The Potential for Bias across GPS-Accelerometer Combined Wear Criteria among Adolescents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Procedures
2.2. Data Collection
2.3. Data Processing
2.3.1. Identifying Location as within Neighborhood
2.3.2. Merging Accelerometry, GPS and Location Data
2.3.3. Identification of Accelerometer Wear and Accelerometer-GPS Co-Wear
2.3.4. Measurement of Physical Activity
2.3.5. Sample Restrictions and Co-Wear Criteria
2.4. Data Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Piercy, K.L.; Troiano, R.P.; Ballard, R.M.; Carlson, S.A.; Fulton, J.E.; Galuska, D.A.; George, S.M.; Olson, R.D. The Physical Activity Guidelines for AmericansPhysical Activity Guidelines for AmericansPhysical Activity Guidelines for Americans. JAMA 2018, 320, 2020–2028. [Google Scholar] [CrossRef] [PubMed]
- Telama, R. Tracking of Physical Activity from Childhood to Adulthood: A Review. Obes. Facts 2009, 2, 187–195. [Google Scholar] [CrossRef] [PubMed]
- Telama, R.; Yang, X.; Leskinen, E.; Kankaanpää, A.; Hirvensalo, M.; Tammelin, T.; Viikari, J.S.A.; Raitakari, O.T. Tracking of Physical Activity from Early Childhood through Youth into Adulthood. Med. Sci. Sports Exerc. 2014, 46, 955–962. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Noncommunicable Diseases Country Profiles 2018; World Health Organization: Geneva, Switzerland, 2018. [Google Scholar]
- Powell, K.E.; King, A.C.; Buchner, D.M.; Campbell, W.W.; DiPietro, L.; Erickson, K.I.; Hillman, C.H.; Jakicic, J.M.; Janz, K.F.; Katzmarzyk, P.T.; et al. The Scientific Foundation for the Physical Activity Guidelines for Americans, 2nd Edition. J. Phys. Act. Health 2019, 16, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCrorie, P.R.; Fenton, C.; Ellaway, A. Combining GPS, GIS, and accelerometry to explore the physical activity and environment relationship in children and young people—A review. Int. J. Behav. Nutr. Phys. Act. 2014, 11, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diez Roux, A.V.; Mair, C. Neighborhoods and health. Ann. N. Y. Acad. Sci. 2010, 1186, 125–145. [Google Scholar] [CrossRef] [Green Version]
- Sallis, J.F.; Cervero, R.B.; Ascher, W.; Henderson, K.A.; Kraft, M.K.; Kerr, J. An ecological approach to creating active living communities. Annu. Rev. Public Health 2006, 27, 297–322. [Google Scholar] [CrossRef] [Green Version]
- Foster, S.; Giles-Corti, B. The built environment, neighborhood crime and constrained physical activity: An exploration of inconsistent findings. Prev. Med. 2008, 47, 241–251. [Google Scholar] [CrossRef]
- Kneeshaw-Price, S.; Saelens, B.E.; Sallis, J.F.; Glanz, K.; Frank, L.D.; Kerr, J.; Hannon, P.; Grembowski, D.; Chan, K.G.; Cain, K.L. Children’s Objective Physical Activity by Location: Why the Neighborhood Matters. Pediatr. Exerc. Sci. 2013, 25, 468–486. [Google Scholar] [CrossRef] [Green Version]
- Bürgi, R.; Tomatis, L.; Murer, K.; De Bruin, E.D. Spatial physical activity patterns among primary school children living in neighbourhoods of varying socioeconomic status: A cross-sectional study using accelerometry and Global Positioning System. BMC Public Health 2016, 16, 282. [Google Scholar] [CrossRef] [Green Version]
