Assessment of Resilience of the Hellenic Navy Seals by Electrodermal Activity during Cognitive Tasks
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Smith, E.N.; Young, M.D.; Crum, A.J. Stress, Mindsets, and Success in Navy SEALs Special Warfare Training. Front. Psychol. 2020, 10, 2962. [Google Scholar] [CrossRef] [Green Version]
- Delgado-Moreno, R.; Robles-Pérez, J.J.; Clemente-Suárez, V.J. Combat Stress Decreases Memory of Warfighters in Action. J. Med. Syst. 2017, 41, 124. [Google Scholar] [CrossRef]
- Tornero-Aguilera, J.F.; Robles-Pérez, J.J.; Clemente-Suárez, V.J. Effect of Combat Stress in the Psychophysiological Response of Elite and Non-Elite Soldiers. J. Med. Syst. 2017, 41, 179. [Google Scholar] [CrossRef] [PubMed]
- Clemente-Suarez, V.J.; Palomera, P.R.; Robles-Pérez, J.J. Psychophysiological response to acute-high-stress combat situations in professional soldiers. Stress Health 2018, 34, 247–252. [Google Scholar] [CrossRef] [PubMed]
- Diaz-Manzano, M.; Fuentes, J.P.; Fernandez-Lucas, J.; Aznar-Lain, S.; Clemente-Suárez, V.J. Higher use of techniques studied and performance in melee combat produce a higher psychophysiological stress response. Stress Health 2018, 34, 622–628. [Google Scholar] [CrossRef] [PubMed]
- Aguilera, J.F.T.; Elias, V.F.; Clemente-Suárez, V.J. Autonomic and cortical response of soldiers in different combat scenarios. BMJ Mil. Health 2020, 27. [Google Scholar] [CrossRef]
- Chappelle, W.L.; McDonald, K.D.; Prince, L.; Goodman, T.; Ray-Sannerud, B.N.; Thompson, W. Symptoms of Psychological Distress and Post-Traumatic Stress Disorder in United States Air Force “Drone” Operators. Mil. Med. 2014, 179, 63–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sequeira, H.; Hot, P.; Silvert, L.; Delplanque, S. Electrical autonomic correlates of emotion. Int. J. Psychophysiol. 2009, 71, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Pop-Jordanova, N.; Pop-Jordanov, J. Electrodermal Activity and Stress Assessment. Prilozi 2020, 41, 5–15. [Google Scholar] [CrossRef]
- Williams, L.M.; Phillips, M.L.; Brammer, M.J.; Skerrett, D.; Lagopoulos, J.; Rennie, C.; Bahramali, H.; Olivieri, G.; David, A.S.; Peduto, A.; et al. Arousal dissociates amygdala and hippocampal fear responses: Evidence from simultaneous fMRI and skin con-ductance recording. Neuroimage 2001, 14, 1070–1079. [Google Scholar] [CrossRef]
- Critchley, H.D. Review: Electrodermal Responses: What Happens in the Brain. Neuroscience 2002, 8, 132–142. [Google Scholar] [CrossRef] [PubMed]
- Soussignan, R.; Ehrlé, N.; Henry, A.; Schaal, B.; Bakchine, S. Dissociation of emotional processes in response to visual and olfactory stimuli following frontotemporal damage. Neurocase 2005, 11, 114–128. [Google Scholar] [CrossRef]
- Posada-Quintero, H.F.; Chon, K.H. Innovations in Electrodermal Activity Data Collection and Signal Processing: A Systematic Review. Sensors 2020, 20, 479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boucsein, W.; Fowles, D.C.; Grimnes, S.; Ben-Shakhar, G.; Roth, W.T.; Dawson, M.E.; Filion, D.L. Society for Psychophysio-logical Research Ad Hoc Committee on Electrodermal Measures. Publication recommendations for electrodermal measure-ments. Psychophysiology 2012, 49, 1017–1034. [Google Scholar] [PubMed]
