The Reciprocal Relationship between Socioeconomic Status and Health and the Influence of Sex: A European SHARE-Analysis Based on Structural Equation Modeling
Abstract
:1. Introduction
2. Materials and Methods
2.1. Setting and Study Participants
2.2. Socioeconomic Status
2.3. Health Variables
2.4. Socio-Demographic Variables
2.5. Statistical Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Goldman, N. Social inequalities in health disentangling the underlying mechanisms. Ann. N. Y. Acad. Sci. 2001, 954, 118–139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kivimäki, M.; Batty, G.D.; Pentti, J.; Shipley, M.J.; Sipilä, P.N.; Nyberg, S.T.; Suominen, S.B.; Oksanen, T.; Stenholm, S.; Virtanen, M.; et al. Association between socioeconomic status and the development of mental and physical health conditions in adulthood: A multi-cohort study. Lancet Public Health 2020, 5, e140–e149. [Google Scholar] [CrossRef] [Green Version]
- Antonovsky, A. Social class, life expectancy and overall mortality. Milbank Meml. Fund Q. 1967, 45, 31–73. [Google Scholar] [CrossRef]
- Goldman, D.; Smith, J.P. The increasing value of education to health. Soc. Sci. Med. 2011, 72, 1728–1737. [Google Scholar] [CrossRef] [Green Version]
- Link, B.G.; Phelan, J. Social conditions as fundamental causes of disease. J. Health Soc. Behav. 1995, Spec No, 80–94. [Google Scholar] [CrossRef] [Green Version]
- Marmot, M.G.; Kogevinas, M.; Elston, M.A. Social/economic status and disease. Annu. Rev. Public Health 1987, 8, 111–135. [Google Scholar] [CrossRef]
- Warren, J.R. Socioeconomic Status and Health across the Life Course: A Test of the Social Causation and Health Selection Hypotheses. Soc. Forces 2009, 87, 2125–2153. [Google Scholar] [CrossRef] [Green Version]
- Power, C.; Stansfeld, S.A.; Matthews, S.; Manor, O.; Hope, S. Childhood and adulthood risk factors for socio-economic differentials in psychological distress: Evidence from the 1958 British birth cohort. Soc. Sci. Med. 2002, 55, 1989–2004. [Google Scholar] [CrossRef]
- Mulatu, M.S.; Schooler, C. Causal connections between socio-economic status and health: Reciprocal effects and mediating mechanisms. J. Health Soc. Behav. 2002, 43, 22–41. [Google Scholar] [CrossRef]
- Chandola, T.; Bartley, M.; Sacker, A.; Jenkinson, C.; Marmot, M. Health selection in the Whitehall II study, UK. Soc. Sci. Med. 2003, 56, 2059–2072. [Google Scholar] [CrossRef]
- Halleröd, B.; Gustafsson, J.E. A longitudinal analysis of the relationship between changes in socio-economic status and changes in health. Soc. Sci. Med. 2011, 72, 116–123. [Google Scholar] [CrossRef] [PubMed]
- Garbarski, D. Perceived social position and health: Is there a reciprocal relationship? Soc. Sci. Med. 2010, 70, 692–699. [Google Scholar] [CrossRef] [Green Version]
- Huurre, T.; Rahkonen, O.; Komulainen, E.; Aro, H. Socioeconomic status as a cause and consequence of psychosomatic symptoms from adolescence to adulthood. Soc. Psychiatry Psychiatr. Epidemiol. 2005, 40, 580–587. [Google Scholar] [CrossRef] [PubMed]
- Ahrenfeldt, L.J.; Moller, S.; Thinggaard, M.; Christensen, K.; Lindahl-Jacobsen, R. Sex Differences in Comorbidity and Frailty in Europe. Int. J. Public Health 2019, 64, 1025–1036. [Google Scholar] [CrossRef]
- Scheel-Hincke, L.L.; Möller, S.; Lindahl-Jacobsen, R.; Jeune, B.; Ahrenfeldt, L.J. Cross-national comparison of sex differences in ADL and IADL in Europe: Findings from SHARE. Eur. J. Ageing 2020, 17, 69–79. [Google Scholar] [CrossRef]
