Combined Exposure to Birch Pollen and Thunderstorms Affects Respiratory Health in Stockholm, Sweden—A Time Series Analysis
Abstract
:1. Introduction
2. Methods
2.1. Data Collection
2.1.1. Outpatient Visits Due to Diseases in the Respiratory System
2.1.2. Weather
2.1.3. Pollen and Air Pollution
2.2. Statistical Analyses
2.2.1. Confounders
2.2.2. Models
3. Results
3.1. Associations between Outcome and Exposure Estimates on the Same Day
3.2. Associations between Outcome and Exposure Estimates on the Day Before
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Data Sources
References
- Dabrera, G.; Murray, V.; Emberlin, J.; Ayres, J.G.; Collier, C.; Clewlow, Y.; Sachon, P. Thunderstorm asthma: An overview of the evidence base and implications for public health advice. QJM Int. J. Med. 2012, 106, 207–217. [Google Scholar] [CrossRef] [PubMed]
- O’Hehir, R.E.; Varese, N.P.; Deckert, K.; Zubrinich, C.M.; Van Zelm, M.C.; Rolland, J.M.; Hew, M. Epidemic thunderstorm asthma protection with five-grass pollen tablet sublingual immunotherapy: A clinical trial. Am. J. Respir. Crit. Care Med. 2018, 198, 126–128. [Google Scholar] [CrossRef] [PubMed]
- Idrose, N.S.; Dharmage, S.C.; Lowe, A.J.; Lambert, K.A.; Lodge, C.J.; Abramson, M.J.; Douglass, J.A.; Newbigin, E.J.; Erbas, B. A systematic review of the role of grass pollen and fungi in thunderstorm asthma. Environ. Res. 2020, 181, 108911. [Google Scholar] [CrossRef] [PubMed]
- Emmerson, K.M.; Silver, J.D.; Thatcher, M.; Wain, A.; Jones, P.J.; Dowdy, A.; Newbigin, E.J.; Picking, B.W.; Choi, J.; Ebert, E.; et al. Atmospheric modelling of grass pollen rupturing mechanisms for thunderstorm asthma prediction. PLoS ONE 2021, 16, e0249488. [Google Scholar] [CrossRef] [PubMed]
- Davies, J.; Erbas, B.; Simunovic, M.; Al Kouba, J.; Milic, A. Literature Review on Thunderstorm Asthma and Its Implicaitons for Public Health Advice; Department of Health and Human Services, Victorian State Government: Brisbane, Australia, 2017.
- Campbell, S.L.; Fox-Hughes, P.D.; Jones, P.J.; Remenyi, T.A.; Chappell, K.; White, C.J.; Johnston, F.H. Evaluating the risk of epidemic thunderstorm asthma: Lessons from Australia. Int. J. Environ. Res. Public Health 2019, 16, 837. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Packe, G.; Ayres, J. Asthma outbreak during a thunderstorm. Lancet 1985, 326, 199–204. [Google Scholar] [CrossRef]
- Anderson, W.; Prescott, G.J.; Packham, S.; Mullins, J.; Brookes, M.; Seaton, A. Asthma admissions and thunderstorms: A study of pollen, fungal spores, rainfall, and ozone. QJM Int. J. Med. 2001, 94, 429–433. [Google Scholar] [CrossRef] [Green Version]
- Thien, F.; Beggs, P.J.; Csutoros, D.; Darvall, J.; Hew, M.; Davies, J.M.; Bardin, P.G.; Bannister, T.; Barnes, S.; Bellomo, R.; et al. The Melbourne epidemic thunderstorm asthma event 2016: An investigation of environmental triggers, effect on health services, and patient risk factors. Lancet Planet. Health 2018, 2, e255–e263. [Google Scholar] [CrossRef]
