Water–Food Nexus Assessment in Agriculture: A Systematic Review
Abstract
:1. Introduction
1.1. The Water–Energy–Food Nexus (WEF)
1.2. The Water–Food Nexus (WF)
2. Materials and Methods
2.1. Review Process
2.2. Inclusion and Exclusion Criteria
2.3. Data Extraction
3. Results and Discussion
3.1. Evaluation Models of the WF Nexus
3.1.1. Common Agricultural Policy Regionalized Impact (CAPRI)
3.1.2. Global Food and Water System (GFWS)
3.1.3. Life Cycle Assessment (LCA)
3.1.4. Soil and Water Assessment Tool (SWAT)
3.1.5. Soil Water Atmosphere Plant (SWAP)
3.1.6. Water Evaluation and Planning (WEAP)
4. Conclusions
Future Directions for Nexus Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Software | Objective | Indicator | Crop | Reported Value | Country | Reference |
---|---|---|---|---|---|---|
Common Agricultural Policy Regionalized Impact (CAPRI) | Agricultural and water modeling | IRWUri = Σwact CAWUri,wact × LEVLri,wact 1 | 50 agricultural products | IRWU: 3633.93 E6 m3 | United States | [48,49] |
Global Food and Water System (GFWS) | Assessment of food and water availability | Wkj = Rkj × Llkj × Ej 2 | wheat, rice, corn, sorghum, barley, oats, and soybeans | water consumed by crop: 4 × 10−7 m3/ha | 20 countries | [51] |
Life Cycle Assessment (LCA) | Water consumption | Crop-rotation | wheat grain maize grain | 437.5 m3/t of grain 232.2 m3/t of grain | China | [54] |
Water consumption | Water scarcity footprint (rice) = Irrigation water use (rice) × WSI 3 | paddy rice | 1.24 m3 H2Oeq/kg paddy rice | Thailand | [55] | |
Water consumption | Environmental performance | tomatoes cherry tomatoes peppers zucchinis melons | 147.8 m3 111.8 m3 172.4 m3 88.9 m3 77.7 m3 | Italy | [57] | |
Irrigated with groundwater and reclaimed water | GW: irrigated crops with groundwater and RW: reclaimed water | corn soybean wheat | GW:0.44, RW: 0.37 GW: 0.39, RW: 0.37 GW: 0.64, RW: 0.56 | China | [71] | |
Soil and Water Assessment Tool (SWAT) | Water footprint | SWt = SW0 + Σ (Rday − Qsurf − Ea − Wseep − Qgw) 4 | wheat corn sunflower | 1.036 m3/kg 0.774 m3/kg 1.510 m3/kg | China | [39] |
Water requirement | wstr = 1 − Et,act/Et = 1 − Wacualup/Et 5 | rice, potato, sugar beet, winter wheat, oats | Deficit irrigation (25–48%) Reduced yield (0–3.3%) | India, Germany, Chile, and Vietnam | [63] | |
Evaluation of change in irrigation systems | CPD = ΣYi × Ai/ΣVi × Ai 6 | wheat, apple, potato, tomato, sugar beet, alfalfa, and barley | Base scenario CPDiᴘ: 0.87 kg/m3 CPDᴇᴛ: 1.78 kg/m3 Increasing irrigation CPDiᴘ: 1.25 kg/m3 CPDᴇᴛ: 2.06 kg/m3 | Irán | [31] | |
Basin-scale hydrological model | WYSF: lower harvest index HVSTI: harvest index for optimal growing conditions | grain sorghum sweet sorghum | HVSTI: 0.45 WYSF: 0.25 HVSTI: 1.0 WYSF: 1.0 | EE.UU. | [64] | |
Soil–Water-Atmosphere-Plant (SWAP) | Water cycle assessment | ∂θ/∂t = ∂/∂z [K(h) (∂h/∂z + 1)] − S(h) 7 | corn and wheat | saving water: 190 mm/yr groundwater recharge: 16.1 mm/yr | China | [72] |
Land management and water use | Sp(z) = Lroot (z)/∫0-Droot Lroot(z)dz 8 | grassland and corn | Holland | [73] | ||
Irrigation scheduling and groundwater recharge | C(h) ∂h/∂t = ∂/∂z [K(h)(∂h/∂z + 1)] − Sa(z) 9 | corn and wheat | optimal irrigation of 130, 260 y 390 mm in hydrological years of 25%, 50%, and 75%, respectively | China | [68] | |
Performance and water use evaluation | ∂θ/∂t = ∂/∂z [K(h) (∂h/∂z + 1)] − S(h) 7 | corn | irrigation: 229 mm–460 mm | China | [65] | |