- MacIntosh, B.R.; Murias, J.M.; Keir, D.A.; Weir, J.M. What Is Moderate to Vigorous Exercise Intensity? Front. Physiol. 2021, 12, 1481. [Google Scholar] [CrossRef] [PubMed]
- Kerr, J.; Duncan, S.; Schipperijn, J. Using Global Positioning Systems in Health Research: A Practical Approach to Data Collection and Processing. Am. J. Prev. Med. 2011, 41, 532–540. [Google Scholar] [CrossRef] [PubMed]
- Rich, C.; Geraci, M.; Griffiths, L.; Sera, F.; Dezateux, C.; Cortina-Borja, M. Quality Control Methods in Accelerometer Data Processing: Defining Minimum Wear Time. PLoS ONE 2013, 8, e67206. [Google Scholar] [CrossRef] [PubMed]
- James, P.; Hart, J.E.; Hipp, J.A.; Mitchell, J.A.; Kerr, J.; Hurvitz, P.M.; Glanz, K.; Laden, F. GPS-Based Exposure to Greenness and Walkability and Accelerometry-Based Physical Activity. Cancer Epidemiol. Biomark. Prev. 2017, 26, 525–532. [Google Scholar] [CrossRef] [Green Version]
- Oreskovic, N.M.; Perrin, J.M.; Robinson, A.I.; Locascio, J.J.; Blossom, J.; Chen, M.L.; Winickoff, J.P.; Field, A.E.; Green, C.; Goodman, E. Adolescents’ use of the built environment for physical activity. BMC Public Health 2015, 15, 251. [Google Scholar] [CrossRef] [Green Version]
- Robinson, A.I.; Oreskovic, N.M. Comparing self-identified and census-defined neighborhoods among adolescents using GPS and accelerometer. Int. J. Health Geogr. 2013, 12, 57. [Google Scholar] [CrossRef] [Green Version]
- Lachowycz, K.; Jones, A.P.; Page, A.S.; Wheeler, B.W.; Cooper, A.R. What can global positioning systems tell us about the contribution of different types of urban greenspace to children’s physical activity? Health Place 2012, 18, 586–594. [Google Scholar] [CrossRef] [Green Version]
- Herrmann, S.D.; Barreira, T.; Kang, M.; Ainsworth, B.E. Impact of accelerometer wear time on physical activity data: A NHANES semisimulation data approach. Br. J. Sports Med. 2012, 48, 278–282. [Google Scholar] [CrossRef]
- Aadland, E.; Andersen, L.B.; Anderssen, S.A.; Resaland, G.K. A comparison of 10 accelerometer non-wear time criteria and logbooks in children. BMC Public Health 2018, 18, 323. [Google Scholar] [CrossRef]
- Vanhelst, J.; Vidal, F.; Drumez, E.; Béghin, L.; Baudelet, J.-B.; Coopman, S.; Gottrand, F. Comparison and validation of accelerometer wear time and non-wear time algorithms for assessing physical activity levels in children and adolescents. BMC Med. Res. Methodol. 2019, 19, 72. [Google Scholar] [CrossRef]
- Mavoa, S.; Lamb, K.; O’Sullivan, D.; Witten, K.; Smith, M. Are disadvantaged children more likely to be excluded from analysis when applying global positioning systems inclusion criteria? BMC Res. Notes 2018, 11, 578. [Google Scholar] [CrossRef] [PubMed]
- Colabianchi, N.; Coulton, C.J.; Hibbert, J.D.; McClure, S.M.; Ievers-Landis, C.E.; Davis, E.M. Adolescent self-defined neighborhoods and activity spaces: Spatial overlap and relations to physical activity and obesity. Health Place 2014, 27, 22–29. [Google Scholar] [CrossRef] [Green Version]
