Estimation of Undetected Asymptomatic COVID-19 Cases in South Korea Using a Probabilistic Model
Abstract
:1. Introduction
2. Methods
2.1. Data
2.2. Statistical Analysis
3. Results
3.1. First Scenario: Inference from Voluntary Screenings in Temporary Screening Centers
3.2. Second Scenario: Inference from Random Sampling of Each Household from Total Population in Pohang, South Korea
3.3. Estimation of the Proportion of Undetected Asymptomatic Cases
3.4. Estimation of Total COVID-19 Patients in South Korea
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Monshi, M.M.A.; Poon, J.; Chung, V. Deep learning in generating radiology reports: A survey. Artif. Intell. Med. 2020, 106, 101878. [Google Scholar] [CrossRef] [PubMed]
- Richardson, S.; Hirsch, J.S.; Narasimhan, M.; Crawford, J.M.; McGinn, T.; Davidson, K.W.; Barnaby, D.P.; Becker, L.B.; Chelico, J.D.; Cohen, S.L.; et al. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City area. JAMA 2020, 323, 2052–2059. [Google Scholar] [CrossRef] [PubMed]
- Susilo, A.; Rumende, C.M.; Pitoyo, C.W.; Santoso, W.D.; Yulianti, M.; Herikurniawan, H.; Sinto, R.; Singh, G.; Nainggolan, L.; Nelwan, E.J.; et al. Coronavirus disease 2019: Tinjauan literatur terkini. J. Penyakit Dalam Indones. 2020, 7, 45–67. [Google Scholar] [CrossRef]
- Diagnosis and treatment plan of Corona Virus Disease 2019 (tentative sixth edition). Glob. Health J. 2020, 4, 1–5. [CrossRef] [PubMed]
- WHO. Laboratory Testing for 2019 Novel Coronavirus (2019-nCoV) in Suspected Human Cases: Interim Guidance, 14 January 2020; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- Gao, Z.; Xu, Y.; Sun, C.; Wang, X.; Guo, Y.; Qiu, S.; Ma, K. A Systematic Review of Asymptomatic Infections with COVID-19. J. Microbiol. Immunol. Infect. 2021, 54, 12–16. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wang, A.; Yi, B.; Ding, K.Q.; Wang, H.B.; Wamg, J.M.; Shi, H.B.; Wang, S.J.; Xu, G.Z. The epidemiological characteristics of infection in close contacts of COVID-19 in Ningbo city. Chin. J. Epidemiol. 2020, 41, 668–672. [Google Scholar]
- Shim, E.; Tariq, A.; Choi, W.; Lee, Y.; Chowell, G. Transmission potential and severity of COVID-19 in South Korea. Int. J. Infect. Dis. 2020, 93, 339–344. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.J.; Choe, Y.J.; Park, O.; Park, S.Y.; Kim, Y.-M.; Kim, J.; Kweon, S.; Woo, Y.; Gwack, J.; Kim, S.S.; et al. COVID-19 National Emergency Response Center, Epidemiology and Case Management Team. Contact tracing during coronavirus disease outbreak, South Korea, 2020. Emerg. Infect. Dis. 2020, 26, 2465–2468. [Google Scholar] [CrossRef] [PubMed]
- Park, S.Y.; Kim, Y.-M.; Yi, S.; Lee, S.; Na, B.-J.; Kim, C.B.; Kim, J.-I.; Kim, H.S.; Park, Y.; Huh, I.S.; et al. Coronavirus disease outbreak in call center, South Korea. Emerg. Infect. Dis. 2020, 26, 1666–1670. [Google Scholar] [CrossRef] [PubMed]
- Korea Disease Control and Prevention Agency. Available online: http://www.kdca.go.kr/ (accessed on 13 April 2021).