Water Evaluation And Planning (WEAP) | Reduction of crop water requirements | ADW: Alternate Wetting and Drying Ten years’ average | rice | 54.88 Mm3 | Philippines | [70] |
Evapotranspiration analysis | 1981–2008 and 2011–2014 | corn rice wheat | 114mm 164mm 38mm | California | [74] | |
Assessment of water availability | Average annual irrigation demand for water | yams, cassava, cocoa, rice, maize and tomatoes. | ~690–748 Mm3/year | Africa | [42] |
References
- Maja, M.M.; Ayano, S.F. The Impact of Population Growth on Natural Resources and Farmers’ Capacity to Adapt to Climate Change in Low-Income Countries. Earth Syst. Environ. 2021. [Google Scholar] [CrossRef]
- Rasul, G. Managing the food, water, and energy nexus for achieving the Sustainable Development Goals in South Asia. Environ. Dev. 2016, 18, 14–25. [Google Scholar] [CrossRef] [Green Version]
- Sapkota, A.R. Water reuse, food production and public health: Adopting transdisciplinary, systems-based approaches to achieve water and food security in a changing climate. Environ. Res. 2019, 171, 576–580. [Google Scholar] [CrossRef]
- Ferroukhi, R.; Nagpal, D.; López, P.Á.; Hodges, T.; Mohtar, R.; Daher, B.; Mohtar, S.; Keulertz, M. Renewable Energy in the Water, Energy & Food Nexus; International Renewable Energy Agency: Masdar City, Abu Dhabi, 2015; pp. 24–35. [Google Scholar]
- Mannan, M.; Al-Ansari, T.; Mackey, H.R.; Al-Ghamdi, S.G. Quantifying the energy, water and food nexus: A review of the latest developments based on life-cycle assessment. J. Clean. Prod. 2018, 193, 300–314. [Google Scholar] [CrossRef]
- Zapata-Sierra, A.J.; Manzano-Agugliaro, F. Controlled deficit irrigation for orange trees in Mediterranean countries. J. Clean. Prod. 2017, 162, 130–140. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y.; Shi, K.; Yao, X. Research development, current hotspots, and future directions of water research based on MODIS images: A critical review with a bibliometric analysis. Environ. Sci. Pollut. Res. 2017, 24. [Google Scholar] [CrossRef]
- GWP. Seguridad Hídrica y Alimentaria: El Nexo Entre el Agua y la Producción de Alimentos. 2012, pp. 8–41. Available online: gwp.org-globalassets-global-gwp-cam_files-memoria-foro-gwp-2012-fin.pdf (accessed on 23 September 2020).
- Abdelkader, A.; Elshorbagy, A.; Tuninetti, M.; Laio, F.; Ridolfi, L.; Fahmy, H.; Hoekstra, A.Y. National water, food, and trade modeling framework: The case of Egypt. Sci. Total Environ. 2018, 639, 485–496. [Google Scholar] [CrossRef]
- Lubis, R.F.; Delinom, R.; Martosuparno, S.; Bakti, H. Water-Food Nexus in Citarum Watershed, Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2018, 118, 012023. [Google Scholar] [CrossRef]
- McNeill, K.; Macdonald, K.; Singh, A.; Binns, A.D. Food and water security: Analysis of integrated modeling platforms. Agric. Water Manag. 2017, 194, 100–112. [Google Scholar] [CrossRef]
- Ren, D.; Yang, Y.; Yang, Y.; Richards, K.; Zhou, X. Land-Water-Food Nexus and indications of crop adjustment for water shortage solution. Sci. Total Environ. 2018, 626, 11–21. [Google Scholar] [CrossRef]
- Yillia, P.T. Water-Energy-Food nexus: Framing the opportunities, challenges and synergies for implementing the SDGs. Osterr. Wasser-Und Abfallwirtsch. 2016, 68, 86–98. [Google Scholar] [CrossRef]
- Hoff, H. Understanding_the_Nexus: Background Paper. In Proceedings of the Bonn2011 Nexus Conference: The Water, Energy and Food Security Nexus, Bonn, Germany, 16–18 November 2011; Available online: https://mediamanager.sei.org/documents/Publications/SEI-Paper-Hoff-UnderstandingTheNexus-2011.pdf (accessed on 17 September 2020).