- Barreira, T.V.; Schuna, J.M.; Mire, E.F.; Katzmarzyk, P.T.; Chaput, J.-P.; Leduc, G.; Tudor-Locke, C. Identifying Children’s Nocturnal Sleep Using 24-h Waist Accelerometry. Med. Sci. Sports Exerc. 2015, 47, 937–943. [Google Scholar] [CrossRef] [PubMed]
- Tudor-Locke, C.; Barreira, T.; Schuna, J.M.; Mire, E.F.; Katzmarzyk, P. Fully automated waist-worn accelerometer algorithm for detecting children’s sleep-period time separate from 24-h physical activity or sedentary behaviors. Appl. Physiol. Nutr. Metab. 2014, 39, 53–57. [Google Scholar] [CrossRef] [PubMed]
- Evenson, K.R.; Catellier, D.J.; Gill, K.; Ondrak, K.S.; McMurray, R.G. Calibration of two objective measures of physical activity for children. J. Sports Sci. 2008, 26, 1557–1565. [Google Scholar] [CrossRef] [PubMed]
- Trost, S.G.; Loprinzi, P.D.; Moore, R.; Pfeiffer, K.A. Comparison of Accelerometer Cut Points for Predicting Activity Intensity in Youth. Med. Sci. Sports Exerc. 2011, 43, 1360–1368. [Google Scholar] [CrossRef]
- Migueles, J.H.; Cadenas-Sanchez, C.; Ekelund, U.; Delisle Nyström, C.; Mora-Gonzalez, J.; Löf, M.; Labayen, I.; Ruiz, J.R.; Ortega, F.B. Accelerometer Data Collection and Processing Criteria to Assess Physical Activity and Other Outcomes: A Systematic Review and Practical Considerations. Sports Med. 2017, 47, 1821–1845. [Google Scholar] [CrossRef]
- Van Hecke, L.; Verhoeven, H.; Clarys, P.; Van Dyck, D.; Van De Weghe, N.; Baert, T.; Deforche, B.; Van Cauwenberg, J. Factors related with public open space use among adolescents: A study using GPS and accelerometers. Int. J. Health Geogr. 2018, 17, 3. [Google Scholar] [CrossRef]
- Carlson, J.A.; Mitchell, T.B.; Saelens, B.E.; Staggs, V.S.; Kerr, J.; Frank, L.D.; Schipperijn, J.; Conway, T.L.; Glanz, K.; Chapman, J.E.; et al. Within-person associations of young adolescents’ physical activity across five primary locations: Is there evidence of cross-location compensation? Int. J. Behav. Nutr. Phys. Act. 2017, 14, 50. [Google Scholar] [CrossRef] [Green Version]
- Carlson, J.A.; Schipperijn, J.; Kerr, J.; Saelens, B.E.; Natarajan, L.; Frank, L.D.; Glanz, K.; Conway, T.L.; Chapman, J.E.; Cain, K.L.; et al. Locations of Physical Activity as Assessed by GPS in Young Adolescents. Pediatrics 2016, 137, e20152430. [Google Scholar] [CrossRef] [Green Version]
- Pearce, M.; Saunders, D.H.; Allison, P.; Turner, A.P. Indoor and Outdoor Context-Specific Contributions to Early Adolescent Moderate to Vigorous Physical Activity as Measured by Combined Diary, Accelerometer, and GPS. J. Phys. Act. Health 2018, 15, 40–45. [Google Scholar] [CrossRef] [PubMed]
- Alberico, C.O.; Schipperijn, J.; Reis, R.S. Use of global positioning system for physical activity research in youth: ESPAÇOS Adolescentes, Brazil. Prev. Med. 2017, 103, S59–S65. [Google Scholar] [CrossRef] [PubMed]
- Borner, K.B.; Mitchell, T.B.; Carlson, J.A.; Kerr, J.; Saelens, B.E.; Schipperijn, J.; Frank, L.D.; Conway, T.L.; Glanz, K.; Chapman, J.E.; et al. Latent profile analysis of young adolescents’ physical activity across locations on schooldays. J. Transp. Health 2018, 10, 304–314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bürgi, R.; Tomatis, L.; Murer, K.; De Bruin, E.D. Localization of Physical Activity in Primary School Children Using Accelerometry and Global Positioning System. PLoS ONE 2015, 10, e0142223. [Google Scholar] [CrossRef] [Green Version]
