A Participatory Science Approach to Evaluating Factors Associated with the Occurrence of Metals and PFAS in Guatemala City Tap Water
Abstract
:1. Introduction
2. Materials and Methods
2.1. Recruitment and Questionnaire
2.2. Classification of Water Source
2.3. Sampling and Analysis
2.4. Statistical Methods
3. Results
3.1. Household Characteristics
3.2. Occurrence of Metals in Tap Water
3.3. Effect of Source Water and Provider on Metals Exceedances
3.4. Effect of Water Storage on Metals Exceedances
3.5. Occurrence of PFAS in Tap Water
3.6. Effect of Water Storage on PFAS
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rigaud, K.K.; de Sherbinin, A.; Jones, B.; Bergmann, J.; Clement, V.; Ober, K.; Schewe, J.; Adamo, S.; McCusker, B.; Heuser, S.; et al. Groundswell: Preparing for Internal Climate Migration; The World Bank: Washington, DC, USA, 2018. [Google Scholar]
- Warner, K.; Afifi, T. Where the rain falls: Evidence from 8 countries on how vulnerable households use migration to manage the risk of rainfall variability and food insecurity. Clim. Dev. 2013, 6, 1–17. [Google Scholar] [CrossRef]
- Milan, A.; Ruano, S. Rainfall variability, food insecurity and migration in Cabricán, Guatemala. Clim. Dev. 2014, 6, 61–68. [Google Scholar] [CrossRef]
- Hannah, L.; Donatti, C.I.; Harvey, C.A.; Alfaro, E.; Rodriguez, D.A.; Bouroncle, C.; Castellanos, E.; Diaz, F.; Fung, E.; Hidalgo, H.G.; et al. Regional modeling of climate change impacts on smallholder agriculture and ecosystems in Central America. Clim. Chang. 2016, 141, 29–45. [Google Scholar] [CrossRef] [Green Version]
- Wade, C.; Baker, J.; Van Houtven, G.; Cai, Y.; Lord, B.; Castellanos, E.; Leiva, B.; Fuentes, G.; Alfaro, G.; Kondash, A.; et al. Opportunities and Spatial Hotspots for Irrigation Expansion in Guatemala to Support Development Goals in the Food-Energy-Water Nexus. Agric. Water Manag. 2022, 267, 107608. [Google Scholar] [CrossRef]
- United Nations, Department of Economic and Social Affairs, Population Division. World Urbanization Prospects: The 2018 Revision, Custom Data Acquired via Website. Available online: https://population.un.org/wup/ (accessed on 3 November 2021).
- United Nations. World Urbanization Prospects: The 2014 Revision (STESASER.A366); United Nations Department of Economic and Social Affairs, Population Division: New York, NY, USA, 2015. [Google Scholar]
- Henry, C.L.; Baker, J.S.; Shaw, B.K.; Kondash, A.J.; Leiva, B.; Castellanos, E.; Wade, C.M.; Lord, B.; Van Houtven, G.; Redmon, J.H. How will renewable energy development goals affect energy poverty in Guatemala? Energy Econ. 2021, 104, 105665. [Google Scholar] [CrossRef]
- Basterrechea, M.; Velásquez, C.; de Castillo, N.; de Noack, J.; Beatriz Suárez, A.; Cobos, C. Urban Water in Guatemala. In Urban Water Challenges in the Americas: A Perspective from the Academies of Sciences; Inter-American Network of Academies of Sciences, Ed.; Inter-American Network of Academies of Sciences (IANAS) and United Nations Educational, Scientific and Cultural Organization (UNESCO): Mexico City, Mexico, 2015; pp. 332–349. [Google Scholar]
- Basterrechea, M. State of Water in Guatemala. In Diagnosis of Water in the Americas; Jiménez Cisneros, B., Galizia-Tundisi, J., Eds.; Inter-American Network of Academies of Sciences: San Andrés Totoltepec, Mexico, 2013; pp. 352–393. [Google Scholar]
- Basterrechea, M.; Dix, M.; van Tuylen, S.; Méndez, Á.; Díaz, L.; Mayorga, P.; Gil, N. Water Quality in Guatemala. In Water Quality in the Americas: Risks and Opportunities; Inter-American Network of Academies of Sciences, Ed.; Inter-American Network of Academies of Sciences: Mexico City, Mexico, 2019. [Google Scholar]
- Vásquez, W.F. Municipal water services in Guatemala: Exploring official perceptions. Water Policy 2011, 13, 362–374. [Google Scholar] [CrossRef]
- Vásquez, W.F.; Espaillat, R. Willingness to pay for reliable supplies of safe drinking water in Guatemala: A referendum contingent valuation study. Urban Water J. 2014, 13, 284–292. [Google Scholar] [CrossRef]
- Nagata, J.M.; Valeggia, C.R.; Smith, N.W.; Barg, F.K.; Guidera, M.; Bream, K.D.W. Criticisms of chlorination: Social determinants of drinking water beliefs and practices among the Tz’utujil Maya. Rev. Panam. Salud Publica 2011, 29, 9–16. [Google Scholar] [CrossRef]
- Joint Monitoring Programme. Guatemala. Available online: https://washdata.org/data/household#!/gtm (accessed on 18 April 2022).