- Marks, G.B.; Colquhoun, J.R.; Girgis, S.T.; Koski, M.H.; Treloar, A.B.; Hansen, P. Thunderstorm outflows preceding epidemics of asthma during spring and summer. Thorax 2001, 56, 468–471. [Google Scholar] [CrossRef]
- Wallis, D.N.; Webb, J.; Brooke, D.; Brookes, B.; Brown, R.; Findlay, A.; Harris, M.; Hulbert, D.; Little, G.; Nonoo, C.; et al. A major outbreak of asthma associated with a thunderstorm: Experience of accident and emergency departments and patients’ characteristics. BMJ 1996, 312, 601–604. [Google Scholar] [CrossRef]
- Lee, J.; Kronborg, C.; O’Hehir, R.E.; Hew, M. Who’s at risk of thunderstorm asthma? The ryegrass pollen trifecta and lessons learnt from the Melbourne thunderstorm epidemic. Respir. Med. 2017, 132, 146–148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Venables, K.M.; Allitt, U.; Collier, C.G.; Emberlin, J.; Greig, J.B.; Hardaker, P.J. Thunderstorm-related asthma—Epidemic of 24/25 June 1994. Clin. Exp. Allergy 1997, 27, 725–736. [Google Scholar] [CrossRef] [PubMed]
- Andrew, E.; Nehme, Z.; Bernard, S.; Abramson, M.J.; Newbigin, E.; Piper, B.; Dunlop, J.; Holman, P.; Smith, K. Stormy weather: A retrospective analysis of demand for emergency medical services during epidemic thunderstorm asthma. BMJ 2017, 359, j5636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Darvall, J.N.; Durie, M.; Pilcher, D.; Wigmore, G.; French, C.; Karalapillai, D.; McGain, F.; Newbigin, E.; Byrne, T.; Sarode, V. Intensive care implications of epidemic thunderstorm asthma. Crit. Care Resusc. 2018, 20, 294–303. [Google Scholar] [PubMed]
- Pulimood, T.B.; Corden, J.M.; Bryden, C.; Sharples, L.; Nasser, S.M. Epidemic asthma and the role of the fungal mold Alternaria alternata. J. Allergy Clin. Immunol. 2007, 120, 610–617. [Google Scholar] [CrossRef] [PubMed]
- Celenza, A.; Fothergill, J.; Kupek, E.; Shaw, R.J. Thunderstorm associated asthma: A detailed analysis of environmental factors. BMJ 1996, 312, 604–607. [Google Scholar] [CrossRef] [Green Version]
- Lewis, S.; Corden, J.; Forster, G.; Newlands, M. Combined effects of aerobiological pollutants, chemical pollutants and meteorological conditions on asthma admissions and A & E attendances in Derbyshire UK, 1993–1996. Clin. Exp. Allergy 2000, 30, 1724–1732. [Google Scholar]
- Newson, R.; Strachan, D.; Archibald, E.; Emberlin, J.; Hardaker, P.; Collier, C. Effect of thunderstorms and airborne grass pollen on the incidence of acute asthma in England, 1990–1994. Thorax 1997, 52, 680–685. [Google Scholar] [CrossRef] [Green Version]
- Hajat, S.; Goubet, S.; Haines, A. Thunderstorm-associated asthma: The effect on GP consultations. Br. J. Gen. Pract. 1997, 47, 639–641. [Google Scholar]
- Erbas, B.; Akram, M.; Dharmage, S.C.; Tham, R.; Dennekamp, M.; Newbigin, E.; Taylor, P.; Tang, M.L.; Abramson, M.J. The role of seasonal grass pollen on childhood asthma emergency department presentations. Clin. Exp. Allergy 2012, 42, 799–805. [Google Scholar] [CrossRef]
- Silver, J.D.; Sutherland, M.F.; Johnston, F.H.; Lampugnani, E.R.; McCarthy, M.A.; Jacobs, S.J.; Pezza, A.B.; Newbigin, E.J. Seasonal asthma in Melbourne, Australia, and some observations on the occurrence of thunderstorm asthma and its predictability. PLoS ONE 2018, 13, e0194929. [Google Scholar] [CrossRef] [PubMed]
