.003 * | −0.468 | 0.002 * | −0.256 | 0.036 * |
80% | −0.259 | 0.020 * | −0.37 | 0.034 * | −0.19 | 0.117 | −0.412 | 0.002 * | −0.278 | 0.001 * | −0.244 | 0.170 |
100% | −0.361 | 0.028 * | −0.213 | 0.038 * | −0.306 | 0.044 * | −0.293 | 0.028 * | −0.372 | 0.014 * | −0.39 | 0.014 * |
Index | 20% | 40% | 60% | 80% | 100% | |||||
---|---|---|---|---|---|---|---|---|---|---|
Difference | p-Value | Difference | p-Value | Difference | p-Value | Difference | p-Value | Difference | p-Value | |
2.3 m | −0.323 | 0.009 * | −0.335 | 0.007 * | −0.138 | 0.126 | −0.259 | 0.020 * | −0.361 | 0.028 * |
2.7 m | −0.365 | 0.000 * | −0.321 | 0.025 * | −0.357 | 0.004 * | −0.19 | 0.117 | −0.306 | 0.044 * |
3.0 m | −0.358 | 0.002 * | −0.331 | 0.002 * | −0.468 | 0.002 * | −0.278 | 0.001 * | −0.372 | 0.014 * |
Index | 20% | 40% | 60% | 80% | 100% | |||||
---|---|---|---|---|---|---|---|---|---|---|
Difference | p-Value | Difference | p-Value | Difference | p-Value | Difference | p-Value | Difference | p-Value | |
2.3 m | −0.384 | 0.001 * | −0.333 | 0.001 * | −0.37 | 0.034 * | −0.213 | 0.038 * | −0.098 | 0.092 |
2.7 m | −0.406 | 0.001 * | −0.441 | 0.001 * | −0.412 | 0.002 * | −0.293 | 0.028 * | −0.336 | 0.034 * |
3.0 m | −0.382 | 0.000 * | −0.256 | 0.000 * | −0.244 | 0.17 | −0.39 | 0.014 * | −0.24 | 0.272 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.; Park, H.; Choo, S. Effects of Changes to Architectural Elements on Human Relaxation-Arousal Responses: Based on VR and EEG. Int. J. Environ. Res. Public Health 2021, 18, 4305. https://doi.org/10.3390/ijerph18084305
Kim S, Park H, Choo S. Effects of Changes to Architectural Elements on Human Relaxation-Arousal Responses: Based on VR and EEG. International Journal of Environmental Research and Public Health. 2021; 18(8):4305. https://doi.org/10.3390/ijerph18084305
Chicago/Turabian StyleKim, Sanghee, Hyejin Park, and Seungyeon Choo. 2021. "Effects of Changes to Architectural Elements on Human Relaxation-Arousal Responses: Based on VR and EEG" International Journal of Environmental Research and Public Health 18, no. 8: 4305. https://doi.org/10.3390/ijerph18084305
APA StyleKim, S., Park, H., & Choo, S. (2021). Effects of Changes to Architectural Elements on Human Relaxation-Arousal Responses: Based on VR and EEG. International Journal of Environmental Research and Public Health, 18(8), 4305. https://doi.org/10.3390/ijerph18084305