- Kondash, A.J.; Herrera, I.; Castellanos, E.; Baker, J.; Leiva, B.; Van Houtven, G.; Fuentes, G.; Alfaro, G.; Henry, C.; Wade, C.; et al. Food, energy, and water nexus research in Guatemala—A systematic literature review. Environ. Sci. Policy 2021, 124, 175–185. [Google Scholar] [CrossRef]
- Kallman, E.N.; Oyanedel-Craver, V.A.; Smith, J.A. Ceramic Filters Impregnated with Silver Nanoparticles for Point-of-Use Water Treatment in Rural Guatemala. J. Environ. Eng. 2011, 137, 407–415. [Google Scholar] [CrossRef]
- Luby, S.P.; Mendoza, C.; Keswick, B.H.; Chiller, T.M.; Hoekstra, R.M. Difficulties in Bringing Point-of-Use Water Treatment to Scale in Rural Guatemala. Am. J. Trop. Med. Hyg. 2008, 78, 382–387. [Google Scholar] [CrossRef] [PubMed]
- Rosa, G.; Miller, L.; Clasen, T. Microbiological effectiveness of disinfecting water by boiling in rural Guatemala. Am. J. Trop. Med. Hyg. 2010, 82, 473–477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rangel, J.M.; Lopez, B.; Alvarez, M.; Mendoza, C.; Luby, S. A novel technology to improve drinking water quality: A microbiological evaluation of in-home flocculation and chlorination in rural Guatemala. J. Water Health 2003, 1, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Reller, M.E.; Mendoza, C.E.; Lopez, M.B.; Alvarez, M.; Hoekstra, R.M.; Olson, C.A.; Baier, K.G.; Keswick, B.H.; Luby, S.P. A randomized controlled trial of household-based flocculant-disinfectant drinking water treatment for diarrhea prevention in rural Guatemala. Am. J. Trop. Med. Hyg. 2003, 69, 411–419. [Google Scholar] [CrossRef] [Green Version]
- Martin, J.; Elmore, A. Water drinking attitudes and behaviours in Guatemala: An assessment and intervention. J. Rural Trop. Public Health 2007, 6, 54–60. [Google Scholar]
- Lacey, S.; Lopez, R.; Frangos, C.; Khodadoust, A. Water Quality Degradation after Water Storage at Household Level in a Piped Water System in Rural Guatemala. Int. J. Serv. Learn. Eng. Humanit. Eng. Soc. Entrep. 2011, 6, 118–129. [Google Scholar] [CrossRef] [Green Version]
- Elmore, A.C.; Miller, G.R.; Parker, B. Water quality in Lemoa, Guatemala. Environ. Geol. 2005, 48, 901–907. [Google Scholar] [CrossRef]
- Baker, J.S.; Van Houtven, G.; Cai, Y.; Moreda, F.; Wade, C.; Henry, C.; Redmon, J.H.; Kondash, A.J. A Hydro-Economic Methodology for the Food-Energy-Water Nexus: Valuation and Optimization of Water Resources; RTI Press Publication No. MR-0044-2105; RTI Press: Research Triangle Park, NC, USA, 2021. [Google Scholar] [CrossRef]
- Kayser, G.L.; Amjad, U.; Dalcanale, F.; Bartram, J.; Bentley, M.E. Drinking Water Quality Governance: A Comparative Case Study of Brazil, Ecuador, and Malawi. Environ. Sci. Policy 2015, 48, 186–195. [Google Scholar] [CrossRef] [Green Version]