- Dales, R.E.; Cakmak, S.; Judek, S.; Dann, T.; Coates, F.; Brook, J.R.; Burnett, R.T. The role of fungal spores in thunderstorm asthma. Chest 2003, 123, 745–750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Newson, R.; Strachan, D.; Archibald, E.; Emberlin, J.; Hardaker, P.; Collier, C. Acute asthma epidemics, weather and pollen in England, 1987–1994. Eur. Respir. J. 1998, 11, 694–701. [Google Scholar] [PubMed]
- Smith, M.; Jäger, S.; Berger, U.; Šikoparija, B.; Hallsdottir, M.; Sauliene, I.; Bergmann, K.C.; Pashley, C.; De Weger, L.; Majkowska-Wojciechowska, B. Geographic and temporal variations in pollen exposure across Europe. Allergy 2014, 69, 913–923. [Google Scholar] [CrossRef] [PubMed]
- Biedermann, T.; Winther, L.; Till, S.J.; Panzner, P.; Knulst, A.; Valovirta, E. Birch pollen allergy in Europe. Allergy 2019, 74, 1237–1248. [Google Scholar] [CrossRef] [Green Version]
- Canova, C.; Heinrich, J.; Anto, J.M.; Leynaert, B.; Smith, M.; Kuenzli, N.; Zock, J.-P.; Janson, C.; Cerveri, I.; De Marco, R. The influence of sensitisation to pollens and moulds on seasonal variations in asthma attacks. Eur. Respir. J. 2013, 42, 935–945. [Google Scholar] [CrossRef]
- Caillaud, D.; Martin, S.; Segala, C.; Vidal, P.; Lecadet, J.; Pellier, S.; Rouzaire, P.; Tridon, A.; Evrard, B. Airborne pollen levels and drug consumption for seasonal allergic rhinoconjunctivitis: A 10-year study in France. Allergy 2015, 70, 99–106. [Google Scholar] [CrossRef]
- Lind, T.; Ekebom, A.; Kübler, K.A.; Östensson, P.; Bellander, T.; Lõhmus, M. Pollen Season Trends (1973–2013) in Stockholm Area, Sweden. PLoS ONE 2016, 11, e0166887. [Google Scholar] [CrossRef] [Green Version]
- Zetterström, O.; Fagerberg, E.; Wide, L. An investigation of pollen extracts from different deciduous trees in patients with springtime allergy in Sweden. Allergy 1972, 27, 15–21. [Google Scholar] [CrossRef]
- Niederberger, V.; Pauli, G.; Grönlundc, H.; Fröschla, R.; Rumpold, H.; Kraft, D.; Valenta, R.; Spitzauer, S. Recombinant birch pollen allergens (rBet v 1 and rBet v 2) contain most of the IgE epitopes present in birch, alder, hornbeam, hazel, and oak pollen: A quantitative IgE inhibition study with sera from different populations. J. Allergy Clin. Immunol. 1998, 102, 579–591. [Google Scholar] [CrossRef]
- D’amato, G.; Cecchi, L.; Bonini, S.; Nunes, C.; Annesi-Maesano, I.; Behrendt, H.; Liccardi, G.; Popov, T.; Van Cauwenberge, P. Allergenic pollen and pollen allergy in Europe. Allergy 2007, 62, 976–990. [Google Scholar] [CrossRef] [PubMed]
- Liedtke, J.P.; Mandl, A.; Köther, J.; Chwieralski, J.; Shah-Hosseini, K.; Raskopf, E.; Pieper-Fürst, U.; Allekotte, S.; Mösges, R. RCAT reflects symptom control and quality of life in allergic rhinoconjunctivitis patients. Allergy 2018, 73, 1101–1109. [Google Scholar] [CrossRef]
- Socialstyrelsen. The National Patient Register. Available online: https://www.socialstyrelsen.se/en/statistics-and-data/registers/register-information/the-national-patient-register/ (accessed on 1 March 2019).