- Bieber, N.; Ker, J.H.; Wang, X.; Triantafyllidis, C.; van Dam, K.H.; Koppelaar, R.H.E.M.; Shah, N. Sustainable planning of the energy-water-food nexus using decision making tools. Energy Policy 2018, 113, 584–607. [Google Scholar] [CrossRef]
- Artioli, F.; Acuto, M.; McArthur, J. The water-energy-food nexus: An integration agenda and implications for urban governance. Political Geogr. 2017, 61, 215–223. [Google Scholar] [CrossRef]
- Kurian, M. The water-energy-food nexus: Trade-offs, thresholds and transdisciplinary approaches to sustainable development. Environ. Sci. Policy 2017, 68, 97–106. [Google Scholar] [CrossRef]
- Biggs, E.M.; Bruce, E.; Boruff, B.; Duncan, J.M.A.; Horsley, J.; Pauli, N.; McNeill, K.; Neef, A.; Van Ogtrop, F.; Curnow, J.; et al. Sustainable development and the water-energy-food nexus: A perspective on livelihoods. Environ. Sci. Policy 2015, 54, 389–397. [Google Scholar] [CrossRef] [Green Version]
- Simpson, G.B.; Jewitt, G.P.W. The development of the water-energy-food nexus as a framework for achieving resource security: A review. Front. Environ. Sci. 2019, 7. [Google Scholar] [CrossRef] [Green Version]
- Endo, A.; Tsurita, I.; Burnett, K.; Orencio, P.M. A review of the current state of research on the water, energy, and food nexus. J. Hydrol. Reg. Stud. 2017, 11, 20–30. [Google Scholar] [CrossRef] [Green Version]
- Leck, H.; Conway, D.; Bradshaw, M.; Rees, J. Tracing the Water-Energy-Food Nexus: Description, Theory and Practice. Geogr. Compass 2015, 9, 445–460. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Chen, X.; Li, Y.; Ding, W.; Fu, G. Water-energy-food nexus: Concepts, questions and methodologies. J. Clean. Prod. 2018, 195, 625–639. [Google Scholar] [CrossRef]
- Albrecht, T.R.; Crootof, A.; Scott, C.A. The Water-Energy-Food Nexus: A systematic review of methods for nexus assessment. Environ. Res. Lett. 2018, 13. [Google Scholar] [CrossRef]
- Endo, A.; Yamada, M.; Miyashita, Y.; Sugimoto, R.; Ishii, A.; Nishijima, J.; Fujii, M.; Kato, T.; Hamamoto, H.; Kimura, M.; et al. Dynamics of water–energy–food nexus methodology, methods, and tools. Curr. Opin. Environ. Sci. Health 2020, 13, 46–60. [Google Scholar] [CrossRef]
- Gain, A.K.; Giupponi, C.; Benson, D. The water–energy–food (WEF) security nexus: The policy perspective of Bangladesh. Water Int. 2015, 40, 895–910. [Google Scholar] [CrossRef] [Green Version]
- Kaddoura, S.; El Khatib, S. Review of water-energy-food Nexus tools to improve the Nexus modelling approach for integrated policy making. Environ. Sci. Policy 2017, 77, 114–121. [Google Scholar] [CrossRef]
- Del Borghi, A.; Moreschi, L.; Gallo, M. Circular economy approach to reduce water–energy–food nexus. Curr. Opin. Environ. Sci. Health 2020, 13, 23–28. [Google Scholar] [CrossRef]
