Seroprevalence of SARS-CoV-2 Antibodies in Adults and Healthcare Workers in Southern Italy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design, Population Recruitment and Procedures
2.2. Survey Instrument
2.3. Blood Sampling and Laboratory Methods
2.4. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kimball, A.; Hatfield, K.M.; Arons, M.; James, A.; Taylor, J.; Spicer, K.; Bardossy, A.C.; Oakley, L.P.; Tanwar, S.; Chisty, Z.; et al. Asymptomatic and presymptomatic SARS-CoV-2 infections in residents of a long-term care skilled nursing facility-King County, Washington, March 2020. Morb. Mortal. Wkly. Rep. 2020, 69, 377–381. [Google Scholar] [CrossRef] [Green Version]
- Mizumoto, K.; Kagaya, K.; Zarebski, A.; Chowell, G. Estimating the asymptomatic proportion of coronavirus disease 2019 (COVID-19) cases on board the Diamond Princess cruise ship, Yokohama, Japan. Euro. Surveill. 2020, 25, 2000180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nishiura, H.; Kobayashi, T.; Miyama, T.; Suzuki, A.; Jung, S.M.; Hayashi, K.; Kinoshita, R.; Yang, Y.; Yuan, B. Estimation of the asymptomatic ratio of novel coronavirus infections (COVID-19). Int. J. Infect. Dis. 2020, 94, 154–155. [Google Scholar] [CrossRef]
- Furukawa, N.W.; Brooks, J.T.; Sobel, J. Evidence supporting transmission of Severe Acute Respiratory Syndrome Coronavirus 2 while presymptomatic or asymptomatic. Emerg. Infect. Dis. 2020, 26, e201595. [Google Scholar] [CrossRef]
- Huang, L.; Zhang, X.; Zhang, X.; Wei, Z.; Zhang, L.; Xu, J.; Liang, P.; Xu, Y.; Zhang, C.; Xu, A. Rapid asymptomatic transmission of COVID-19 during the incubation period demonstrating strong infectivity in a cluster of youngsters aged 16–23 years outside Wuhan and characteristics of young patients with COVID-19: A prospective contact-tracing study. J. Infect. 2020, 80, e1–e13. [Google Scholar] [CrossRef] [PubMed]
- Rothe, C.; Schunk, M.; Sothmann, P.; Bretzel, G.; Froeschl, G.; Wallrauch, C.; Zimmer, T.; Thiel, V.; Janke, C.; Guggemos, W.; et al. Transmission of 2019-nCoV infection from an asymptomatic contact in Germany. N. Engl. J. Med. 2020, 382, 970–971. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lai, C.C.; Wang, J.H.; Hsueh, P.R. Population-based seroprevalence surveys of anti-SARS-CoV-2 antibody: An up-to-date review. Int. J. Infect. Dis. 2020, 101, 314–322. [Google Scholar] [CrossRef] [PubMed]
- Naranbhai, V.; Chang, C.C.; Beltran, W.F.G.; Miller, T.E.; Astudillo, M.G.; Villalba, J.A.; Yang, D.; Gelfand, J.; Bernstein, B.E.; Feldman, J.; et al. High seroprevalence of anti-SARS-CoV-2 antibodies in Chelsea, Massachusetts. J. Infect. Dis. 2020, 222, 1955–1959. [Google Scholar] [CrossRef]
- Pollan, M.; Perez-Gomez, B.; Pastor-Barriuso, R.; Oteo, J.; Hernan, M.A.; Perez-Olmeda, M.; Sanmartín, J.L.; Fernández-García, A.; Cruz, I.; Fernández de Larrea, N.; et al. Prevalence of SARS-CoV-2 in Spain (ENE-COVID): A nationwide, population-based seroepidemiological study. Lancet 2020, 396, 535–544. [Google Scholar] [CrossRef]
- Sood, N.; Simon, P.; Ebner, P.; Eichner, D.; Reynolds, J.; Bendavid, E.; Bhattacharya, J. Seroprevalence of SARS-CoV-2-specific antibodies among adults in Los Angeles County, California, on 10–11 April 2020. JAMA 2020, 323, 2425–2427. [Google Scholar] [CrossRef]
- Stringhini, S.; Wisniak, A.; Piumatti, G.; Azman, A.S.; Lauer, S.A.; Baysson, H.; De Ridder, D.; Petrovic, D.; Schrempft, S.; Marcus, K.; et al. Seroprevalence of anti-SARS-CoV-2 IgG antibodies in Geneva, Switzerland (SEROCoV-POP): A population-based study. Lancet 2020, 396, 313–319. [Google Scholar] [CrossRef]
- Xu, X.; Sun, J.; Nie, S.; Li, H.; Kong, Y.; Liang, M.; Hou, J.; Huang, X.; Li, D.; Ma, T.; et al. Seroprevalence of immunoglobulin M and G antibodies against SARS-CoV-2 in China. Nat. Med. 2020, 26, 1193–1195. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Tong, X.; Wang, J.; Huang, W.; Yin, S.; Huang, R.; Yang, H.; Chen, Y.; Huang, A.; Liu, Y.; et al. High SARS-CoV-2 antibody prevalence among healthcare workers exposed to COVID-19 patients. J. Infect. 2020, 81, 420–426. [Google Scholar] [CrossRef] [PubMed]
- Fischer, B.; Knabbe, C.; Vollmer, T. SARS-CoV-2 IgG seroprevalence in blood donors located in three different federal states, Germany, March to June 2020. Euro. Surveill. 2020, 25, 2001285. [Google Scholar] [CrossRef]