- Verbrugge, L.M. The twain meet: Empirical explanations of sex differences in health and mortality. J. Health Soc. Behav. 1989, 30, 282–304. [Google Scholar] [CrossRef]
- Case, A.; Paxson, C. Sex differences in morbidity and mortality. Demography 2005, 42, 189–214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Read, J.N.G.; Gorman, B.K. Gender and Health Inequality. Annu. Rev. Sociol. 2010, 36, 371–386. [Google Scholar] [CrossRef]
- Crimmins, E.M.; Kim, J.K.; Sole-Auro, A. Gender differences in health: Results from SHARE, ELSA and HRS. Eur. J. Public Health 2011, 21, 81–91. [Google Scholar] [CrossRef] [Green Version]
- Ahrenfeldt, L.J.; Scheel-Hincke, L.L.; Kjaergaard, S.; Moller, S.; Christensen, K.; Lindahl-Jacobsen, R. Gender differences in cognitive function and grip strength: A cross-national comparison of four European regions. Eur. J. Public Health 2019, 29, 667–674. [Google Scholar] [CrossRef]
- Oksuzyan, A.; Juel, K.; Vaupel, J.W.; Christensen, K. Men: Good health and high mortality. Sex differences in health and aging. Aging Clin. Exp. Res. 2008, 20, 91–102. [Google Scholar] [CrossRef] [Green Version]
- Bilal, U.; Cainzos-Achirica, M.; Cleries, M.; Santaeugenia, S.; Corbella, X.; Comin-Colet, J.; Vela, E. Socioeconomic status, life expectancy and mortality in a universal healthcare setting: An individual-level analysis of >6 million Catalan residents. Prev. Med. 2019, 123, 91–94. [Google Scholar] [CrossRef]
- Chetty, R.; Stepner, M.; Abraham, S.; Lin, S.; Scuderi, B.; Turner, N.; Bergeron, A.; Cutler, D. The Association between Income and Life Expectancy in the United States, 2001–2014. JAMA 2016, 315, 1750–1766. [Google Scholar] [CrossRef] [PubMed]
- Elo, I.T.; Preston, S.H. Educational differentials in mortality: United States, 1979–1985. Soc. Sci. Med. 1996, 42, 47–57. [Google Scholar] [CrossRef]
- Koskinen, S.; Martelin, T. Why are socioeconomic mortality differences smaller among women than among men? Soc. Sci. Med. 1994, 38, 1385–1396. [Google Scholar] [CrossRef]
- Ahrenfeldt, L.J.; Pedersen, J.K.; Thinggaard, M.; Christensen, K.; Lindahl-Jacobsen, R. Sex differences in health and mortality by income and income changes. J. Epidemiol. Community Health 2020, 74, 225–231. [Google Scholar] [CrossRef] [Green Version]
- Uccheddu, D.; Gauthier, A.H.; Steverink, N.; Emery, T. Gender and Socioeconomic Inequalities in Health at Older Ages across Different European Welfare Clusters: Evidence from SHARE Data, 2004–2015. Eur. Sociol. Rev. 2019, 35, 346–362. [Google Scholar] [CrossRef] [Green Version]
- Bergmann, M.; Kneip, T.; Luca, G.D.; Scherpenzeel, A. Survey Participation in the Survey of Health, Ageing and Retirement in Europe (SHARE), Wave 1-7; Munich Center for the Economics of Aging: Munich, Germany, 2019. [Google Scholar]
- Borsch-Supan, A.; Brandt, M.; Hunkler, C.; Kneip, T.; Korbmacher, J.; Malter, F.; Schaan, B.; Stuck, S.; Zuber, S. Data Resource Profile: The Survey of Health, Ageing and Retirement in Europe (SHARE). Int. J. Epidemiol. 2013, 42, 992–1001. [Google Scholar] [CrossRef]
- SHARE. Survey of Health, Ageing and Retirement in Europe. Release Guide 7.1.0. 2020. Available online: http://www.share-project.org/fileadmin/pdf_documentation/SHARE_release_guide_7-1-1.pdf (accessed on 4 February 2021).