- Apio, C.; Kamruzzaman, M.; Park, T. Confidence intervals for the COVID-19 neutralizing antibody retention rate in the Korean population. Genom. Informatics 2020, 18. [Google Scholar] [CrossRef] [PubMed]
- Kamruzzaman, M.; Apio, C.; Park, T. Updated confidence intervals for the COVID-19 antibody retention rate in the Korean population. Genom. Informatics 2020, 18, e45. [Google Scholar] [CrossRef] [PubMed]
- Nishiura, H.; Kobayashi, T.; Miyama, T.; Suzuki, A.; Jung, S.-M.; Hayashi, K.; Kinoshita, R.; Yang, Y.; Yuan, B.; Akhmetzhanov, A.R.; et al. Estimation of the asymptomatic ratio of novel coronavirus infections (COVID-19). Int. J. Infect. Dis. 2020, 94, 154–155. [Google Scholar] [CrossRef] [PubMed]
- Mahajan, A.; Solanki, R.; Sivadas, N. Estimation of undetected symptomatic and asymptomatic cases of COVID-19 infection and prediction of its spread in the USA. J. Med Virol. 2021, 93, 3202–3210. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Magal, P.; Webb, G. Predicting the number of reported and unreported cases for the COVID-19 epidemics in China, South Korea, Italy, France, Germany and United Kingdom. J. Theor. Biol. 2021, 509, 110501. [Google Scholar] [CrossRef] [PubMed]
- Vaid, S.; Cakan, C.; Bhandari, M. Using machine learning to estimate unobserved COVID-19 infections in North America. J. Bone Jt. Surg. Am. Vol. 2020, 102, e70. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Health and Welfare of South Korea. Available online: http://ncov.mohw.go.kr/ (accessed on 13 April 2021).
- Saltelli, A. Sensitivity analysis for importance assessment. Risk Anal. 2002, 22, 579–590. [Google Scholar] [CrossRef] [PubMed]
- Napoli, P.E.; Nioi, M. Global Spread of Coronavirus Disease 2019 and Malaria: An Epidemiological Paradox in the Early Stage of A Pandemic. J. Clin. Med. 2020, 9, 1138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nioi, M.; Napoli, P.E.; Fossarello, M.; D’Aloja, E. Autopsies and Asymptomatic Patients During the COVID-19 Pandemic: Balancing Risk and Reward. Front. Public Heal. 2020, 8, 595405. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.L.; Mertens, A.N.; Crider, Y.S.; Nguyen, A.; Pokpongkiat, N.N.; Djajadi, S.; Seth, A.; Hsiang, M.S.; Colford, J.M., Jr.; Reingold, A.; et al. Substantial underestimation of SARS-CoV-2 infection in the United States. Nat. Commun. 2020, 11, 1–10. [Google Scholar] [CrossRef] [PubMed]
Disease | Symptoms | Screening | Test Result | Factorized Probabilities |
---|---|---|---|---|
1 | 1 | 1 | 1 | |
1 | 1 | 1 | 0 | 0 |
1 | 1 | 0 | - | |
1 | 0 | 1 | 1 | |
1 | 0 | 1 | 0 | 0 |
1 | 0 | 0 | - | |
0 | 1 | 1 | 1 | 0 |
0 | 1 | 1 | 0 | |
0 | 1 | 0 | - | |
0 | 0 | 1 | 1 | 0 |
0 | 0 | 1 | 0 | |
0 | 0 | 0 | - |
Probability | Explanation | Estimates from MOHW Data |
---|---|---|
P (Sc = 0) | proportion of unscreened persons in the total population | 0.8923 |
P (Sc = 1) | proportion of screened persons in the total population | 0.1077 |
P (T = 0| Sc = 1) | proportion of negative test result given that person is screened | 0.9860 |
P (T = 1 | Sc = 1) | proportion of positive test result given that person is screened | 0.0140 |
P (Sy = 0 | T = 1) | proportion of symptomatic given that person is positive | 0.4000 |
P (Sy = 1 | T = 1) | proportion of asymptomatic given that person is positive | 0.6000 |
P (T = 0) | 0.1062 | |
P (T = 1) | 0.0015 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, C.; Apio, C.; Park, T. Estimation of Undetected Asymptomatic COVID-19 Cases in South Korea Using a Probabilistic Model. Int. J. Environ. Res. Public Health 2021, 18, 4946. https://doi.org/10.3390/ijerph18094946
Lee C, Apio C, Park T. Estimation of Undetected Asymptomatic COVID-19 Cases in South Korea Using a Probabilistic Model. International Journal of Environmental Research and Public Health. 2021; 18(9):4946. https://doi.org/10.3390/ijerph18094946
Chicago/Turabian StyleLee, Chanhee, Catherine Apio, and Taesung Park. 2021. "Estimation of Undetected Asymptomatic COVID-19 Cases in South Korea Using a Probabilistic Model" International Journal of Environmental Research and Public Health 18, no. 9: 4946. https://doi.org/10.3390/ijerph18094946
APA StyleLee, C., Apio, C., & Park, T. (2021). Estimation of Undetected Asymptomatic COVID-19 Cases in South Korea Using a Probabilistic Model. International Journal of Environmental Research and Public Health, 18(9), 4946. https://doi.org/10.3390/ijerph18094946