- Tsitsilonis, O.E.; Paraskevis, D.; Lianidou, E.; Pierros, V.; Akalestos, A.; Kastritis, E.; Moutsatsou, P.; Scorilas, A.; Sphicopoulos, T.; Terpos, E.; et al. Seroprevalence of antibodies against SARS-CoV-2 among the personnel and students of the National and Kapodistrian University of Athens, Greece: A preliminary report. Life 2020, 10, 214. [Google Scholar] [CrossRef]
- Figueiredo-Campos, P.; Blankenhaus, B.; Mota, C.; Gomes, A.; Serrano, M.; Ariotti, S.; Costa, C.; Nunes-Cabaço, H.; Mendes, A.M.; Gaspar, P.; et al. Seroprevalence of anti-SARS-CoV-2 antibodies in COVID-19 patients and healthy volunteers up to 6 months post disease onset. Eur. J. Immunol. 2020, 50, 2025–2040. [Google Scholar] [CrossRef]
- Fuereder, T.; Berghoff, A.S.; Heller, G.; Haslacher, H.; Perkmann, T.; Strassl, R.; Berger, J.M.; Puhr, H.C.; Kreminger, J.; Moik, F.; et al. SARS-CoV-2 seroprevalence in oncology healthcare professionals and patients with cancer at a tertiary care centre during the COVID-19 pandemic. ESMO Open 2020, 5, e000889. [Google Scholar] [CrossRef]
- Rudberg, A.S.; Havervall, S.; Månberg, A.; Jernbom Falk, A.; Aguilera, K.; Ng, H.; Gabrielsson, L.; Salomonsson, A.C.; Hanke, L.; Murrell, B.; et al. SARS-CoV-2 exposure, symptoms and seroprevalence in healthcare workers in Sweden. Nat. Commun. 2020, 11, 5064. [Google Scholar] [CrossRef]
- Nioi, M.; Napoli, P.E.; Lobina, J.; Fossarello, M.; d’Aloja, E. COVID-19 and Italian healthcare workers from the initial sacrifice to the mRNA vaccine: Pandemic chrono-history, epidemiological data, ethical dilemmas, and future challenges. Front. Public Health 2021, 8, 591900. [Google Scholar] [CrossRef]
- Decreto del Presidente del Consiglio dei Ministri del 3 novembre 2020. Available online: https://www.gazzettaufficiale.it/eli/gu/2020/11/04/275/so/41/sg/pdf (accessed on 19 April 2021).
- Cento, V.; Alteri, C.; Merli, M.; Di Ruscio, F.; Tartaglione, L.; Rossotti, R.; Travi, G.; Vecchi, M.; Raimondi, A.; Nava, A.; et al. Effectiveness of infection-containment measures on SARS-CoV-2 seroprevalence and circulation from May to July 2020, in Milan, Italy. PLoS ONE 2020, 15, e0242765. [Google Scholar] [CrossRef]
- Fusco, F.M.; Pisaturo, M.; Iodice, V.; Bellopede, R.; Tambaro, O.; Parrella, G.; Di Flumeri, G.; Viglietti, R.; Pisapia, R.; Carleo, M.A.; et al. COVID-19 among healthcare workers in a specialist infectious diseases setting in Naples, Southern Italy: Results of a cross-sectional surveillance study. J. Hosp. Infect. 2020, 105, 596–600. [Google Scholar] [CrossRef] [PubMed]
- Paradiso, A.V.; De Summa, S.; Silvestris, N.; Tommasi, S.; Tufaro, A.; De Palma, G.; Larocca, A.M.V.; D’Addabbo, V.; Raffaele, D.; Cafagna, V.; et al. COVID-19 screening and monitoring of asymptomatic health workers with a rapid serological test. medRxiv 2020. Available online: https://www.medrxiv.org/content/10.1101/2020.05.05.20086017v1 (accessed on 7 February 2021). [CrossRef]
- Percivalle, E.; Cambiè, G.; Cassaniti, I.; Nepita, E.V.; Maserati, R.; Ferrari, A.; Di Martino, R.; Isernia, P.; Mojoli, F.; Bruno, R.; et al. Prevalence of SARS-CoV-2 specific neutralising antibodies in blood donors from the Lodi Red Zone in Lombardy, Italy, as at 6 April 2020. Euro. Surveill. 2020, 25, 2001031. [Google Scholar] [CrossRef]
- Vena, A.; Berruti, M.; Adessi, A.; Blumetti, P.; Brignole, M.; Colognato, R.; Gaggioli, G.; Giacobbe, D.R.; Bracci-Laudiero, L.; Magnasco, L.; et al. Prevalence of antibodies to SARS-CoV-2 in Italian adults and associated risk factors. J. Clin. Med. 2020, 9, 2780. [Google Scholar] [CrossRef]
- Di Giuseppe, G.; Pelullo, C.P.; Della Polla, G.; Pavia, M.; Angelillo, I.F. Exploring the willingness to accept SARS-CoV-2 vaccine in a University population in Southern Italy, September to November 2020. Vaccines 2021, 9, 275. [Google Scholar] [CrossRef]
- Di Giuseppe, G.; Pelullo, C.P.; Della Polla, G.; Montemurro, M.V.; Napolitano, F.; Pavia, M.; Angelillo, I.F. Surveying willingness towards SARS-CoV-2 vaccination of healthcare workers in Italy. Exp. Rev. Vacc. 2021. Available online: https://www.tandfonline.com/doi/abs/10.1080/14760584.2021.1922081?journalCode=ierv20 (accessed on 28 April 2021). [CrossRef]
- Stata Corporation. Stata Reference Manual Release 15.1; Stata Corporation: College Station, TX, USA, 2017. [Google Scholar]
- Ministero della Salute–Istituto Nazionale di Statistica. Primi Risultati Dell’indagine di Sieroprevalenza sul SARS-CoV-2. Available online: https://www.istat.it/it/files//2020/08/ReportPrimiRisultatiIndagineSiero.pdf (accessed on 7 February 2021).