- Palynological laboratory. Pollenrapporten.se. Available online: https://pollenrapporten.se/ (accessed on 15 March 2020).
- Hirst, J.M. An automatic volumetric spore trap. Ann. Appl. Biol. 1952, 39, 257–265. [Google Scholar] [CrossRef]
- Emberlin, J.; Jones, S.; Bailey, J.; Caulton, E.; Corden, J.; Dubbels, S.; Evans, J.; McDonagh, N.; Millington, W.; Mullins, J. Variation in the start of the grass pollen season at selected sites in the United Kingdom 1987–1992. Grana 1994, 33, 94–99. [Google Scholar] [CrossRef]
- Matyasovszky, I.; Makra, L.; Bálint, B.; Guba, Z.; Sümeghy, Z. Multivariate analysis of respiratory problems and their connection with meteorological parameters and the main biological and chemical air pollutants. Atmos. Environ. 2011, 45, 4152–4159. [Google Scholar] [CrossRef]
- Dahlquist, M.; Raza, A.; Bero-Bedada, G.; Hollenberg, J.; Lind, T.; Orsini, N.; Sjögren, B.; Svensson, L.; Ljungman, P.L. Short-term departures from an optimum ambient temperature are associated with increased risk of out-of-hospital cardiac arrest. Int. J. Hyg. Environ. Health 2016, 219, 389–397. [Google Scholar] [CrossRef] [PubMed]
- Rocklöv, J.; Forsberg, B. The effect of temperature on mortality in Stockholm 1998–2003: A study of lag structures and heatwave effects. Scand. J. Soc. Med. 2008, 36, 516–523. [Google Scholar] [CrossRef]
- Eriksson, N.E.; Holmen, A. Skin prick tests with standardized extracts of inhalant allergens in 7099 adult patients with asthma or rhinitis: Cross-sensitizations and relationships to age, sex, month of birth and year of testing. J. Investig. Allergol. Clin. Immunol. 1996, 6, 36–46. [Google Scholar]
- Price, D.; Hughes, K.M.; Thien, F.; Suphioglu, C. Epidemic Thunderstorm Asthma: Lessons Learned from the Storm Down-Under. J. Allergy Clin. Immunol. Pract. 2021, 9, 1510–1515. [Google Scholar] [CrossRef]
- Vic Emergency. Preparing for Thunderstorm Asthma. Available online: http://www.emergency.vic.gov.au/prepare/#understanding-warnings (accessed on 15 October 2021).
Daily Average Estimates of the Co-Exposures | Lightning Discharges (n/day) | Birch Pollen Grains (n/m3/day) | ||
---|---|---|---|---|
Mean (95% CI) | p< | Mean (95% CI) | p< | |
Relative humidity (%) | ||||
32.79–72.25 | 19.81 (12.88; 26.75) | 0.0001 | 66.18 (48.78; 83.59) | 0.0001 |
72.29–99.88 | 74.18 (54.65; 93.72) | 10.56 (6.8; 14.32) | ||
Wind speed (m/s) | ||||
0.17–2.67 | 53.41 (37.16; 69.67) | 0.2172 | 45.64 (29.64; 61.64) | 0.0875 |
2.68–7.33 | 40.33 (27.41; 53.24) | 29.98 (22.04; 37.92) | ||
Air pressure (hPa) | ||||
985.43–1012.64 | 60.01 (46.19; 73.84) | 0.0121 | 23.79 (16.02; 31.55) | 0.0015 |
1012.64–1040.05 | 33.53 (18.11; 48.94) | 52.9 (36.79; 69.00) | ||