- Morgan, C.A., III; Aikins, D.E.; Steffian, G.; Coric, V.; Southwick, S. Relation between cardiac vagal tone and performance in male military personnel exposed to high stress: Three prospective studies. Psychophysiology 2007, 44, 120–127. [Google Scholar] [CrossRef]
- Suárez, V.J.; Pérez, J.J. Psycho-physiological response of soldiers in urban combat. Ann. Psychol. 2013, 29, 598–603. [Google Scholar]
- Farina, E.K.; Thompson, L.A.; Knapik, J.J.; Pasiakos, S.M.; McClung, J.P.; Lieberman, H.R. Physical performance, demographic, psy-chological, and physiological predictors of success in the U.S. Army Special Forces Assessment and Selection course. Physiol. Behav. 2019, 210, 112647. [Google Scholar] [CrossRef]
- Ledford, A.K.; Dixon, D.; Luning, C.R.; Martin, B.J.; Miles, P.C.; Beckner, M.; Bennett, D.; Conley, J.; Nindl, B.C. Psychological and Physi-ological Predictors of Resilience in Navy SEAL Training. Behav. Med. 2020, 46, 290–301. [Google Scholar] [CrossRef]
- Pedersen, G.; Karterud, S. Is SCL-90R helpful for the clinician in assessing DSM-IV symptom disorders? Acta Psychiatr. Scand. 2004, 110, 215–224. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Li, H.; Wang, H.; Zhang, S.; Sun, Y. Psychological Status of Volunteers in a Phase I Clinical Trial Assessed by Symptom Checklist 90 (SCL-90) and Eysenck Personality Questionnaire (EPQ). Med. Sci. Monit. 2018, 24, 4968–4973. [Google Scholar] [CrossRef] [PubMed]
- Scarpina, F.; Tagini, S. The Stroop Color and Word Test. Front. Psychol. 2017, 8, 557. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.; Nascimben, M.; Wang, Y.; Fong, D.; Tzeng, O.J.; Huang, C. Which digit is larger? Brain responses to number and size interactions in a numerical Stroop task. Psychophysiology 2021, 58, e13744. [Google Scholar] [CrossRef] [PubMed]
- Ben-Haim, M.S.; Williams, P.; Howard, Z.; Mama, Y.; Eidels, A.; Algom, D. The Emotional Stroop Task: Assessing Cognitive Per-formance under Exposure to Emotional Content. J. Vis. Exp. 2016, 112, 53720. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, S.S.; Wilk, M.B. An analysis of variance test for normality (complete samples). Biometrika 1965, 52, 591–611. [Google Scholar] [CrossRef]
- Rice, J.A. Mathematical Statistics and Data Analysis; Nelson Education: Toronto, ON, Canada, 2006. [Google Scholar]
- Fay, M.P.; Proschan, M.A. Wilcoxon-Mann-Whitney or t-test? On assumptions for hypothesis tests and multiple interpretations of decision rules. Stat. Surv. 2010, 4, 1–39. [Google Scholar] [CrossRef] [PubMed]
- Hedges, L.; Olkin, I. Statistical Methods for Meta-Analysis; Elsevier: Amsterdam, The Netherlands, 1985. [Google Scholar]
- Luque-Casado, A.; Perales, J.C.; Cárdenas, D.; Sanabria, D. Heart rate variability and cognitive processing: The autonomic re-sponse to task demands. Biol. Psychol. 2016, 113, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Sarlija, M.; Popovic, S.; Jagodic, M.; Jovanovic, T.; Ivkovic, V.; Zhang, Q.; Strangman, G.E.; Cosic, K. Prediction of Task Performance from Physiological Features of Stress Resilience. IEEE J. Biomed. Health Inform. 2020, 1. [Google Scholar] [CrossRef]
- Valenzano, A.; Moscatelli, F.; Messina, A.; Monda, V.; Orsitto, R.; Zezza, G.; Fiorentino, G.; Salerno, M.; Triggiani, A.I.; Viggiano, A.; et al. Stress Profile in Remotely Piloted Aircraft Crewmembers During 2 h Operating Mission. Front. Physiol. 2018, 9, 461. [Google Scholar] [CrossRef] [Green Version]