- Gallian, P.; Pastorino, B.; Morel, P.; Chiaroni, J.; Ninove, L.; de Lamballerie, X. Lower prevalence of antibodies neutralizing SARS-CoV-2 in group O French blood donors. Antivir. Res. 2020, 181, 104880. [Google Scholar] [CrossRef]
- Fiore, J.R.; Centra, M.; De Carlo, A.; Granato, T.; Rosa, A.; Sarno, M.; De Feo, L.; Di Stefano, M.; Errico, M.; Caputo, S.L.; et al. Results from a survey in healthy blood donors in South Eastern Italy indicate that we are far away from herd immunity to SARS-CoV-2. J. Med. Virol. 2020, 93, 1739–1742. [Google Scholar] [CrossRef] [PubMed]
- Tilley, K.; Ayvazyan, V.; Martinez, L.; Nanda, N.; Kawaguchi, E.S.; O’Gorman, M.; Conti, D.; Gauderman, W.J.; Van Orman, S. A cross-sectional study examining the seroprevalence of Severe Acute Respiratory Syndrome Coronavirus 2 antibodies in a university student population. J. Adolesc. Health 2020, 67, 763–768. [Google Scholar] [CrossRef] [PubMed]
- Tuells, J.; Egoavil, C.M.; Pena Pardo, M.A.; Montagud, A.C.; Montagud, E.; Caballero, P.; Zapater, P.; Puig-Barberá, J.; Hurtado-Sanchez, J.A. Seroprevalence study and cross-sectional survey on COVID-19 for a plan to reopen the University of Alicante (Spain). Int. J. Environ. Res. Public Health 2021, 18, 1908. [Google Scholar] [CrossRef]
- Torres, J.P.; Piñera, C.; De La Maza, V.; Lagomarcino, A.J.; Simian, D.; Torres, B.; Urquidi, C.; Valenzuela, M.T.; O’Ryan, M. SARS-CoV-2 antibody prevalence in blood in a large school community subject to a Covid-19 outbreak: A cross-sectional study. Clin. Infect. Dis 2020, ciaa955. Available online: https://academic.oup.com/cid/advance-article/doi/10.1093/cid/ciaa955/5869860 (accessed on 7 April 2021). [CrossRef]
- Arnold, C.R.K.; Srinivasan, S.; Herzog, C.M.; Gontu, A.; Bharti, N.; Small, M.; Rogers, C.J.; Schade, M.M.; Kuchipudi, S.V.; Kapur, V.; et al. SARS-CoV-2 Seroprevalence in a University Community: A longitudinal study of the impact of student return to campus on infection risk among community members. medRxiv 2021. Available online: https://www.medrxiv.org/content/10.1101/2021.02.17.21251942v3 (accessed on 7 April 2021). [CrossRef]
- Havers, F.P.; Reed, C.; Lim, T.; Montgomery, J.M.; Klena, J.D.; Hall, A.J.; Fry, A.M.; Cannon, D.L.; Chiang, C.F.; Gibbons, A.; et al. Seroprevalence of Antibodies to SARS-CoV-2 in 10 sites in the United States, 23 March–12 May 2020. JAMA Intern. Med. 2020, 180, 1576–1586. [Google Scholar] [CrossRef]
- Adams, M.L.; Katz, D.L.; Grandpre, J. Population-based estimates of chronic conditions affecting risk for complications from Coronavirus Disease, United States. Emerg. Infect. Dis. 2020, 26, 1831–1833. [Google Scholar] [CrossRef]
- Jain, V.; Yuan, J. Predictive symptoms and comorbidities for severe COVID-19 and intensive care unit admission: A systematic review and meta-analysis. Int. J. Public Health 2020, 65, 533–546. [Google Scholar] [CrossRef]
- Seidu, S.; Gillies, C.; Zaccardi, F.; Kunutsor, S.K.; Hartmann-Boyce, J.; Yates, T.; Singh, A.K.; Davies, M.J.; Khunti, K. The impact of obesity on severe disease and mortality in people with SARS-CoV-2: A systematic review and meta-analysis. Endocrinol. Diabetes Metab. 2020, 4, e00176. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.K.; Gillies, C.L.; Singh, R.; Singh, A.; Chudasama, Y.; Coles, B.; Seidu, S.; Zaccardi, F.; Davies, M.J.; Khunti, K. Prevalence of co-morbidities and their association with mortality in patients with COVID-19: A systematic review and meta-analysis. Diabetes Obes. Metab. 2020, 22, 1915–1924. [Google Scholar] [CrossRef]
- Fakhroo, A.D.; Al Thani, A.A.; Yassine, H.M. Markers associated with COVID-19 susceptibility, resistance, and severity. Viruses 2020, 13, 45. [Google Scholar] [CrossRef]