- Coombes, E.; Jones, A.; Cooper, A.; Page, A. Does home neighbourhood supportiveness influence the location more than volume of adolescent’s physical activity? An observational study using global positioning systems. Int. J. Behav. Nutr. Phys. Act. 2017, 14, 149. [Google Scholar] [CrossRef] [Green Version]
- Katapally, T.R.; Muhajarine, N. Towards uniform accelerometry analysis: A standardization methodology to minimize measurement bias due to systematic accelerometer wear-time variation. J. Sports Sci. Med. 2014, 13, 379–386. [Google Scholar]
Accelerometer Only 1 | Accelerometer + Minimum GPS Co-Wear | Accelerometer + Moderate GPS Co-Wear | Accelerometer + Stringent GPS Co-Wear | |||
---|---|---|---|---|---|---|
Valid day | Accelerometry | ≥10 h accelerometer wear | ≥10 h accelerometer wear | ≥10 h accelerometer wear | ≥10 h accelerometer wear | |
GPS co-wear | Weekday | -- | -- | -- | ≥3 h of after-school co-wear | |
Weekend | -- | ≥7 h of co-wear | ||||
Valid person2 | Accelerometry | Weekday | ≥2 valid weekdays | ≥2 valid weekdays | ≥2 valid weekdays | ≥2 valid weekdays and ≥1 valid weekend day |
Weekend | ≥1 valid weekend days | ≥1 valid weekend days | ≥1 valid weekend days | |||
GPS co-wear | Weekday | -- | ≥180 min (3+ h) of co-wear across valid accelerometer days | ≥2 weekdays with ≥2 h after-school co-wear | ||
Weekend | -- | ≥5 h of co-wear | ||||
Analysis | Analyzed all days with valid accelerometer wear. Analyzed accelerometry for all minutes of accelerometer wear, regardless of co-wear. | Analyzed all valid days for a valid person, regardless of number of minutes of accelerometer wear/GPS co-wear on a given day, or number of days. As accelerometry was analyzed only for co-wear minutes, days with 0 min of co-wear were excluded from analysis. | Analyzed all valid days for a valid person, regardless of number of minutes of accelerometer wear/GPS co-wear on a given day, or number of days. As accelerometry was analyzed only for co-wear minutes, days with 0 min of co-wear were excluded from analysis. | Analyzed all valid days for a valid person. Analyzed accelerometry-only for co-wear minutes. | ||
Persons (n) | 187 | 174 | 142 | 128 | ||
Person-days (n) | 1346 | 953 | 840 | 703 |
Accelerometer Only 1 | Accelerometer + GPS Wear Time Criteria | ||||
---|---|---|---|---|---|
Accelerometer + Minimum Co-Wear | Accelerometer + Moderate Co-Wear | Accelerometer + Stringent Co-Wear | p-Value 2 | ||
Persons (n) | 187 | 174 | 142 | 128 | |
Age, mean (SD) | 12.3 (1.9) | 12.3 (1.9) | 12.2 (1.9) | 12.1 (1.9) | 0.7427 |
Sex, n (%) | |||||
Female | 111 (59.4) | 102 (58.6) | 79 (55.6) | 74 (57.8) | 0.8624 |
Male | 76 (40.6) | 72 (41.4) | 63 (44.4) | 54 (42.2) | |
Race, n (%) | 0.7687 | ||||
White | 115 (61.5) | 110 (63.2) | 93 (65.5) | 86 (67.2) | |
AA | 72 (38.5) | 64 (36.8) | 49 (34.5) | 42 (32.8) | |