Demographic Characteristics | All | HN-SEALs | HCs | |
---|---|---|---|---|
Number of participants | 34 (100%) | 18 (52.9%) | 16 (47.1%) | |
Age (years) | 28.65 ± 9.76 | 24.17 ± 3.35 | 33.69 ± 12.08 | |
Years of Education | 15.42 ± 1.75 | 15.76 ± 0.97 | 15.06 ± 2.29 | |
Family Status | Unmarried | 28 (82.4%) | 16 (88.9%) | 12 (75.0%) |
Married | 5 (14.7%) | 2 (11.1%) | 3 (18.8%) | |
Divorced | 1 (2.9%) | 0 (0.0%) | 1 (6.3%) | |
Right-handed | 33 (97.1%) | 18 (100%) | 15 (93.8%) | |
Health Problem (No) | 34 (100%) | 18 (100%) | 16 (100%) |
Variable | HCs (N = 16) (Mean ± SD) | HN-SEALs (N = 18) (Mean ± SD) | Independent Samples’ t-Test | Effect Size Cohen’s d |
---|---|---|---|---|
SCL-90R | ||||
Somatization | 0.51 ± 0.38 | 1.34 ± 0.61 | −4.706 ** | 0.87 |
Anxiety | 0.78 ± 0.71 | 1.26 ± 0.56 | −2.184 * | 0.75 |
EPQ | ||||
Neuroticism | 10.63 ± 6.09 | 7.00 ± 3.41 | 2.093 * | 0.70 |
Variable | HCs (N = 16) (Mean ± SD) | HN-SEALs (N = 18) (Mean ± SD) | Independent Samples’ t-Test | Statistical Significance p-Value | Effect Size Cohen’s d |
---|---|---|---|---|---|
CWS sheet 1 words sum | 135.13 ± 15.09 | 144.39 ± 18.06 | −1.611 | 0.117 | 0.55 |
CWS sheet 2 words sum | 94.38 ± 13.09 | 104.06 ± 14.93 | −1.998 | 0.054 | 0.69 |
CWS sheet 3 words sum | 62.00 ± 17.37 | 67.33 ± 14.94 | −0.962 | 0.343 | 0.33 |
NS size RT congruent condition | 0.91 ± 0.29 | 0.78 ± 0.08 | 1.806 | 0.081 | 0.64 |
NS size RT incongruent condition | 0.99 ± 0.31 | 0.86 ± 0.10 | 1.554 | 0.139 | 0.59 |
NS size RT neutral condition | 1.14 ± 0.37 | 0.94 ± 0.15 | 1.958 | 0.066 | 0.73 |
NS size mistakes congruent condition | 2.40 ± 1.88 | 3.78 ± 2.53 | −1.742 | 0.091 | 0.61 |
NS value RT congruent condition | 0.77 ± 0.23 | 0.73 ± 0.11 | 0.807 | 0.426 | 0.23 |
NS value RT incongruent condition | 0.83 ± 0.22 | 0.78 ± 0.12 | 0.924 | 0.362 | 0.29 |
NS value RT neutral condition | 0.82 ± 0.22 | 0.76 ± 0.10 | 1.083 | 0.287 | 0.36 |
Variable | HCs (N = 16) (Median ± Interquartile Range) | HN-SEALs (N = 18) (Median ± Interquartile Range) | Mann–Whitney U | Statistical Significance p-Value | Effect Size Cohen’s d |
---|---|---|---|---|---|
CWS sheet 1 mistakes | 0.00 ± 0.00 | 0.00 ± 0.00 | 130.50 | 0.646 | 0.16 |
CWS 1 sheet 1 fixed mistakes | 0.00 ± 0.00 | 0.00 ± 1.00 | 113.50 | 0.297 | 0.37 |
CWS sheet 2 fixed mistakes | 1.00 ± 2.00 | 1.00 ± 2.25 | 116.00 | 0.347 | 0.34 |
CWS sheet 3 mistakes | 0.00 ± 0.00 | 0.00 ± 1.00 | 130.00 | 0.646 | 0.17 |
CWS sheet 3 fixed mistakes | 0.00 ± 1.00 | 1.00 ± 3.00 | 102.50 | 0.154 | 0.51 |
NS value mistakes congruent condition | 0.00 ± 0.00 | 0.00 ± 0.25 | 122.00 | 0.656 | 0.16 |
NS value mistakes incongruent condition | 1.00 ± 3.00 | 1.00 ± 2.00 | 109.00 | 0.361 | 0.33 |
NS value mistakes neutral condition | 0.00 ± 1.00 | 0.00 ± 1.00 | 129.00 | 0.845 | 0.08 |
ES total RT for negative words | 0.97 ± 0.30 | 0.93 ± 0.13 | 110.00 | 0.561 | 0.22 |
ES mistakes for negative words | 0.00 ± 1.00 | 0.00 ± 1.00 | 114.00 | 0.667 | 0.16 |
ES total RT for neutral words | 0.96 ± 0.28 | 0.95 ± 0.15 | 118.00 | 0.750 | 0.12 |
ES mistakes for neutral words | 0.00 ± 0.25 | 0.00 ± 0.25 | 122.00 | 0.896 | 0.07 |