- McGue, M.; Christensen, K. The heritability of cognitive functioning in very old adults: Evidence from Danish twins aged 75 years and older. Psychol. Aging 2001, 16, 272–280. [Google Scholar] [CrossRef]
- Ahrenfeldt, L.J.; Lindahl-Jacobsen, R.; Rizzi, S.; Thinggaard, M.; Christensen, K.; Vaupel, J.W. Comparison of cognitive and physical functioning of Europeans in 2004-05 and 2013. Int. J. Epidemiol. 2018, 47, 1518–1528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andersen-Ranberg, K.; Petersen, I.; Frederiksen, H.; Mackenbach, J.P.; Christensen, K. Cross-national differences in grip strength among 50+ year-old Europeans: Results from the SHARE study. Eur. J. Ageing 2009, 6, 227–236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mehrbrodt, T.; Gruber, S.; Wagner, M. Scales and Multi-Item Indicators in the Survey of Health, Ageing and Retirement in Europe. SHARE Working Paper Series 45-2019. 2019. Available online: http://www.share-project.org/uploads/tx_sharepublications/WP_Series_45_2019_Scales_and_Multi-Item_Indicators.pdf. (accessed on 15 February 2021).
- Prince, M.J.; Reischies, F.; Beekman, A.T.; Fuhrer, R.; Jonker, C.; Kivela, S.L.; Lawlor, B.A.; Lobo, A.; Magnusson, H.; Fichter, M.; et al. Development of the EURO-D scale--a European, Union initiative to compare symptoms of depression in 14 European centres. Br. J. Psychiatry 1999, 174, 330–338. [Google Scholar] [CrossRef]
- Hoffmann, R.; Kröger, H.; Pakpahan, E. The reciprocal relationship between material factors and health in the life course: Evidence from SHARE and ELSA. Eur. J. Ageing 2018, 15, 379–391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwartz, E.; Litwin, H. The Reciprocal Relationship Between Social Connectedness and Mental Health Among Older European Adults: A SHARE-Based Analysis. J. Gerontol. B Psychol. Sci. Soc. Sci. 2019, 74, 694–702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hairi, F.M.; Mackenbach, J.P.; Andersen-Ranberg, K.; Avendano, M. Does socio-economic status predict grip strength in older Europeans? Results from the SHARE study in non-institutionalised men and women aged 50+. J. Epidemiol. Community Health 2010, 64, 829–837. [Google Scholar] [CrossRef]
- Robinson, S.M.; Jameson, K.A.; Batelaan, S.F.; Martin, H.J.; Syddall, H.E.; Dennison, E.M.; Cooper, C.; Sayer, A.A. Diet and its relationship with grip strength in community-dwelling older men and women: The Hertfordshire cohort study. J. Am. Geriatr. Soc. 2008, 56, 84–90. [Google Scholar] [CrossRef]
- Büning-Fesel, M.; Rückert-John, J. Why do men eat how they eat? Considerations from a nutritional- and gender-sociological perspective. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2016, 59, 950–956. [Google Scholar] [CrossRef]
- Gabriel, P.E.; Schmitz, S. Gender differences in occupational distributions among workers. Mon. Labor Rev. 2007, 130, 19. [Google Scholar]
- Hoffmann, R. Illness, not age, is the leveler of social mortality differences in old age. J. Gerontol. B Psychol. Sci. Soc. Sci. 2011, 66, 374–379. [Google Scholar] [CrossRef] [Green Version]