- Bichai, F.; Ryan, H.; Fitzgerald, C.; Williams, K.; Abdelmoteleb, A.; Brotchie, R.; Komatsu, R. Understanding the role of alternative water supply in an urban water security strategy: An analytical framework for decision-making. Urban Water J. 2015, 12, 175–189. [Google Scholar] [CrossRef]
- Kearns, J.P.; Bentley, M.J.; Mokashi, P.; Redmon, J.H.; Levine, K. Underrepresented groups in WaSH–the overlooked role of chemical toxicants in water and health. J. Water Sanit. Hyg. Dev. 2019, 9, 786–793. [Google Scholar] [CrossRef]
- Marcillo, C.E.; García Prado, G.; Copeland, N.; Krometis, L.H. Drinking water quality and consumer perceptions at the point-of-use in San Rafael Las Flores, Guatemala. Water Pract. Technol. 2020, 15, 374–385. [Google Scholar] [CrossRef]
- Kurwadkar, S.; Dane, J.; Kanel, S.R.; Nadagouda, M.N.; Cawdrey, R.W.; Ambade, B.; Struckhoff, G.C.; Wilkin, R. Per- and polyfluoroalkyl substances in water and wastewater: A critical review of their global occurrence and distribution. Sci. Total Environ. 2021, 809, 151003. [Google Scholar] [CrossRef] [PubMed]
- Kabore, H.A.; Vo Duy, S.; Munoz, G.; Meite, L.; Desrosiers, M.; Liu, J.; Sory, T.K.; Sauve, S. Worldwide drinking water occurrence and levels of newly-identified perfluoroalkyl and polyfluoroalkyl substances. Sci. Total Environ. 2018, 616–617, 1089–1100. [Google Scholar] [CrossRef] [PubMed]
- Haywood, B.K.; Besley, J.C. Education, outreach, and inclusive engagement: Towards integrated indicators of successful program outcomes in participatory science. Public Underst. Sci. 2014, 23, 92–106. [Google Scholar] [CrossRef] [PubMed]
- Bonney, R.; Cooper, C.B.; Dickinson, J.; Kelling, S.; Phillips, T.; Rosenberg, K.V.; Shirk, J. Citizen Science: A Developing Tool for Expanding Science Knowledge and Scientific Literacy. BioScience 2009, 59, 977–984. [Google Scholar] [CrossRef]
- USEPA. Lead and Copper Rule. Fed. Regist. 1991, 56, 26460–26464. [Google Scholar]
- Lytle, D.A.; Formal, C.; Cahalan, K.; Muhlen, C.; Triantafyllidou, S. The impact of sampling approach and daily water usage on lead levels measured at the tap. Water Res. 2021, 197, 117071. [Google Scholar] [CrossRef]
- Mulhern, R.; Bynum, N.; Liyanapatirana, C.; DeStefano, N.J.; Knappe, D.R.U.; MacDonald Gibson, J. Longitudinal assessment of point-of-use carbon filters for removal of per- and polyfluoroalkyl substances from private well water. AWWA Water Sci. 2021, 3, e1262. [Google Scholar] [CrossRef]
- Redmon, J.H.; Levine, K.E.; Aceituno, A.M.; Litzenberger, K.; Gibson, J.M. Lead in drinking water at North Carolina childcare centers: Piloting a citizen science-based testing strategy. Environ. Res. 2020, 183, 109126. [Google Scholar] [CrossRef]
- COGUANOR. Norma Tecnica Guatamalteca 29001 Primera Revision; Comisión Guatemalteca de Normas Ministerio de Economía: Guatemala City, Guatemala, 2013. [Google Scholar]
- ECHA. Perfluoroalkyl Chemicals (PFAS). Available online: https://echa.europa.eu/hot-topics/perfluoroalkyl-chemicals-pfas (accessed on 18 January 2022).