- Dargin, J.; Daher, B.; Mohtar, R.H. Complexity versus simplicity in water energy food nexus (WEF) assessment tools. Sci. Total Environ. 2019, 650, 1566–1575. [Google Scholar] [CrossRef]
- Harwood, S.A. In search of a (WEF) nexus approach. Environ. Sci. Policy 2018, 83, 79–85. [Google Scholar] [CrossRef] [Green Version]
- Rosales-Asensio, E.; de la Puente-Gil, Á.; García-Moya, F.-J.; Blanes-Peiró, J.; de Simón-Martín, M. Decision-making tools for sustainable planning and conceptual framework for the energy–water–food nexus. Energy Rep. 2020, 6, 4–15. [Google Scholar] [CrossRef]
- Ahmadzadeh, H.; Morid, S.; Delavar, M.; Srinivasan, R. Using the SWAT model to assess the impacts of changing irrigation from surface to pressurized systems on water productivity and water saving in the Zarrineh Rud catchment. Agric. Water Manag. 2016, 175, 15–28. [Google Scholar] [CrossRef]
- Nations, U. Resolution adopted by the General Assembly on 25 September 2015. In Proceedings of the General Assembly Seventieth Session; United Nations: New York, NY, USA, 2015; p. 35. [Google Scholar]
- Mortada, S.; Abou Najm, M.; Yassine, A.; El Fadel, M.; Alamiddine, I. Towards sustainable water-food nexus: An optimization approach. J. Clean. Prod. 2018, 178, 408–418. [Google Scholar] [CrossRef]
- Smajgl, A.; Ward, J.; Pluschke, L. The water–food–energy Nexus—Realising a new paradigm. J. Hydrol. 2016, 533, 533–540. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; The PRISMA Group. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [Green Version]
- Hunt, R.G.; Franklin, W.E.; Hunt, R.G. LCA—How it came about. Int. J. Life Cycle Assess. 1996, 1, 4–7. [Google Scholar] [CrossRef]
- Sieber, J.; Purkey, D. Water evaluation and planning system user guide. Stockh. Environ. Inst. 2015, 385. Available online: https://www.weap21.org/downloads/WEAP_User_Guide.pdf (accessed on 25 September 2020).
- Gassman, P.; Reyes, M.; Green, C.; Arnold, J. The Soil and Water Assessment Tool: Historical Development, Applications, and Future Research Directions. Trans. ASABE 2007, 50. [Google Scholar] [CrossRef] [Green Version]
- Luan, X.; Wu, P.; Sun, S.; Wang, Y.; Gao, X. Quantitative study of the crop production water footprint using the SWAT model. Ecol. Indic. 2018, 89, 1–10. [Google Scholar] [CrossRef]
- Kroes, J.G.; van Dam, J.C.; Bartholomeus, R.P.; Groenendijk, P.; Heinen, M.; Hendriks, R.F.A.; Mulder, H.M.; Supit, I.; van Walsum, P.E.V. SWAP Version 4: Theory Description and User Manual; Wageningen Environmental Research: Wageningen, The Netherlands, 2017. [Google Scholar]
- FE2W. Global Food and Water System Model. Available online: https://gfws.fe2wnetwork.org/ (accessed on 13 October 2020).