- Mortensen, L.H.; Rehnberg, J.; Dahl, E.; Diderichsen, F.; Elstad, J.I.; Martikainen, P.; Rehkopf, D.; Tarkiainen, L.; Fritzell, J. Shape of the association between income and mortality: A cohort study of Denmark, Finland, Norway and Sweden in 1995 and 2003. BMJ Open 2016, 6, e010974. [Google Scholar] [CrossRef] [Green Version]
- Rehnberg, J.; Fors, S.; Fritzell, J. Divergence and Convergence: How Do Income Inequalities in Mortality Change over the Life Course? Gerontology 2019, 65, 313–322. [Google Scholar] [CrossRef] [PubMed]
- Miceli, S.; Maniscalco, L.; Matranga, D. Social networks and social activities promote cognitive functioning in both concurrent and prospective time: Evidence from the SHARE survey. Eur. J. Ageing 2019, 16, 145–154. [Google Scholar] [CrossRef]
- Feinstein, J.S. The relationship between socioeconomic status and health: A review of the literature. Milbank Q. 1993, 71, 279–322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blakely, T.; Kawachi, I.; Atkinson, J.; Fawcett, J. Income and mortality: The shape of the association and confounding New Zealand Census-Mortality Study, 1981–1999. Int. J. Epidemiol. 2004, 33, 874–883. [Google Scholar] [CrossRef] [Green Version]
Men | Women | |
---|---|---|
Individuals | 29,824 (44.5) | 37,263 (55.5) |
Observations a | 89,500 (44.0) | 113,733 (56.0) |
European regions | ||
Northern Europe | 12,948 (14.5) | 15,237 (13.4) |
Western Europe | 39,645 (44.3) | 49,069 (43.1) |
Southern Europe | 19,153 (21.4) | 23,619 (20.8) |
Eastern Europe | 17,754 (19.8) | 25,808 (22.7) |
Age, mean (SD) | 67.0 (9.6) | 67.0 (10.1) |
Marital status | ||
Married/registered partnership | 70,648 (79.3) | 69,306 (61.2) |
Unmarried/divorced | 11,634 (13.1) | 16,568 (14.6) |
Widowed | 6776 (7.6) | 27,452 (24.2) |
Missing | 442 (0.5) | 407 (0.4) |
Employment | ||
Employed/self-employed/homemakers | 24,615 (27.8) | 43,921 (39.3) |
Unemployed/sick | 5519 (6.2) | 6075 (5.4) |
Retired | 58,443 (66.0) | 61,688 (55.2) |
Missing | 923 (1.0) | 2049 (1.8) |
Socioeconomic status | ||
Income, median (IQR) in Euros | 24,976 (12,600–46,200) | 19,818 (9890–38,126) |
Wealth, median (IQR) in Euros | 170,088 (59,414–358,984) | 138,434 (38,000–310,000) |
Cognitive composite score | ||
Mean (SD) | 44.7 (10.7) | 45.9 (11.6) |
Missing | 3570 (4.0) | 3638 (3.2) |
Grip strength | ||
Mean (SD) | 42.8 (10.1) | 26.3 (6.9) |
Missing | 6080 (6.8) | 10,040 (8.8) |
Quality of life (12–48) | ||
Mean (SD) | 38.0 (6.0) | 37.2 (6.4) |
Missing | 7627 (8.5) | 9603 (8.4) |
Depressive symptoms (0–12) | ||
Mean (SD) | 10.1 (2.0) | 9.2 (2.3) |
Missing | 2952 (3.3) | 3194 (2.8) |
Men | Women | Sex Differences (Men vs. Women) | |||
---|---|---|---|---|---|
Coefficients (95% CI) | p-Values a | Coefficients (95% CI) | p-Values a | p-Values b | |
Cognitive composite score (CCS) | |||||
Model 1 c | |||||
Income → ∆ CCS | 0.119 (0.111, 0.127) | 0.122 (0.115, 0.129) | 0.595 | ||