NOx (μg/m3) | ||||
1.32–11.90 | 42.59 (29.41; 55.77) | 0.4441 | 28.88 (20.67; 37.09) | 0.1286 |
11.92–78.08 | 50.79 (34.43; 67.15) | 41.99 (27.18; 56.81) | ||
Outdoor temperature (°C) | ||||
1.37–15.32 | 20.4 (14.27; 26.53) | 0.0001 | 62.77 (47.69; 77.85) | 0.0001 |
15.33–26.05 | 73.18 (53.47; 92.89) | 14.49 (4.75; 24.23) |
Exposure Variables | n (days) | No. of Outpatient Visits Mean (95% CI) | p< |
---|---|---|---|
Year * | 2448 | 301.22 (292.71; 309.72) | 0.000 |
Weekday | |||
Monday | 350 | 447.19 (444.98; 449.41) | 0.000 |
Tuesday | 350 | 462.88 (460.63; 465.14) | |
Wednesday | 349 | 411.93 (409.8; 414.07) | |
Thursday | 350 | 389.33 (387.26; 391.4) | |
Friday | 350 | 244.44 (242.81; 246.09) | |
Saturday | 349 | 73.58 (72.68; 74.48) | |
Sunday | 350 | 78.83 (77.9; 79.76) | |
Lightning discharges (n/day) | |||
cat 0: 0 | 1649 | 320.94 (320.08; 321.81) | 0.000 |
cat 1: 1–13 | 407 | 260.87 (259.31; 262.45) | |
cat 2: 14–90 | 192 | 274.29 (271.95; 276.64) | |
cat 3: 91–249 | 97 | 277.27 (273.96; 280.6) | |
cat 4: ≥250 | 103 | 217.57 (214.73; 220.44) | |
Birch pollen grain/m3 | |||
cat 0: 0 | 1435 | 267.42 (266.58; 268.27) | 0.000 |
cat 1: 1 | 273 | 287.78 (285.77; 289.8) | |
cat 2: 2–6 | 245 | 335.99 (333.7; 338.29) | |
cat 3: 17–39 | 229 | 388.62 (386.07; 391.18) | |
cat 4: 41–4759 | 246 | 390.18 (387.71; 392.66) | |
Relative humidity (%) | |||
32.79–72.25 | 1222 | 301.5 (289.41; 313.6) | 0.889 |
72.29–99.88 | 1217 | 300.29 (288.26; 312.32) | |
Wind speed (m/s) | |||
0.17–2.67 | 1229 | 290.96 (279.36; 302.55) | 0.019 |
2.68–7.33 | 1210 | 311.37 (298.9; 323.83) | |
Air pressure (hPa) | |||
985.43–1012.64 | 1224 | 292.58 (280.85; 304.31) | 0.046 |
1012.64–1040.05 | 1224 | 309.85 (297.53; 322.17) | |
NOx (μg/m3) | |||
1.32–11.90 | 1202 | 231.93 (220.34; 243.52) | 0.000 |
11.92–78.08 | 1201 | 367.46 (356.12; 378.8) | |
Outdoor temperature (°C) | |||
1.37–15.32 | 1225 | 357.81 (344.77; 370.86) | 0.000 |
15.33–26.05 | 1223 | 244.52 (234.56; 254.49) |
Birch Pollen on the Same Day | No. of Lightning Discharges on the Same Day | ||||
---|---|---|---|---|---|
Cat 0 | Cat 1 | Cat 2 | Cat 3 | Cat 4 | |
pollen cat 1 | REF | 1% | −1% | 7% | 13% |
1.01 (0.91–1.11) | 0.99 (0.82–1.20) | 1.07 (0.97–1.19) | 1.13 (1.03–1.24) * | ||
pollen cat 2 | REF | 1% | 0% | 8% | 14% |
1.01 (0.93–1.11) | 1.00 (0.83–1.20) | 1.08 (0.99–1.18) | 1.14 (1.05–1.24) * | ||
pollen cat 3 | REF | 10% | −9% | 2% | 10% |
1.10 (1.03–1.18) * | 0.91 (0.69–1.20) | 1.02 (0.95–1.10) | 1.10 (1.03–1.17) * | ||
pollen cat 4 | REF | −2% | 11% | 25% | 26% |
0.98 (0.86–1.12) | 1.11 (1.01–1.23) * | 1.25 (1.16–1.35) * | 1.26 (1.16–1.37) * |
Birch Pollen on the Day before | No. of Lightning Discharges on the Day before Outpatient Visit | ||||