Weight category, n (%) | 0.9995 | ||||
≤Normal Weight | 84 (44.9) | 82 (47.1) | 64 (45.1) | 60 (46.9) | |
Overweight | 28 (15.0) | 27 (15.5) | 23 (16.2) | 21 (16.4) | |
Obese | 42 (22.5) | 39 (22.4) | 33 (23.2) | 27 (21.1) | |
Severely obese | 33 (17.7) | 26 (14.9) | 22 (15.5) | 20 (15.6) | |
GPS co-wear (out-of-school) 3,4, n (%) | |||||
0% | 13 (7.0) | -- | -- | -- | |
0.1–39.9% | 26 (13.9) | 26 (14.9) | 8 (5.6) | 5 (3.9) | |
40–69.9% | 70 (37.4) | 70 (40.2) | 58 (40.9) | 47 (36.7) | |
70–89.9% | 30 (16.0) | 30 (17.2) | 28 (19.7) | 28 (21.9) | |
≥90% | 48 (25.7) | 48 (27.6) | 48 (33.8) | 48 (37.5) |
Accelerometer Only | Accelerometer + GPS Wear Time Criteria | p-Value a | |||
---|---|---|---|---|---|
Minimum Co-Wear | Moderate Co-Wear | Stringent Co-Wear | |||
Persons (n) | 187 | 174 | 142 | 128 | |
Person-days (n) | 1346 | 953 | 840 | 703 | |
Daily MVPA mins (out-of-school), mean (SE) | 17.3 (1.5) b | 18.6 (1.0) b | 18.8 (1.1) b | 18.2 (1.5) b | 0.7248 |
Race | |||||
White (ref) | 19.2 (1.6) c | 18.8 (1.2) c | 18.6 (1.2) c | 17.2 (1.4) c | 0.3222 |
AA | 20.4 (2.1) | 20.5 (1.5) | 21.5 (1.8) | 23.0 (2.6) | 0.3156 |
b (se) | 1.3 (1.9) | 1.7 (1.8) | 2.9 (2.1) | 5.7 (2.5) * | 0.0110 |
Sex | |||||
Girls (ref) | 16.7 (1.7) c | 17.3 (1.1) c | 17.3 (1.2) c | 17.0 (1.8) c | 0.9389 |
Boys | 22.9 (2.0) | 22.0 (1.5) | 22.8 (2.1) | 23.2 (2.1) | 0.3009 |
b (se) | 6.1 (1.8) *** | 4.7 (1.7) ** | 5.5 (1.8) ** | 6.2 (2.1) ** | 0.0409 |
Weight status | |||||
≤Normal Weight (ref) | 23.9 (2.2) c | 23.6 (1.6) c | 24.4 (1.9) c | 25.8 (2.4) c | 0.3762 |
Overweight/obese | 15.7 (1.6) | 15.7 (1.1) | 15.8 (1.2) | 14.4 (1.7) | 0.5503 |
b (se) | −8.1 (2.1) *** | −7.9 (1.9) *** | −8.6 (2.2) *** | −11.4 (2.5) *** | 0.0132 |
Location d | |||||
Inside neighborhood buffer (ref) | 8.3 (0.6) c | 8.5 (0.7) c | 8.5 (0.8) c | 0.5953 | |
Outside neighborhood buffer | 10.8 (0.7) | 11.0 (0.8) | 11.3 (0.9) | 0.2924 | |
b (se) | 2.5 (0.9) ** | 2.5 (1.0) ** | 2.7 (1.1) * | 0.6821 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kepper, M.M.; Staiano, A.E.; Broyles, S.T. The Potential for Bias across GPS-Accelerometer Combined Wear Criteria among Adolescents. Int. J. Environ. Res. Public Health 2022, 19, 5931. https://doi.org/10.3390/ijerph19105931
Kepper MM, Staiano AE, Broyles ST. The Potential for Bias across GPS-Accelerometer Combined Wear Criteria among Adolescents. International Journal of Environmental Research and Public Health. 2022; 19(10):5931. https://doi.org/10.3390/ijerph19105931
Chicago/Turabian StyleKepper, Maura M., Amanda E. Staiano, and Stephanie T. Broyles. 2022. "The Potential for Bias across GPS-Accelerometer Combined Wear Criteria among Adolescents" International Journal of Environmental Research and Public Health 19, no. 10: 5931. https://doi.org/10.3390/ijerph19105931
APA StyleKepper, M. M., Staiano, A. E., & Broyles, S. T. (2022). The Potential for Bias across GPS-Accelerometer Combined Wear Criteria among Adolescents. International Journal of Environmental Research and Public Health, 19(10), 5931. https://doi.org/10.3390/ijerph19105931