CCS → ∆ income | 0.130 (0.122, 0.138) | 0.028 | 0.142 (0.135, 0.148) | <0.001 | 0.023 |
Model 2 d | |||||
Income → ∆ CCS | 0.108 (0.098, 0.118) | 0.099 (0.090, 0.109) | 0.868 | ||
CCS → ∆ income | 0.107 (0.099, 0.115) | 0.965 | 0.114 (0.107, 0.121) | 0.006 | 0.194 |
Model 3 e | |||||
Income → ∆ CCS | 0.097 (0.086, 0.107) | 0.096 (0.087, 0.105) | 0.954 | ||
CCS → ∆ income | 0.097 (0.089, 0.106) | 0.884 | 0.110 (0.103, 0.118) | 0.008 | 0.028 |
Grip strength (GS) | |||||
Model 1 c | |||||
Income → ∆ GS | 0.087 (0.079, 0.095) | 0.066 (0.059, 0.073) | <0.001 | ||
GS → ∆ income | 0.082 (0.074, 0.089) | 0.282 | 0.080 (0.073, 0.086) | 0.003 | 0.567 |
Model 2 d | |||||
Income → ∆ GS | 0.053 (0.043, 0.064) | 0.025 (0.015, 0.034) | <0.001 | ||
GS → ∆ income | 0.049 (0.041, 0.058) | 0.516 | 0.040 (0.032, 0.047) | 0.007 | 0.084 |
Model 3 e | |||||
Income → ∆ GS | 0.046 (0.036, 0.057) | 0.023 (0.013, 0.033) | 0.002 | ||
GS → ∆ income | 0.038 (0.030, 0.047) | 0.203 | 0.034 (0.026, 0.041) | 0.046 | 0.249 |
Quality of life (QoL) | |||||
Model 1 c | |||||
Income → ∆ QoL | 0.161 (0.153, 0.169) | 0.161 (0.153, 0.168) | 0.986 | ||
QoL → ∆ income | 0.146 (0.138, 0.154) | 0.004 | 0.141 (0.134, 0.149) | <0.001 | 0.273 |
Model 2 d | |||||
Income → ∆ QoL | 0.087 (0.077, 0.098) | 0.084 (0.074, 0.094) | 0.138 | ||
QoL → ∆ income | 0.094 (0.086, 0.102) | 0.25 | 0.089 (0.082, 0.096) | 0.349 | 0.236 |
Model 3 e | |||||
Income → ∆ QoL | 0.078 (0.068, 0.089) | 0.080 (0.070, 0.090) | 0.804 | ||
QoL → ∆ income | 0.081 (0.073, 0.089) | 0.69 | 0.083 (0.076, 0.090) | 0.565 | 0.965 |
Depressive symptoms | |||||
Model 1 c | |||||
Income → ∆ depression | 0.076 (0.069, 0.083) | 0.074 (0.068, 0.081) | 0.833 | ||
Depression →∆ income | 0.066 (0.058, 0.073) | 0.03 | 0.069 (0.063, 0.076) | 0.211 | 0.961 |
Model 2 d | |||||
Income → ∆ depression | 0.053 (0.044, 0.063) | 0.046 (0.037, 0.055) | 0.574 | ||
Depression → ∆ income | 0.051 (0.044, 0.058) | 0.614 | 0.050 (0.043, 0.056) | 0.494 | 0.17 |
Model 3 e | |||||
Income → ∆ depression | 0.042 (0.032, 0.052) | 0.042 (0.033, 0.051) | 0.985 | ||
Depression → ∆ income | 0.038 (0.031, 0.045) | 0.487 | 0.044 (0.037, 0.050) | 0.711 | 0.692 |
Men | Women | Sex Differences (Men vs. Women) | |||
---|---|---|---|---|---|
Coefficients (95% CI) | p-Values a | Coefficients (95% CI) | p-Values a | p-Values b | |
Cognitive composite score (CCS) | |||||
Model 1 c | |||||
Wealth → ∆ CCS | 0.075 (0.067, 0.082) | 0.072 (0.065, 0.079) | 0.614 | ||
CCS → ∆ wealth | 0.078 (0.070, 0.086) | 0.479 | 0.082 (0.075, 0.089) | 0.02 | 0.244 |
Model 2 d | |||||
Wealth → ∆ CCS | 0.080 (0.071, 0.088) | 0.076 (0.069, 0.083) | 0.85 | ||
CCS → ∆ wealth | 0.068 (0.059, 0.077) | 0.028 | 0.069 (0.061, 0.077) | 0.124 | 0.072 |
Model 3 e | |||||
Wealth → ∆ CCS | 0.070 (0.062, 0.078) | 0.074 (0.067, 0.082) | 0.76 | ||
CCS → ∆ wealth | 0.061 (0.052, 0.070) | 0.108 | 0.066 (0.058, 0.074) | 0.079 | 0.183 |
Grip strength (GS) | |||||
Model 1 c | |||||
