Dissipation Behavior, Residue, and Risk Assessment of Benziothiazolinone in Apples
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Extraction and Purification Process of Samples
2.3. Chromatography Conditions
2.4. Method Validation
2.5. Dissipation of Benziothiazolinone
2.6. Chronic Dietary Risk Assessment
2.7. Field Trials
3. Results
3.1. Optimization of Extraction and Purification
3.2. Method Validation
3.3. Dissipation Behaviors
3.4. Final Residue
3.5. Dietary Risk Assessment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, H.J.; Guo, B.Y.; Wang, H.L.; Li, J.Z.; Zheng, L. Determination of Bromothalonil Residues and Degradation in Apple and Soil by QuEChERS and GC-MS/MS. Bull. Environ. Contam. Toxicol. 2014, 92, 451–454. [Google Scholar] [CrossRef]
- Tang, W.; Ding, Z.; Zhou, Z.Q.; Wang, Y.Z.; Guo, L.Y. Phylogenetic and Pathogenic Analyses Show That the Causal Agent of Apple Ring Rot in China Is Botryosphaeria dothidea. Plant Dis. 2012, 96, 486–496. [Google Scholar] [CrossRef] [Green Version]
- Yu, F.; Liu, W.; Qi, L. Residue Analysis of Benziothiazolinone in Cucumber and Soil. Agrochemicals 2009, 48, 130–131. [Google Scholar]
- He, L.; Mao, Y. Determination of Lead Content in BIT by Flame Atomic Absorption Spectrophotometry. Stud. Trace Elem. Health 2009, 26, 57–67. [Google Scholar]
- Edwards, S.G.; Seddon, B. Mode of antagonism of Brevibacillus brevis against Botrytis cinerea in vitro. J. Appl. Microbiol. 2001, 91, 652–659. [Google Scholar] [CrossRef]
- National Food Safety Standard Maximum Residue Limits for Pesticides in Food. GB 2763-2019; Ministry of Health and Ministry of Agriculture of the People’s Republic of China, Agriculture Publishing House: Bejing, China, 2019.
- Zhao, Z.; Ge, Q.; Niu, Y.; Zhang, F. Determination of Benziothiazolinone Residues in Wheat and Soil by HPLC. Agrochemicals 2015, 54, 3. [Google Scholar]
- Su, Y.; Zhou, J.; Meng, R.; Li, N.; Li, Y.; Luo, Q. Determination of benziothiazolinone residue in vegetable and fruit by QuEChERS-liquid chromatography-tandem mass spectrometry. Chin. J. Pestic. Sci. 2016, 18, 135–140. [Google Scholar]
- Liu, X.W.; Song, B.Y.; Jiang, X.X.; Yang, Y.; Lu, P.; Hu, D.Y. Residue determination and risk assessment of benziothiazolinone in citrus by LC-MS/MS. Int. J. Environ. Anal. Chem. 2021, 12, 668–679. [Google Scholar] [CrossRef]
- Netto, P.T.; Teixeira Junior, O.J.; Viana de Camargo, J.L.; Ribeiro, M.L.; Rodrigues de Marchi, M.R. A rapid, environmentally friendly, and reliable method for pesticide analysis in high-fat samples. Talanta 2012, 101, 322–329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, W.W.; Huang, M.; Chen, J.J.; Wu, S.Z.; Zheng, K.M.; Zeng, S.; Zhang, K.K.; Hu, D.Y. Risk assessment and monitoring of dinotefuran and its metabolites for Chinese consumption of apples. Environ. Monit. Assess. 2017, 189, 11. [Google Scholar] [CrossRef] [PubMed]
- Matuszewski, B.K.; Constanzer, M.L.; Chavez-Eng, C.M. Strategies for the assessment of matrix effect in quantitative bioanalytical methods based on HPLC-MS/MS. Anal. Chem. 2003, 75, 3019–3030. [Google Scholar] [CrossRef]