---|---|---|---|---|---|
Cat 0 | Cat 1 | Cat 2 | Cat 3 | Cat 4 | |
pollen cat 1 | REF | −4% | 1% | 6% | 9% |
0.96 (0.80–1.16) | 1.01 (0.77–1.32) | 1.06 (0.95–1.19) | 1.09 (1.00–1.19) * | ||
pollen cat 2 | REF | −3% | 4% | 5% | 11% |
0.97 (0.86–1.05) | 1.04 (0.98–1.10) | 1.05 (0.97–1.14) | 1.11 (0.98–1.25) | ||
pollen cat 3 | REF | 7% | 17% | 3% | 14% |
1.07 (0.91–1.25) | 1.17 (1.03–1.33) * | 1.03 (0.82–1.28) | 1.14 (1.07–1.22) * | ||
pollen cat 4 | REF | −4% | 26% | 40% | 27% |
0.96 (0.78–1.18) | 1.26 (1.15–1.38) * | 1.40 (1.30–1.51) * | 1.27 (1.15–1.40) * |
Birch Pollen on the Day before | No. of Lightning Discharges on the Day before Outpatient Visit | ||||
---|---|---|---|---|---|
Cat 0 | Cat 1 | Cat 2 | Cat 3 | Cat 4 | |
pollen cat 1 | REF | 9% | 18% | 36% | 45% |
1.09 (0.91–1.30) | 1.18 (0.87–1.59) | 1.36 (1.15–1.61) * | 1.45 (1.21–1.72) * | ||
pollen cat 2 | REF | 3% | 15% | 20% | 17% |
1.03 (0.87–1.21) | 1.15 (0.91–1.46) | 1.20 (1.06–1.36) * | 1.17 (1.02–1.35) * | ||
pollen cat 3 | REF | 15% | 41% | 13% | 35% |
1.15 (0.98–1.35) * | 1.41 (1.21–1.63) * | 1.13 (0.90–1.43) | 1.35 (1.20–1.53) * | ||
pollen cat 4 | REF | 7% | 47% | 50% | 42% |
1.07 (0.84–1.36) | 1.47 (1.29–1.67) * | 1.50 (1.32–1.70) * | 1.42 (1.18–1.72) * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lõhmus, M.; Lind, T.; MacLachlan, L.; Ekebom, A.; Gedda, B.; Östensson, P.; Georgelis, A. Combined Exposure to Birch Pollen and Thunderstorms Affects Respiratory Health in Stockholm, Sweden—A Time Series Analysis. Int. J. Environ. Res. Public Health 2022, 19, 5852. https://doi.org/10.3390/ijerph19105852
Lõhmus M, Lind T, MacLachlan L, Ekebom A, Gedda B, Östensson P, Georgelis A. Combined Exposure to Birch Pollen and Thunderstorms Affects Respiratory Health in Stockholm, Sweden—A Time Series Analysis. International Journal of Environmental Research and Public Health. 2022; 19(10):5852. https://doi.org/10.3390/ijerph19105852
Chicago/Turabian StyleLõhmus, Mare, Tomas Lind, Laura MacLachlan, Agneta Ekebom, Björn Gedda, Pia Östensson, and Antonios Georgelis. 2022. "Combined Exposure to Birch Pollen and Thunderstorms Affects Respiratory Health in Stockholm, Sweden—A Time Series Analysis" International Journal of Environmental Research and Public Health 19, no. 10: 5852. https://doi.org/10.3390/ijerph19105852
APA StyleLõhmus, M., Lind, T., MacLachlan, L., Ekebom, A., Gedda, B., Östensson, P., & Georgelis, A. (2022). Combined Exposure to Birch Pollen and Thunderstorms Affects Respiratory Health in Stockholm, Sweden—A Time Series Analysis. International Journal of Environmental Research and Public Health, 19(10), 5852. https://doi.org/10.3390/ijerph19105852