- Amisigo, B.A.; McCluskey, A.; Swanson, R. Modeling Impact of Climate Change on Water Resources and Agriculture Demand in the Volta Basin and other Basin Systems in Ghana. Sustainability 2015, 7, 6957. [Google Scholar] [CrossRef] [Green Version]
- ISO 14044. Environmental Management: Life Cycle Assessment; Principles and Framework; International Standar Organization (ISO): Geneva, Switzerland, 2006. [Google Scholar]
- Balanay, R.; Halog, A. 3—Tools for circular economy: Review and some potential applications for the Philippine textile industry. In Circular Economy in Textiles and Apparel; Muthu, S.S., Ed.; Woodhead Publishing: Brisbane St Lucia, QLD, Australia, 2019; pp. 49–75. [Google Scholar]
- Peter, C.; Specka, X.; Aurbacher, J.; Kornatz, P.; Herrmann, C.; Heiermann, M.; Müller, J.; Nendel, C. The MiLA tool: Modeling greenhouse gas emissions and cumulative energy demand of energy crop cultivation in rotation. Agric. Syst. 2017, 152, 67–79. [Google Scholar] [CrossRef]
- Chamizo-Checa, S.; Otazo-Sánchez, E.; Gordillo-Martínez, A.; Suárez-Sánchez, J.; González-Ramírez, C.; Muñoz-Nava, H. Megacity Wastewater Poured into A Nearby Basin: Looking for Sustainable Scenarios in A Case Study. Water 2020, 12, 824. [Google Scholar]
- SEI. Water Evaluation And Planning System (WEAP). Available online: http://www.weap21.org/ (accessed on 25 October 2020).
- Blanco, M.; Van Doorslaer, B.; Britz, W. Assessing agriculture-water relationships: A Pan-European multidimensional modelling approach. In Proceedings of the Conference: 126th EAAE Seminar, Capri, Italy, 27–29 June 2012. [Google Scholar]
- Blanco, M.; Van Doorslaer, B.; Britz, W.; Witzke, H.P. Exploring the Feasibility of Integrating Water Issues into the CAPRI Model; ENPublisher Publications Office of the European Union: Sevilla, Spain, 2012; pp. 13–73. [Google Scholar]
- Kroes, J.G.; Van Dam, J.C. Soil Water Atmosphere Plant. Available online: https://www.swap.alterra.nl/ (accessed on 15 July 2020).
- Grafton, R.Q.; Williams, J.; Jiang, Q. Food and water gaps to 2050: Preliminary results from the global food and water system (GFWS) platform. Food Secur. 2015, 7, 209–220. [Google Scholar] [CrossRef] [Green Version]
- Grafton, R.; Williams, J.; Jiang, Q. Possible Pathways and Tensions in the Food and Water Nexus: Poss Pathways and Tensions in the Nexus. Earth’s Future 2017. [Google Scholar] [CrossRef] [Green Version]
- Baldini, C.; Bava, L.; Zucali, M.; Guarino, M. Milk production Life Cycle Assessment: A comparison between estimated and measured emission inventory for manure handling. Sci. Total Environ. 2018, 625, 209–219. [Google Scholar] [CrossRef]
- Liang, L.; Wang, Y.; Ridoutt, B.G.; Lal, R.; Wang, D.; Wu, W.; Wang, L.; Zhao, G. Agricultural subsidies assessment of cropping system from environmental and economic perspectives in North China based on LCA. Ecol. Indic. 2019, 96, 351–360. [Google Scholar] [CrossRef]
- Mungkung, R.; Pengthamkeerati, P.; Chaichana, R.; Watcharothai, S.; Kitpakornsanti, K.; Tapananont, S. Life Cycle Assessment of Thai organic Hom Mali rice to evaluate the climate change, water use and biodiversity impacts. J. Clean. Prod. 2019, 211, 687–694. [Google Scholar] [CrossRef]
- Borsato, E.; Giubilato, E.; Zabeo, A.; Lamastra, L.; Criscione, P.; Tarolli, P.; Marinello, F.; Pizzol, L. Comparison of Water-focused Life Cycle Assessment and Water Footprint Assessment: The case of an Italian wine. Sci. Total Environ. 2019, 666, 1220–1231. [Google Scholar] [CrossRef]
- Cellura, M.; Longo, S.; Mistretta, M. Life Cycle Assessment (LCA) of protected crops: An Italian case study. J. Clean. Prod. 2012, 28, 56–62. [Google Scholar] [CrossRef]
- SWAT. Soil & Water Assessment Tool (SWAT). Available online: https://swat.tamu.edu/ (accessed on 19 March 2020).