Wealth → ∆ GS | 0.054 (0.047, 0.062) | 0.047 (0.040, 0.054) | 0.184 | ||
GS → ∆ wealth | 0.072 (0.064, 0.079) | 0.001 | 0.062 (0.055, 0.069) | 0.001 | 0.041 |
Model 2 d | |||||
Wealth → ∆ GS | 0.060 (0.052, 0.068) | 0.040 (0.032, 0.047) | <0.001 | ||
GS → ∆ wealth | 0.053 (0.044, 0.063) | 0.253 | 0.035 (0.027, 0.043) | 0.364 | 0.018 |
Model 3 e | |||||
Wealth → ∆ GS | 0.055 (0.047, 0.064) | 0.038 (0.030, 0.045) | 0.003 | ||
GS → ∆ wealth | 0.045 (0.036, 0.055) | 0.068 | 0.031 (0.023, 0.039) | 0.159 | 0.004 |
Quality of life (QoL) | |||||
Model 1 c | |||||
Wealth → ∆ QoL | 0.123 (0.115, 0.131) | 0.119 (0.112, 0.127) | 0.546 | ||
QoL → ∆ wealth | 0.101 (0.093, 0.110) | <0.001 | 0.095 (0.088, 0.102) | <0.001 | 0.214 |
Model 2 d | |||||
Wealth → ∆ QoL | 0.090 (0.081, 0.098) | 0.091 (0.083, 0.098) | 0.221 | ||
QoL → ∆ wealth | 0.073 (0.064, 0.081) | 0.002 | 0.066 (0.058, 0.074) | <0.001 | 0.086 |
Model 3 e | |||||
Wealth → ∆ QoL | 0.083 (0.074, 0.091) | 0.088 (0.080, 0.095) | 0.486 | ||
QoL → ∆ wealth | 0.064 (0.055, 0.072) | <0.001 | 0.061 (0.054, 0.069) | <0.001 | 0.593 |
Depressive symptoms | |||||
Model 1 c | |||||
Wealth → ∆ depression | 0.064 (0.056, 0.071) | 0.063 (0.057, 0.069) | 0.955 | ||
Depression → ∆ wealth | 0.054 (0.046, 0.061) | 0.04 | 0.051 (0.045, 0.058) | 0.005 | 0.479 |
Model 2 d | |||||
Wealth → ∆ depression | 0.048 (0.040, 0.056) | 0.050 (0.043, 0.057) | 0.74 | ||
Depression → ∆ wealth | 0.036 (0.029, 0.044) | 0.018 | 0.035 (0.028, 0.041) | <0.001 | 0.07 |
Model 3e | |||||
Wealth → ∆ depression | 0.040 (0.032, 0.048) | 0.046 (0.039, 0.053) | 0.343 | ||
Depression → ∆ wealth | 0.027 (0.020, 0.035) | 0.011 | 0.030 (0.023, 0.037) | <0.001 | 0.702 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahrenfeldt, L.J.; Möller, S. The Reciprocal Relationship between Socioeconomic Status and Health and the Influence of Sex: A European SHARE-Analysis Based on Structural Equation Modeling. Int. J. Environ. Res. Public Health 2021, 18, 5045. https://doi.org/10.3390/ijerph18095045
Ahrenfeldt LJ, Möller S. The Reciprocal Relationship between Socioeconomic Status and Health and the Influence of Sex: A European SHARE-Analysis Based on Structural Equation Modeling. International Journal of Environmental Research and Public Health. 2021; 18(9):5045. https://doi.org/10.3390/ijerph18095045
Chicago/Turabian StyleAhrenfeldt, Linda Juel, and Sören Möller. 2021. "The Reciprocal Relationship between Socioeconomic Status and Health and the Influence of Sex: A European SHARE-Analysis Based on Structural Equation Modeling" International Journal of Environmental Research and Public Health 18, no. 9: 5045. https://doi.org/10.3390/ijerph18095045
APA StyleAhrenfeldt, L. J., & Möller, S. (2021). The Reciprocal Relationship between Socioeconomic Status and Health and the Influence of Sex: A European SHARE-Analysis Based on Structural Equation Modeling. International Journal of Environmental Research and Public Health, 18(9), 5045. https://doi.org/10.3390/ijerph18095045