- Ghoneim, S.; Butt, M.U.; Hamid, O.; Shah, A.; Asaad, I. The incidence of COVID-19 in patients with metabolic syndrome and non-alcoholic steatohepatitis: A population-based study. Metabol. Open 2020, 8, 100057. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Garduño, E. Obesity is the comorbidity more strongly associated for Covid-19 in Mexico. A case-control study. Obes. Res. Clin. Pract. 2020, 14, 375–379. [Google Scholar] [CrossRef] [PubMed]
- Jung, C.Y.; Park, H.; Kim, D.W.; Lim, H.; Chang, J.H.; Choi, Y.J.; Kim, S.W.; Chang, T.I. Association between Body Mass Index and risk of COVID-19: A nationwide case-control study in South Korea. Clin. Infect. Dis. 2020, ciaa1257. Available online: https://academic.oup.com/cid/advance-article/doi/10.1093/cid/ciaa1257/5897045 (accessed on 7 April 2021). [CrossRef]
- Popkin, B.M.; Du, S.; Green, W.D.; Beck, M.A.; Algaith, T.; Herbst, C.H.; Alsukait, R.F.; Alluhidan, M.; Alazemi, N.; Shekar, M. Individuals with obesity and COVID-19: A global perspective on the epidemiology and biological relationships. Obes. Rev. 2020, 21, e13128. [Google Scholar] [CrossRef] [PubMed]
- Vos, E.R.A.; den Hartog, G.; Schepp, R.M.; Kaaijk, P.; van Vliet, J.; Helm, K.; Smits, G.; Wijmenga-Monsuur, A.; Verberk, J.D.M.; van Boven, M.; et al. Nationwide seroprevalence of SARS-CoV-2 and identification of risk factors in the general population of the Netherlands during the first epidemic wave. J. Epidemiol. Community Health 2020. Available online: https://jech.bmj.com/content/early/2020/11/28/jech-2020-215678.long (accessed on 28 April 2021). [CrossRef] [PubMed]
- Barzin, A.; Schmitz, J.L.; Rosin, S.; Sirpal, R.; Almond, M.; Robinette, C.; Wells, S.; Hudgens, M.; Olshan, A.; Deen, S.; et al. SARS-CoV-2 seroprevalence among a Southern U.S. population indicates limited asymptomatic spread under physical distancing measures. mBio 2020, 11, e02426-20. [Google Scholar] [CrossRef] [PubMed]
- Al-Shamsi, H.O.; Alhazzani, W.; Alhuraiji, A.; Coomes, E.A.; Chemaly, R.F.; Almuhanna, M.; Wolff, R.A.; Ibrahim, N.K.; Chua, M.L.K.; Hotte, S.J.; et al. A practical approach to the management of cancer patients during the Novel Coronavirus Disease 2019 (COVID-19) pandemic: An International Collaborative Group. Oncologist 2020, 25, e936–e945. [Google Scholar] [CrossRef] [Green Version]
- Maringe, C.; Spicer, J.; Morris, M.; Purushotham, A.; Nolte, E.; Sullivan, R.; Rachet, B.; Aggarwal, A. The impact of the COVID-19 pandemic on cancer deaths due to delays in diagnosis in England, UK: A national, population-based, modelling study. Lancet Oncol. 2020, 21, 1023–1034. [Google Scholar] [CrossRef]
- Napoli, P.E.; Nioi, M.; d’Aloja, E.; Fossarello, M. Safety recommendations and medical liability in ocular surgery during the COVID-19 pandemic: An unsolved dilemma. J. Clin. Med. 2020, 9, 1403. [Google Scholar] [CrossRef]
- Wong, J.S.H.; Cheung, K.M.C. Impact of COVID-19 on orthopaedic and trauma service: An epidemiological study. J. Bone Joint Surg. Am. 2020, 102, e80. [Google Scholar] [CrossRef]
- Dimcheff, D.E.; Schildhouse, R.J.; Hausman, M.S.; Vincent, B.M.; Markovitz, E.; Chensue, S.W.; Deng, J.; McLeod, M.; Hagan, D.; Russell, J.; et al. Seroprevalence of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection among Veterans Affairs healthcare system employees suggests higher risk of infection when exposed to SARS-CoV-2 outside the work environment. Infect. Control Hosp. Epidemiol. 2021, 42, 392–398. [Google Scholar] [CrossRef]
- Steensels, D.; Oris, E.; Coninx, L.; Nuyens, D.; Delforge, M.L.; Heylen, L. Hospital-wide SARS-CoV-2 antibody screening in 3056 staff in a tertiary center in Belgium. JAMA 2020, 324, 195–197. [Google Scholar] [CrossRef]