- Anand, J.; Gosain, A.K.; Khosa, R. Prediction of land use changes based on Land Change Modeler and attribution of changes in the water balance of Ganga basin to land use change using the SWAT model. Sci. Total Environ. 2018, 644, 503–519. [Google Scholar] [CrossRef]
- Rivas-Tabares, D.; Tarquis, A.M.; Willaarts, B.; De Miguel, Á. An accurate evaluation of water availability in sub-arid Mediterranean watersheds through SWAT: Cega-Eresma-Adaja. Agric. Water Manag. 2019, 212, 211–225. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Ren, L.; Wan, L. Assessing the trade-off between shallow groundwater conservation and crop production under limited exploitation in a well-irrigated plain of the Haihe River basin using the SWAT model. J. Hydrol. 2018, 567, 253–266. [Google Scholar] [CrossRef]
- Chen, Y.; Marek, G.; Marek, T.; Brauer, D.; Srinivasan, R. Improving SWAT auto-irrigation functions for simulating agricultural irrigation management using long-term lysimeter field data. Environ. Model. Softw. 2018, 99, 25–38. [Google Scholar] [CrossRef]
- Uniyal, B.; Dietrich, J.; Vu, N.Q.; Jha, M.K.; Arumí, J.L. Simulation of regional irrigation requirement with SWAT in different agro-climatic zones driven by observed climate and two reanalysis datasets. Sci. Total Environ. 2019, 649, 846–865. [Google Scholar] [CrossRef]
- Sinnathamby, S.; Douglas-Mankin, K.R.; Craige, C. Field-scale calibration of crop-yield parameters in the Soil and Water Assessment Tool (SWAT). Agric. Water Manag. 2017, 180, 61–69. [Google Scholar] [CrossRef] [Green Version]
- Jiang, J.; Feng, S.; Ma, J.; Huo, Z.; Zhang, C. Irrigation management for spring maize grown on saline soil based on SWAP model. Field Crop. Res. 2016, 196, 85–97. [Google Scholar] [CrossRef]
- SWAP. Soil Water Atmosphere Plant (SWAP). Available online: http://www.swap.alterra.nl/ (accessed on 2 May 2020).
- Kroes, J.G.; Van Dam, J.C. Reference Manual SWAP Version 3.0; Alterra Report 773; Wageningen University and Research Centre: Wageningen, The Netherlands, 2003; pp. 23–24. [Google Scholar]
- Ma, Y.; Feng, S.; Song, X. Evaluation of optimal irrigation scheduling and groundwater recharge at representative sites in the North China Plain with SWAP model and field experiments. Comput. Electron. Agric. 2015, 116, 125–136. [Google Scholar] [CrossRef]
- Sieber, J. WEAP. Available online: http://www.weap21.org/index.asp?action=201 (accessed on 5 December 2020).
- Schneider, P.; Sander, B.O.; Wassmann, R.; Asch, F. Potential and versatility of WEAP model (Water Evaluation and Planning System) for hydrological assessments of AWD (Alternate Wetting and Drying) in irrigated rice. Agric. Water Manag. 2019, 224, 105559. [Google Scholar] [CrossRef]
- Romeiko, X.X. A Comparative Life Cycle Assessment of Crop Systems Irrigated with the Groundwater and Reclaimed Water in Northern China. Sustainability 2019, 11, 2743. [Google Scholar]
- Ma, Y.; Feng, S.; Huo, Z.; Song, X. Application of the SWAP model to simulate the field water cycle under deficit irrigation in Beijing, China. Math. Comput. Model. 2011, 54, 1044–1052. [Google Scholar] [CrossRef]
- Hack-ten Broeke, M.J.D.; Mulder, H.M.; Bartholomeus, R.P.; van Dam, J.C.; Holshof, G.; Hoving, I.E.; Walvoort, D.J.J.; Heinen, M.; Kroes, J.G.; van Bakel, P.J.T.; et al. Quantitative land evaluation implemented in Dutch water management. Geoderma 2019, 338, 536–545. [Google Scholar] [CrossRef]
- Winter, J.M.; Young, C.A.; Mehta, V.K.; Ruane, A.C.; Azarderakhsh, M.; Davitt, A.; McDonald, K.; Haden, V.R.; Rosenzweig, C. Integrating water supply constraints into irrigated agricultural simulations of California. Environ. Model. Softw. 2017, 96, 335–346. [Google Scholar] [CrossRef]