- Sun, M.N.; Tong, Z.; Dong, X.; Chu, Y.; Wang, M.; Gao, T.C.; Duan, J.S. Determination of the Residue Behavior and Risk Assessment of Chlorfluazuron in Chinese Cabbage, Kale, Lettuce and Cauliflower by UPLC-MS/MS. Int. J. Envion. Res. Public Health 2019, 16, 1758. [Google Scholar] [CrossRef] [Green Version]
- Long, S.; Wu, Y.; Zhang, N.; Li, W.; Hu, C. Residue and Dissipation Dynamics of Benziothiazolinone on Tobacco. Guizhou Agric. Sci. 2019, 47, 120–123. [Google Scholar]
- Walorczyk, S.; Drozdzynski, D.; Kierzek, R. Determination of pesticide residues in samples of green minor crops by gas chromatography and ultra performance liquid chromatography coupled to tandem quadrupole mass spectrometry. Talanta 2015, 132, 197–204. [Google Scholar] [CrossRef]
- Li, C.D.; Liu, R.; Li, L.; Li, W.; He, Y.J.; Yuan, L.F. Dissipation behavior and risk assessment of butralin in soybean and soil under field conditions. Environ. Monit. Assess. 2017, 189, 7. [Google Scholar] [CrossRef]
- Li, C.; Chen, Z.; Qin, D.; Liu, R.; Li, L.; Li, W.; He, Y.; Yuan, L. Simultaneous determination of the herbicide bixlozone and its metabolites in plant and animal samples by liquid chromatography-tandem mass spectrometry. J. Sep. Sci. 2020. [Google Scholar] [CrossRef]
- Zhao, Z.; Sun, R.; Su, Y.; Hu, J.; Liu, X. Fate, residues and dietary risk assessment of the fungicides epoxiconazole and pyraclostrobin in wheat in twelve different regions, China. Ecotox. Environ. Safe 2021, 207, 111236. [Google Scholar] [CrossRef]
- Rutkowska, E.; Lozowicka, B.; Kaczynski, P. Three approaches to minimize matrix effects in residue analysis of multiclass pesticides in dried complex matrices using gas chromatography tandem mass spectrometry. Food Chem. 2019, 279, 20–29. [Google Scholar] [CrossRef] [PubMed]
- Besil, N.; Cesio, V.; Heinzen, H.; Fernandez-Alba, A.R. Matrix Effects and Interferences of Different Citrus Fruit Coextractives in Pesticide Residue Analysis Using Ultrahigh-Performance Liquid Chromatography-High-Resolution Mass Spectrometry. J. Agric. Food Chem. 2017, 65, 4819–4829. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.H.; Lin, Z.Q.; Zhang, W.P.; Pang, S.M.; Bhatt, P.; Rene, E.R.; Kumar, A.J.; Chen, S.H. New Insights into the Microbial Degradation of D-Cyphenothrin in Contaminated Water/Soil Environments. Microorganisms 2020, 8, 473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhatt, P.; Zhang, W.P.; Lin, Z.Q.; Pang, S.M.; Huang, Y.H.; Chen, S.H. Biodegradation of Allethrin by a Novel Fungus Fusarium proliferatum Strain CF2, Isolated from Contaminated Soils. Microorganisms 2020, 8, 593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, Y.M.; Zhang, W.P.; Pang, S.M.; Lin, Z.Q.; Zhang, Y.M.; Huang, Y.H.; Bhatt, P.; Chen, S.H. Kinetics and New Mechanism of Azoxystrobin Biodegradation by an Ochrobactrum anthropi Strain SH14. Microorganisms 2020, 8, 625. [Google Scholar] [CrossRef] [PubMed]