- Paderno, A.; Fior, M.; Berretti, G.; Schreiber, A.; Grammatica, A.; Mattavelli, D.; Deganello, A. SARS-CoV-2 infection in health care workers: Cross-sectional analysis of an otolaryngology unit. Otolaryngol. Head Neck Surg. 2020, 163, 671–672. [Google Scholar] [CrossRef] [PubMed]
- Plebani, M.; Padoan, A.; Fedeli, U.; Schievano, E.; Vecchiato, E.; Lippi, G.; Lo Cascio, G.; Porru, S.; Palù, G. SARS-CoV-2 serosurvey in health care workers of the Veneto Region. Clin. Chem. Lab. Med. 2020, 58, 2107–2111. [Google Scholar] [CrossRef] [PubMed]
- Lastrucci, V.; Lorini, C.; Del Riccio, M.; Gori, E.; Chiesi, F.; Sartor, G.; Zanella, B.; Boccalini, S.; Bechini, A.; Puggelli, F.; et al. SARS-CoV-2 seroprevalence survey in people involved in different essential activities during the general lock-down phase in the province of Prato (Tuscany, Italy). Vaccines 2020, 8, 778. [Google Scholar] [CrossRef]
- Sotgiu, G.; Barassi, A.; Miozzo, M.; Saderi, L.; Piana, A.; Orfeo, N.; Colosio, C.; Felisati, G.; Davì, M.; Gerli, A.G.; et al. SARS-CoV-2 specific serological pattern in healthcare workers of an Italian COVID-19 forefront hospital. BMC Pulm. Med. 2020, 20, 203. [Google Scholar] [CrossRef]
- Martin, C.; Montesinos, I.; Dauby, N.; Gilles, C.; Dahma, H.; Van Den Wijngaert, S.; De Wit, S.; Delforge, M.; Clumeck, N.; Vandenberg, O. Dynamics of SARS-CoV-2 RT-PCR positivity and seroprevalence among high-risk healthcare workers and hospital staff. J. Hosp. Infect. 2020, 106, 102–106. [Google Scholar] [CrossRef] [PubMed]
- Iversen, K.; Bundgaard, H.; Hasselbalch, R.B.; Kristensen, J.H.; Nielsen, P.B.; Pries-Heje, M.; Knudsen, A.D.; Christensen, C.E.; Fogh, K.; Norsk, J.B.; et al. Risk of COVID-19 in health-care workers in Denmark: An observational cohort study. Lancet Infect. Dis. 2020, 20, 1401–1408. [Google Scholar] [CrossRef]
- Gudbjartsson, D.F.; Norddahl, G.L.; Melsted, P.; Gunnarsdottir, K.; Holm, H.; Eythorsson, E.; Arnthorsson, A.O.; Helgason, D.; Bjarnadottir, K.; Ingvarsson, R.F.; et al. Humoral immune response to SARS-CoV-2 in Iceland. N. Engl. J. Med. 2020, 383, 1724–1734. [Google Scholar] [CrossRef]
- Ibarrondo, F.J.; Fulcher, J.A.; Goodman-Meza, D.; Elliott, J.; Hofmann, C.; Hausner, M.A.; Ferbas, K.G.; Tobin, N.H.; Aldrovandi, G.M.; Yang, O.O. Rapid decay of Anti-SARS-CoV-2 antibodies in persons with mild Covid-19. N. Engl. J. Med. 2020, 383, 1085–1087. [Google Scholar] [CrossRef] [PubMed]
- Long, Q.X.; Tang, X.J.; Shi, Q.L.; Li, Q.; Deng, H.J.; Yuan, J.; Hu, J.L.; Xu, W.; Zhang, Y.; Lv, F.J.; et al. Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections. Nat. Med. 2020, 26, 1200–1204. [Google Scholar] [CrossRef]
- To, K.K.; Tsang, O.T.; Leung, W.S.; Tam, A.R.; Wu, T.C.; Lung, D.C.; Yip, C.C.; Cai, J.P.; Chan, J.M.; Chik, T.S.; et al. Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: An observational cohort study. Lancet Infect. Dis. 2020, 20, 565–574. [Google Scholar] [CrossRef] [Green Version]
- GeurtsvanKessel, C.H.; Okba, N.M.A.; Igloi, Z.; Bogers, S.; Embregts, C.W.E.; Laksono, B.M.; Leijten, L.; Rokx, C.; Rijnders, B.; Rahamat-Langendoen, J.; et al. An evaluation of COVID-19 serological assays informs future diagnostics and exposure assessment. Nat. Commun. 2020, 11, 3436. [Google Scholar] [CrossRef] [PubMed]
- Levine-Tiefenbrun, M.; Yelin, I.; Katz, R.; Herzel, E.; Golan, Z.; Schreiber, L.; Wolf, T.; Nadler, V.; Ben-Tov, A.; Kuint, J.; et al. Initial report of decreased SARS-CoV-2 viral load after inoculation with the BNT162b2 vaccine. Nat. Med. 2021. Available online: https://www.nature.com/articles/s41591-021-01316-7 (accessed on 7 April 2021). [CrossRef] [PubMed]
- Thompson, M.G.; Burgess, J.L.; Naleway, A.L.; Tyner, H.L.; Yoon, S.K.; Meece, J.; Olsho, L.E.W.; Caban-Martinez, A.J.; Fowlkes, A.; Lutrick, K.; et al. Interim estimates of vaccine effectiveness of BNT162b2 and mRNA-1273 COVID-19 vaccines in preventing SARS-CoV-2 infection among health care personnel, first responders, and other essential and frontline workers—Eight U.S. locations, December 2020–March 2021. Morb. Mortal. Wkly. Rep. 2021, 70, 495–500. [Google Scholar]