Focus | Description | Reference |
---|---|---|
Sustainability | Strengths to develop “environmental livelihood security”. | [18] |
Transdisciplinary research, public politics, and strategies for environmental management. | [17] | |
Challenges for integrating and optimizing the nexus components. Four case studies were analyzed. | [19] | |
Current state | WEF Nexus in regions. Keywords and research for stakeholders’ understanding. | [20] |
Initiatives frame with involved actors. Challenge to achieve disciplinarity and boundary-crossing endorsed by the 2030 Agenda. | [21] | |
State-of-the-art review on the concepts, research questions, and methodologies | [22] | |
WEF Nexus analytical methods for knowledge-based approaches and promotion for further approaches. | [23] | |
How the nexus approach has academically and geographically expanded | [24] | |
Social, political, and economic | The emerging literature on the WEF Nexus in the policy context | [25] |
Modeling tools to integrate policies. | [26] | |
A modeling platform for the efficiency assessment of technologies, policies, and resources management planning. | [15] | |
Circular economy approach for understanding the WEF Nexus interdependencies. | [27] |
Tools | Developer | Application | Advantages | Limitations | Reference |
---|---|---|---|---|---|
Life Cycle Assessment (LCA) | Harry E. Teasley, 1969 | Environmental impacts | Identify hotspots | Interpretation can be subjective | [36] |
Water Evaluation And Planning system (WEAP) | Jack Sieber, SEI 1988 | Assessment of water resources | Dynamic simulation of scenarios | Does not separate ground and surface water demands | [37] |
Soil & Water Assessment Tool (SWAT) | Jeff Arnold, USDA 1991 | Assess of water resources and hydrological simulation | Simulates the transport of nutrients in water and sediment | Restriction for simulate future scenarios of water availability | [38,39] |
Common Agricultural Policy Regional Impact Analysis (CAPRI) | ILR, UE 1997 | Impact of agricultural policies | Analysis of agricultural scenarios | Global average coverage | [18] |
Soil, Water, Atmosphere, and Plant (SWAP) | Reinder Feddes, WUR 1978 | Use of water in crops | Simulates water transport in interaction with vegetation | It does not have a graphical user interface | [40] |
Global Food and Water System (GFWS) | Quentin Grafton, 2014 | Simulation platform | Simulation platform | Simulation platform | [41] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Corona-López, E.; Román-Gutiérrez, A.D.; Otazo-Sánchez, E.M.; Guzmán-Ortiz, F.A.; Acevedo-Sandoval, O.A. Water–Food Nexus Assessment in Agriculture: A Systematic Review. Int. J. Environ. Res. Public Health 2021, 18, 4983. https://doi.org/10.3390/ijerph18094983
Corona-López E, Román-Gutiérrez AD, Otazo-Sánchez EM, Guzmán-Ortiz FA, Acevedo-Sandoval OA. Water–Food Nexus Assessment in Agriculture: A Systematic Review. International Journal of Environmental Research and Public Health. 2021; 18(9):4983. https://doi.org/10.3390/ijerph18094983
Chicago/Turabian StyleCorona-López, Evelyn, Alma D. Román-Gutiérrez, Elena M. Otazo-Sánchez, Fabiola A. Guzmán-Ortiz, and Otilio A. Acevedo-Sandoval. 2021. "Water–Food Nexus Assessment in Agriculture: A Systematic Review" International Journal of Environmental Research and Public Health 18, no. 9: 4983. https://doi.org/10.3390/ijerph18094983
APA StyleCorona-López, E., Román-Gutiérrez, A. D., Otazo-Sánchez, E. M., Guzmán-Ortiz, F. A., & Acevedo-Sandoval, O. A. (2021). Water–Food Nexus Assessment in Agriculture: A Systematic Review. International Journal of Environmental Research and Public Health, 18(9), 4983. https://doi.org/10.3390/ijerph18094983