- IBWA. Bottled Water & PFAS. Available online: https://bottledwater.org/bottled-water-pfas/ (accessed on 3 December 2021).
- Solo, M.T. Independent Water Entrepreneurs in Latin America: The Other Private Sector in Water Services; The World Bank: Lima, Peru, 2003. [Google Scholar]
- American Academy of Pediatrics Council on Environmental Health. Prevention of Childhood Lead Toxicity. Pediatrics 2016, 138, e20161493. [Google Scholar] [CrossRef] [Green Version]
- WHO. Guidelines for Drinking-Water Quality: Fourth Edition Incorporating the First Addendum, 4th ed.; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Hansson, C.M.; Poursaee, A.; Jaffer, S.J. Corrosion of Reinforcing Bars in Concrete. The Masterbuilder, December 2012; 106–124. Available online: https://ceramrtr.ceramika.agh.edu.pl/~szyszkin/mm/Corrosion%20Of%20Reinforcing%20Bars%20In%20Concrete.pdf(accessed on 17 April 2022).
- Bundschuh, J.; Armienta, M.A.; Morales-Simfors, N.; Alam, M.A.; López, D.L.; Delgado Quezada, V.; Dietrich, S.; Schneider, J.; Tapia, J.; Sracek, O.; et al. Arsenic in Latin America: New findings on source, mobilization and mobility in human environments in 20 countries based on decadal research 2010–2020. Crit. Rev. Environ. Sci. Technol. 2020, 51, 1727–1865. [Google Scholar] [CrossRef]
- Gonzalez Rodriguez, B.; Rietveld, L.C.; Longley, A.J.; van Halem, D. Arsenic contamination of rural community wells in Nicaragua: A review of two decades of experience. Sci. Total Environ. 2019, 657, 1441–1449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prado, F.; González, M.E.; Hernández, M.; Guzmán, C.; Chaulon, M.G.; Cóbar, S.; Donis, M.; Rivera, C. Preliminary study of total levels of dissolved arsenic in drinking water of different zones of the Municipality of Guatemala, Department of Guatemala. Toxicol. Lett. 2016, 259, S122. [Google Scholar] [CrossRef]
- Bundschuh, J.; Litter, M.; Ciminelli, V.S.; Morgada, M.E.; Cornejo, L.; Hoyos, S.G.; Hoinkis, J.; Alarcon-Herrera, M.T.; Armienta, M.A.; Bhattacharya, P. Emerging mitigation needs and sustainable options for solving the arsenic problems of rural and isolated urban areas in Latin America-a critical analysis. Water Res. 2010, 44, 5828–5845. [Google Scholar] [CrossRef]
- Lample, K.; Zedek, R. Urban Water Scarcity and Contamination in the Guatemala City Metropolitan Region: A Managament Proposal. Available online: https://www.urbanwateratlas.com/2020/05/08/managing-urban-water-scarcity-and-contamination-in-the-guatemala-city-metropolitan-region/ (accessed on 15 April 2022).