Variable | HN-SEALs (N = 18) (Mean ± SD) | HCs (N = 16) (Mean ± SD) | Independent Samples’ t-Test |
---|---|---|---|
Color–Word Stroop sheet 3 | |||
Duration of an EDA response | 323.45 ± 137.80 | 779.07 ± 513.30 | −3.280 ** |
Duration of an EDA response (phasic EDA component) | 302.27 ± 110.72 | 878.73 ± 559.25 | −3.889 ** |
Number Stroop value | |||
Minimum EDA value | −2.69 ± 0.82 | −1.83 ± 0.67 | −2.778 * |
Variable | HCs (N = 16) (Median ± Interquartile Range) | HN-SEALs (N = 18) (Median ± Interquartile Range) | Mann–Whitney U |
---|---|---|---|
Color–Word Stroop sheet 1 | |||
Mean 1st difference | 0.02 ± 0.01 | 0.01 ± 0.01 | 36.00 * |
Mean 2nd difference | 0.03 ± 0.02 | 0.02 ± 0.02 | 36.00 * |
EDA range | 4.23 ± 1.71 | 3.48 ± 0.73 | 44.00 * |
Min tonic EDA | 0.28 ± 0.57 | 0.09 ± 0.17 | 38.00 * |
Color–Word Stroop sheet 2 | |||
Recurrence plot metric of tonic EDA | 53.89 ± 46.77 | 94.21 ± 76.44 | 44.50 * |
Color–Word Stroop sheet 3 | |||
4th order statistic of tonic EDA | 2.11 ± 0.80 | 2.48 ± 1.32 | 36.00 * |
Recurrence plot metric of tonic EDA | 0.01 ± 0.02 | 0.00 ± 0.00 | 40.00 * |
Number Stroop size | |||
Mean EDA | 0.42 ± 0.73 | 0.11 ± 0.16 | 31.00 * |
Max EDA | 0.44 ± 0.79 | 0.16 ± 0.18 | 31.00 * |
Area below an EDA response | 207.49 ± 923.98 | 54.13 ± 93.05 | 31.00 * |
Duration of an EDA response (phasic EDA component) | 983.50 ± 658.00 | 269.50 ± 822.25 | 29.00 * |
Area below an EDA response (phasic EDA component) | 3.07 ± 18.13 | 0.59 ± 1.65 | 25.00 * |
Max tonic EDA | 0.43 ± 0.78 | 0.14 ± 0.17 | 31.00 * |
Number Stroop value | |||
Area below an EDA response (phasic EDA component) | 4.02 ± 14.40 | 0.59 ± 2.61 | 27.00 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mourtakos, S.; Vassiliou, G.; Kontoangelos, K.; Papageorgiou, C.; Philippou, A.; Bersimis, F.; Geladas, N.; Koutsilieris, M.; Sidossis, L.S.; Tsirmpas, C.; et al. Assessment of Resilience of the Hellenic Navy Seals by Electrodermal Activity during Cognitive Tasks. Int. J. Environ. Res. Public Health 2021, 18, 4384. https://doi.org/10.3390/ijerph18084384
Mourtakos S, Vassiliou G, Kontoangelos K, Papageorgiou C, Philippou A, Bersimis F, Geladas N, Koutsilieris M, Sidossis LS, Tsirmpas C, et al. Assessment of Resilience of the Hellenic Navy Seals by Electrodermal Activity during Cognitive Tasks. International Journal of Environmental Research and Public Health. 2021; 18(8):4384. https://doi.org/10.3390/ijerph18084384
Chicago/Turabian StyleMourtakos, Stamatis, Georgia Vassiliou, Konstantinos Kontoangelos, Christos Papageorgiou, Anastasios Philippou, Fragkiskos Bersimis, Nikolaos Geladas, Michael Koutsilieris, Labros S. Sidossis, Charalampos Tsirmpas, and et al. 2021. "Assessment of Resilience of the Hellenic Navy Seals by Electrodermal Activity during Cognitive Tasks" International Journal of Environmental Research and Public Health 18, no. 8: 4384. https://doi.org/10.3390/ijerph18084384
APA StyleMourtakos, S., Vassiliou, G., Kontoangelos, K., Papageorgiou, C., Philippou, A., Bersimis, F., Geladas, N., Koutsilieris, M., Sidossis, L. S., Tsirmpas, C., Papageorgiou, C., & Yiannopoulou, K. G. (2021). Assessment of Resilience of the Hellenic Navy Seals by Electrodermal Activity during Cognitive Tasks. International Journal of Environmental Research and Public Health, 18(8), 4384. https://doi.org/10.3390/ijerph18084384