- Brochot, E.; Demey, B.; Handala, L.; François, C.; Duverlie, G.; Castelain, S. Comparison of different serological assays for SARS-CoV-2 in real life. J. Clin. Virol. 2020, 130, 104569. [Google Scholar] [CrossRef]
- Jääskeläinen, A.J.; Kuivanen, S.; Kekäläinen, E.; Loginov, R.; Kallio-Kokko, H.; Vapalahti, O.; Jarva, H.; Kurkela, S.; Lappalainen, M. Performance of six SARS-CoV-2 immunoassays in comparison with microneutralisation. J. Clin. Virol. 2020, 129, 104512. [Google Scholar] [CrossRef] [PubMed]
- Theel, E.S.; Harring, J.; Hilgart, H.; Granger, D. Performance characteristics of four high-throughput immunoassays for detection of IgG antibodies against SARS-CoV-2. J. Clin. Microbiol. 2020, 58, e01243-20. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Overall Population n = 2394 | SARS-CoV-2 Antibody Positive n = 140 | ||
---|---|---|---|---|
n | % | n | % | |
Gender | ||||
Female | 1423 | 59.4 | 83 | 5.9 |
Male | 971 | 40.6 | 57 | 5.8 |
χ2 = 0.001; p = 0.969 | ||||
Age, years | ||||
18–39 | 1446 | 60.4 | 89 | 6.1 |
40–59 | 735 | 30.7 | 42 | 5.7 |
≥60 | 213 | 8.9 | 9 | 4.2 |
χ2 = 1.29; p = 0.525 | ||||
Education level | ||||
College degree or higher | 1486 | 62.1 | 88 | 5.9 |
High school degree or less | 908 | 37.9 | 52 | 5.7 |
χ2 = 0.039; p = 0.844 | ||||
Marital status | ||||
Unmarried/widowed/separated/divorced | 1484 | 62 | 89 | 6 |
Married/cohabiting | 910 | 38 | 51 | 5.6 |
χ2 = 0.158; p = 0.691 | ||||
BMI | ||||
Overweight/obese | 860 | 35.9 | 54 | 6.3 |
Under/normal weight | 1534 | 64.1 | 86 | 5.7 |
χ2 = 0.453; p = 0.501 | ||||
Current smoking | ||||
Yes | 582 | 24.3 | 37 | 6.4 |
No | 1812 | 75.7 | 103 | 5.7 |
χ2 = 0.362; p = 0.547 | ||||
Having at least one chronic medical condition | ||||
Yes | 468 | 19.5 | 27 | 5.8 |
No | 1926 | 80.5 | 113 | 5.9 |
χ2 = 0.006; p = 0.963 | ||||
Population group | ||||
HCWs | 859 | 35.9 | 61 | 7.1 |
Biologists/Technicians | 76 | 3.2 | 5 | 6.6 |
Administrative staff | 415 | 17.3 | 26 | 6.3 |
Students | 723 | 30.2 | 40 | 5.5 |
Other | 67 | 2.8 | 2 | 3 |
Research fellows | 36 | 1.5 | 1 | 2.8 |
Faculty members | 218 | 9.1 | 5 | 2.3 |
Fisher’s exact p = 0.137 | ||||
Travel history outside Italy in the previous 10 months | ||||
Yes | 190 | 7.9 | 16 | 8.4 |
No | 2204 | 92.1 | 124 | 5.6 |
χ2 = 2.48; p = 0.115 | ||||
COVID-19 diagnosis before study | ||||
Yes | 40 | 1.7 | 30 | 75 |
No | 2354 | 98.3 | 110 | 4.7 |
χ2 = 353.3; p < 0.001 | ||||
Contact with a confirmed COVID-19 case | ||||
Yes | 474 | 19.8 | 37 | 7.8 |
No | 1920 | 80.2 | 103 | 5.4 |
χ2 = 4.11; p = 0.04 | ||||
Number of contacts with a confirmed COVID-19 case ^ | ||||
>2 | 51 | 10.8 | 5 | 9.8 |
2 | 95 | 20 | 9 | 9.5 |
1 | 328 | 69.2 | 23 | 7 |
Fisher’s exact p = 0.589 | ||||
Contact(s) with confirmed COVID-19 co-workers/study colleagues | ||||
Yes | 368 | 15.4 | 24 | 6.5 |
No | 2026 | 84.6 | 13 | 5.7 |
χ2 = 0.34; p = 0.559 | ||||
Contact(s) with confirmed COVID-19 family members/cohabitants | ||||
Yes | 63 | 2.6 | 14 | 22.2 |
No | 2331 | 97.4 | 126 | 5.4 |
χ2 = 31.5; p < 0.001 | ||||
Having had at least one COVID-19-compatible symptom in the previous ten months | ||||
Yes | 515 | 21.5 | 49 | 9.5 |
No | 1879 | 78.5 | 91 | 4.9 |
χ2 = 16.02; p < 0.001 | ||||
Having had at least one symptom among fever, cough, dyspnea, loss of taste or smell in the previous ten months | ||||
Yes | 274 | 11.4 | 35 | 12.8 |
No | 2120 | 88.6 | 105 | 4.9 |
χ2 = 26.95; p < 0.001 | ||||
Having undergone at least one screening test with RT-PCR for SARS-CoV-2 detection in the previous ten months | ||||
Yes | 1111 | 46.4 | 71 | 6.4 |