- Paramasivam, M. Dissipation kinetics, dietary and ecological risk assessment of chlorantraniliprole residue in/on tomato and soil using GC-MS. J. Food Sci. Technol. Mysore 2021, 58, 604–611. [Google Scholar] [CrossRef] [PubMed]
- Kalsi, N.K.; Kaur, P. Dissipation of bispyribac sodium in aridisols: Impact of soil type, moisture and temperature. Ecotox. Environ. Safe 2019, 170, 375–382. [Google Scholar] [CrossRef]
Compound | Spiked Level (mg/kg) | Recoveries (%) | RSD (%) | |||||
---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | Average Value | |||
benziothiazolinone | 0.01 | 78.9 | 70.7 | 94.9 | 80.8 | 102.0 | 85.5 | 14.9 |
0.05 | 105.4 | 87.8 | 101.7 | 102.3 | 104.0 | 100.2 | 7.1 | |
1.0 | 98.5 | 99.3 | 100.3 | 100.5 | 99.0 | 99.5 | 0.8 |
Location | Dosage (mg a.i./kg) | Spray Times | Intervals (d) | Final Residue (mg/kg) | STMR * (mg/kg) | HR ** (mg/kg) |
---|---|---|---|---|---|---|
Liaoning, Henan, Shaanxi, Shanxi, Shandong, Yunnan, Anhui, Ningxia | 25 | 3 | 14 | <0.01 | <0.01 | <0.01 |
21 | <0.01 | <0.01 | <0.01 | |||
28 | <0.01 | <0.01 | <0.01 |
Food Classification | Fi (kg) | Reference Residue Limits (mg kg−1) | Sources | NEDI (mg) | ADI (mg) | Risk Probability (%) |
---|---|---|---|---|---|---|
Rice and its products | 0.2399 | 0.05 | China | 0.1200 | 0.017 × 63 | |
Flour and its products | 0.1385 | 0.2 | China | 0.0277 | ||
Other cereals | 0.0233 | |||||
Tubers | 0.0495 | |||||
Dried beans and their products | 0.016 | |||||
Dark vegetables | 0.0915 | |||||
Light vegetable | 0.1837 | 0.1 | China | 0.01837 | ||
Pickles | 0.0103 | |||||
Fruits | 0.0457 | 0.01 | STMR | 0.000457 | ||
Nuts | 0.0039 | |||||
Livestock and poultry | 0.0795 | |||||
Milk and its products | 0.0263 | |||||
Egg and its products | 0.0236 | |||||
Fish and shrimp | 0.0301 | |||||
Vegetable oil | 0.0327 | |||||
Animal oil | 0.0087 | |||||
Sugar, starch | 0.0044 | |||||
Salt | 0.012 | |||||
Soy sauce | 0.009 | |||||
Total | 1.0286 | 0.1665 | 1.071 | 15.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chai, Y.; Liu, R.; He, W.; Xu, F.; Chen, Z.; Li, L.; Li, W.; Yuan, L. Dissipation Behavior, Residue, and Risk Assessment of Benziothiazolinone in Apples. Int. J. Environ. Res. Public Health 2021, 18, 4478. https://doi.org/10.3390/ijerph18094478
Chai Y, Liu R, He W, Xu F, Chen Z, Li L, Li W, Yuan L. Dissipation Behavior, Residue, and Risk Assessment of Benziothiazolinone in Apples. International Journal of Environmental Research and Public Health. 2021; 18(9):4478. https://doi.org/10.3390/ijerph18094478
Chicago/Turabian StyleChai, Yida, Rong Liu, Wei He, Fuliu Xu, Zenglong Chen, Li Li, Wei Li, and Longfei Yuan. 2021. "Dissipation Behavior, Residue, and Risk Assessment of Benziothiazolinone in Apples" International Journal of Environmental Research and Public Health 18, no. 9: 4478. https://doi.org/10.3390/ijerph18094478
APA StyleChai, Y., Liu, R., He, W., Xu, F., Chen, Z., Li, L., Li, W., & Yuan, L. (2021). Dissipation Behavior, Residue, and Risk Assessment of Benziothiazolinone in Apples. International Journal of Environmental Research and Public Health, 18(9), 4478. https://doi.org/10.3390/ijerph18094478