- Lanphear, B.P.; Burgoon, D.A.; Rust, S.W.; Eberly, S.; Galke, W. Environmental Exposures to Lead and Urban Children’s Blood Lead Levels. Environ. Res. 1998, 76, 120–130. [Google Scholar] [CrossRef]
- Hogue, C. Specially treated plastic containers may spread PFAS. Chem. Eng. News 2021, 99, 112595. [Google Scholar]
- Kuhn, E.; Marfil-Vega, R.; Prakash, B. Are there PFAS in my water? A detailed look into bottled water. In Proceedings of the 2020 National Environmental Monitoring Conference: The Environment in 2020: Past, Present and Future, Virtual Conference, 3–21 August 2020. [Google Scholar]
- Slavik, I.; Oliveira, K.R.; Cheung, P.B.; Uhl, W. Water quality aspects related to domestic drinking water storage tanks and consideration in current standards and guidelines throughout the world-a review. J. Water Health 2020, 18, 439–463. [Google Scholar] [CrossRef]
- Buelow, R.W.; Milette, J.R.; McFarren, E.F.; Symons, J.M. The Behavior of Asbestos–Cement Pipe Under Various Water Quality Conditions: A Progress Report. J. Am. Water Works Assoc. 1980, 72, 91–102. [Google Scholar] [CrossRef]
n | % | |
---|---|---|
Water service provider | ||
Municipal—EMPAGUA | 70 | 62% |
Municipal—Villa Nueva | 5 | 4% |
Municipal—San Miguel Petapa | 4 | 4% |
Private water company | 20 | 18% |
Private well | 12 | 11% |
Trucked water a | 2 | 2% |
Water source type | ||
Surface water | 36 | 32% |
Ground water | 70 | 62% |
Mixed | 5 | 4% |
Unknown | 2 | 2% |
Frequency of water shut offs | ||
Once a year or less | 44 | 39% |
A few times a year | 32 | 28% |
A few times a month | 8 | 7% |
A few times a week | 15 | 13% |
Daily | 14 | 12% |
Housing type | ||
Apartment | 11 | 10% |
Formal house | 100 | 88% |
Improvised house | 1 | 1% |
Room | 1 | 1% |
Water storage | ||
Concrete cistern only | 48 | 42% |
Plastic tank only | 21 | 19% |
Both cistern + plastic | 8 | 7% |
None | 36 | 32% |
Home ownership | ||
Own | 92 | 81% |
Rent | 21 | 19% |
Age of home (years) | ||
≤10 | 10 | 9% |
11–20 | 17 | 15% |
21–30 | 25 | 22% |
31–40 | 9 | 8% |
>40 | 29 | 26% |
Not reported or unknown | 23 | 20% |
Monthly household income (Q) | ||
≤4000 | 5 | 4% |
4001–8000 | 17 | 15% |
8001–16,000 | 26 | 23% |
16,001–24,000 | 19 | 17% |
>24,000 | 34 | 30% |
Not reported | 12 | 11% |
Level of education attained | ||
No schooling | 2 | 2% |
Elementary school | 1 | 1% |
Middle school | 1 | 1% |
High school | 12 | 11% |
University or above | 97 | 86% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hoponick Redmon, J.; Mulhern, R.E.; Castellanos, E.; Wood, E.; McWilliams, A.; Herrera, I.; Liyanapatirana, C.; Weber, F.; Levine, K.; Thorp, E.; et al. A Participatory Science Approach to Evaluating Factors Associated with the Occurrence of Metals and PFAS in Guatemala City Tap Water. Int. J. Environ. Res. Public Health 2022, 19, 6004. https://doi.org/10.3390/ijerph19106004
Hoponick Redmon J, Mulhern RE, Castellanos E, Wood E, McWilliams A, Herrera I, Liyanapatirana C, Weber F, Levine K, Thorp E, et al. A Participatory Science Approach to Evaluating Factors Associated with the Occurrence of Metals and PFAS in Guatemala City Tap Water. International Journal of Environmental Research and Public Health. 2022; 19(10):6004. https://doi.org/10.3390/ijerph19106004
Chicago/Turabian StyleHoponick Redmon, Jennifer, Riley E. Mulhern, Edwin Castellanos, Erica Wood, Andrea McWilliams, Isabel Herrera, Chamindu Liyanapatirana, Frank Weber, Keith Levine, Evan Thorp, and et al. 2022. "A Participatory Science Approach to Evaluating Factors Associated with the Occurrence of Metals and PFAS in Guatemala City Tap Water" International Journal of Environmental Research and Public Health 19, no. 10: 6004. https://doi.org/10.3390/ijerph19106004
APA StyleHoponick Redmon, J., Mulhern, R. E., Castellanos, E., Wood, E., McWilliams, A., Herrera, I., Liyanapatirana, C., Weber, F., Levine, K., Thorp, E., Bynum, N., Amato, K., Najera Acevedo, M. A., Baker, J., Van Houtven, G., Henry, C., Wade, C., & Kondash, A. (2022). A Participatory Science Approach to Evaluating Factors Associated with the Occurrence of Metals and PFAS in Guatemala City Tap Water. International Journal of Environmental Research and Public Health, 19(10), 6004. https://doi.org/10.3390/ijerph19106004