No | 1283 | 53.6 | 69 | 5.4 |
χ2 = 1.108; p = 0.292 | ||||
Month of testing | ||||
December | 127 | 5.3 | 11 | 8.7 |
November | 752 | 31.4 | 56 | 7.5 |
October | 1110 | 46.4 | 61 | 5.5 |
September | 405 | 16.9 | 12 | 2.9 |
χ2 trend = 11.41; p < 0.001 |
Variable | OR | SE | 95% CI | p |
---|---|---|---|---|
Model 1. Positivity to SARS-CoV-2 antibodies (Sample size = 2394) | ||||
Log likelihood = −499.85, χ2 = 66.88(14 df), p < 0.0001 | ||||
Having had at least one symptom among fever, cough, dyspnea, loss of taste or smell in the previous ten months | 2.98 | 0.65 | 1.94–4.56 | <0.001 |
Contact(s) with confirmed COVID-19 family members/cohabitants | 8.58 | 6.07 | 2.14–34.34 | 0.002 |
Month of testing (September through December 2020) | 1.4 | 0.15 | 1.13–1.74 | 0.002 |
Population group | ||||
HCWs | 1 * | |||
Faculty member | 0.3 | 0.14 | 0.12–0.76 | 0.011 |
Students | 0.66 | 0.14 | 0.43–1.01 | 0.051 |
Research fellows | 0.36 | 0.37 | 0.05–2.75 | 0.327 |
Other | 0.3 | 0.22 | 0.07–1.29 | 0.107 |
Administrative staff | Backward elimination | |||
Technicians/Biologists | Backward elimination | |||
Travel history outside Italy in the previous ten months | 1.69 | 0.49 | 0.96–2.98 | 0.067 |
Number of contacts with a confirmed COVID-19 case | ||||
None | 1 * | |||
1 | 0.33 | 0.23 | 0.09–1.26 | 0.107 |
2 | 0.42 | 0.33 | 0.09–1.94 | 0.266 |
>2 | 0.29 | 0.28 | 0.04–1.99 | 0.209 |
Contact(s) with confirmed COVID-19 co-workers/study colleagues | 2.45 | 1.71 | 0.63–9.53 | 0.196 |
Age | ||||
18–39 years | 1 * | |||
>59 years | 0.64 | 0.24 | 0.31–1.32 | 0.233 |
40–59 years | Backward elimination | |||
BMI | ||||
Under/normal weight | 1 * | |||
Overweight/obese | 1.23 | 0.23 | 0.85–1.77 | 0.264 |
Model 2. Positivity for SARS-CoV-2 antibodies among HCWs (Sample size = 859) | ||||
Log likelihood = −194.17, χ2 = 51.89(12 df), p < 0.0001 | ||||
Having had at least one symptom among fever, cough, dyspnea, loss of taste or smell in the previous ten months | 4.47 | 1.57 | 2.25–8.89 | <0.001 |
Month of testing (September through December 2020) | 1.65 | 0.27 | 1.19–2.28 | 0.003 |
Professional role | ||||
Physicians | 1 * | |||
Nurses | 2.1 | 0.73 | 1.07–4.13 | 0.032 |
Other (nurse assistants, technicians, laboratory assistants) | 2.57 | 0.9 | 1.29–5.14 | 0.007 |
Contact(s) with confirmed COVID-19 family members/cohabitants | 8.5 | 6.87 | 1.74–41.5 | 0.008 |
Age | ||||
18–39 years | 1 * | |||
40–59 years | 0.56 | 0.19 | 0.28–1.09 | 0.086 |
>59 years | 0.59 | 0.28 | 0.23–1.51 | 0.276 |
Male HCWs | 0.63 | 0.18 | 0.36–1.11 | 0.109 |
Number of contacts with a confirmed COVID-19 case | ||||
None | 1 * | |||
1 | 0.37 | 0.29 | 0.08–1.71 | 0.205 |
2 | 0.45 | 0.41 | 0.07–2.72 | 0.385 |
>2 | 0.38 | 0.4 | 0.05–3.05 | 0.365 |
Contact(s) with confirmed COVID-19 co-workers | 2.18 | 1.72 | 0.46–10.22 | 0.325 |
Characteristic | Overall Population n = 859 | SARS-CoV-2 Antibody Positive n = 61 | ||
---|---|---|---|---|
n | % | n | % | |
Gender | ||||
Male | 367 | 42.7 | 31 | 8.4 |
Female | 492 | 57.3 | 30 | 6.1 |
χ2 = 1.76; p = 0.185 | ||||
Age, years | ||||
18–39 | 508 | 59.1 | 40 | 7.9 |
40–59 | 249 | 29 | 15 | 6 |
≥60 | 102 | 11.9 | 6 | 5.9 |
χ2 = 1.13; p = 0.569 | ||||
Education level | ||||
High school degree or less | 101 | 11.8 | 11 | 10.9 |
College degree or higher | 758 | 88.2 | 50 | 6.6 |
χ2 = 2.49; p = 0.117 | ||||
Marital status | ||||
Unmarried/widowed/separated/divorced | 460 | 53.5 | 33 | 7.2 |
Married/cohabiting | 399 | 46.5 | 28 | 7 |
χ2 = 0.16; p = 0.691 | ||||
BMI | ||||
Overweight/obese | 309 | 36 | 24 | 7.8 |
Under/normal weight | 550 | 64 | 37 | 6.7 |
χ2 = 2.22; p = 0.329 | ||||
Current smoking | ||||
Yes | 241 | 28.1 | 14 | 5.8 |
No | 618 | 71.9 | 47 | 7.6 |
χ2 = 0.36; p = 0.547 | ||||
Professional role | ||||
Others (nurse assistants, technicians, laboratory assistants) | 170 | 19.8 | 17 | 10 |
Nurses | 224 | 26.1 | 20 | 8.9 |
Physicians | 465 | 54.1 | 24 | 5.2 |
χ2 = 5.95; p = 0.051 | ||||
Current working area | ||||
Critical care/COVID-19 units | 108 | 12.6 | 9 | 8.3 |
Surgical | 260 | 30.3 | 21 | 8.1 |
Laboratory and Diagnostics | 121 | 14.1 | 9 | 7.4 |
Medical | 370 | 43.1 | 22 | 5.9 |
χ2 = 1.39; p = 0.707 | ||||
Having at least one chronic medical condition | ||||
Yes | 175 | 20.4 | 13 | 7.4 |
No | 684 | 79.6 | 48 | 7 |
χ2 = 0.03; p = 0.85 | ||||
Travel history outside Italy in the previous ten months | ||||
Yes | 48 | 5.6 | 4 | 8.3 |
No | 811 | 94.4 | 57 | 7 |
Fisher’s exact p = 0.769 | ||||
COVID-19 diagnosis before study | ||||
Yes | 33 | 3.8 | 24 | 72.7 |
No | 826 | 96.2 | 37 | 4.5 |
χ2 = 224.1; p < 0.001 | ||||
Contact with a confirmed COVID-19 case | ||||
Yes | 331 | 38.5 | 27 | 8.2 |
No | 528 | 61.5 | 34 | 6.5 |
χ2 = 0.91; p = 0.340 | ||||
Number of contacts with a confirmed COVID-19 case ^ | ||||
>2 | 39 | 11.8 | 4 | 10.3 |
2 | 70 | 21.1 | 6 | 8.6 |
1 | 222 | 67.1 | 17 | 7.7 |
Fisher’s exact p = 0.749 | ||||
Contact(s) with confirmed COVID-19 co-workers | ||||
Yes | 252 | 29.3 | 17 | 6.7 |
No | 607 | 70.7 | 44 | 7.2 |
χ2 = 0.06; p = 0.794 | ||||
Contact(s) with confirmed COVID-19 patients | ||||
Yes | 69 | 7.8 | 3 | 4.4 |
No | 790 | 92.2 | 58 | 7.3 |
Fisher’s exact p = 0.468 | ||||
Contact(s) with confirmed COVID-19 family members/cohabitants | ||||
Yes | 35 | 4.1 | 10 | 28.6 |
No | 824 | 95.9 | 51 | 6.2 |
Fisher’s exact p < 0.001 | ||||
Having had at least one COVID-19-compatible symptom in the previous ten months | ||||
Yes | 188 | 21.9 | 23 | 12.2 |
No | 671 | 78.1 | 38 | 5.7 |
χ2 = 9.61; p = 0.002 | ||||
Having had at least one symptom among fever, cough, dyspnea, loss of taste or smell in the previous ten months | ||||
Yes | 78 | 9.8 | 16 | 20.8 |
No | 781 | 90.2 | 45 | 5.7 |
χ2 = 23.4; p < 0.001 | ||||
Having undergone at least one screening test with RT-PCR for SARS-CoV-2 detection in the previous ten months | ||||
Yes | 782 | 91.1 | 49 | 6.3 |
No | 77 | 8.9 | 12 | 15.6 |
χ2 = 9.23; p = 0.002 | ||||
Month of testing | ||||
December | 94 | 10.9 | 10 | 10.6 |
November | 389 | 41.8 | 32 | 8.9 |
October | 229 | 26.7 | 14 | 6.1 |
September | 177 | 20.6 | 5 | 2.8 |
χ2 trend = 8.64; p = 0.003 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Napolitano, F.; Di Giuseppe, G.; Montemurro, M.V.; Molinari, A.M.; Donnarumma, G.; Arnese, A.; Pavia, M.; Angelillo, I.F. Seroprevalence of SARS-CoV-2 Antibodies in Adults and Healthcare Workers in Southern Italy. Int. J. Environ. Res. Public Health 2021, 18, 4761. https://doi.org/10.3390/ijerph18094761
Napolitano F, Di Giuseppe G, Montemurro MV, Molinari AM, Donnarumma G, Arnese A, Pavia M, Angelillo IF. Seroprevalence of SARS-CoV-2 Antibodies in Adults and Healthcare Workers in Southern Italy. International Journal of Environmental Research and Public Health. 2021; 18(9):4761. https://doi.org/10.3390/ijerph18094761
Chicago/Turabian StyleNapolitano, Francesco, Gabriella Di Giuseppe, Maria Vittoria Montemurro, Anna Maria Molinari, Giovanna Donnarumma, Antonio Arnese, Maria Pavia, and Italo Francesco Angelillo. 2021. "Seroprevalence of SARS-CoV-2 Antibodies in Adults and Healthcare Workers in Southern Italy" International Journal of Environmental Research and Public Health 18, no. 9: 4761. https://doi.org/10.3390/ijerph18094761
APA StyleNapolitano, F., Di Giuseppe, G., Montemurro, M. V., Molinari, A. M., Donnarumma, G., Arnese, A., Pavia, M., & Angelillo, I. F. (2021). Seroprevalence of SARS-CoV-2 Antibodies in Adults and Healthcare Workers in Southern Italy. International Journal of Environmental Research and Public Health, 18(9), 4761. https://doi.org/10.3390/ijerph18094761